Kernel  |  3.14

下载     查看原文件
C++程序  |  1318行  |  39.86 KB
/*
 * phy_302_calibration.c
 *
 * Copyright (C) 2002, 2005  Winbond Electronics Corp.
 *
 * modification history
 * ---------------------------------------------------------------------------
 * 0.01.001, 2003-04-16, Kevin      created
 *
 */

/****************** INCLUDE FILES SECTION ***********************************/
#include "phy_calibration.h"
#include "wbhal.h"
#include "wb35reg_f.h"
#include "core.h"


/****************** DEBUG CONSTANT AND MACRO SECTION ************************/

/****************** LOCAL CONSTANT AND MACRO SECTION ************************/
#define LOOP_TIMES      20
#define US              1000/* MICROSECOND*/

#define AG_CONST        0.6072529350
#define FIXED(X)        ((s32)((X) * 32768.0))
#define DEG2RAD(X)      (0.017453 * (X))

static const s32 Angles[] = {
	FIXED(DEG2RAD(45.0)),     FIXED(DEG2RAD(26.565)),
	FIXED(DEG2RAD(14.0362)),  FIXED(DEG2RAD(7.12502)),
	FIXED(DEG2RAD(3.57633)),  FIXED(DEG2RAD(1.78991)),
	FIXED(DEG2RAD(0.895174)), FIXED(DEG2RAD(0.447614)),
	FIXED(DEG2RAD(0.223811)), FIXED(DEG2RAD(0.111906)),
	FIXED(DEG2RAD(0.055953)), FIXED(DEG2RAD(0.027977))
};

/****************** LOCAL FUNCTION DECLARATION SECTION **********************/

/*
 * void    _phy_rf_write_delay(struct hw_data *phw_data);
 * void    phy_init_rf(struct hw_data *phw_data);
 */

/****************** FUNCTION DEFINITION SECTION *****************************/

static s32 _s13_to_s32(u32 data)
{
	u32     val;

	val = (data & 0x0FFF);

	if ((data & BIT(12)) != 0)
		val |= 0xFFFFF000;

	return (s32) val;
}

/****************************************************************************/
static s32 _s4_to_s32(u32 data)
{
	s32     val;

	val = (data & 0x0007);

	if ((data & BIT(3)) != 0)
		val |= 0xFFFFFFF8;

	return val;
}

static u32 _s32_to_s4(s32 data)
{
	u32     val;

	if (data > 7)
		data = 7;
	else if (data < -8)
		data = -8;

	val = data & 0x000F;

	return val;
}

/****************************************************************************/
static s32 _s5_to_s32(u32 data)
{
	s32     val;

	val = (data & 0x000F);

	if ((data & BIT(4)) != 0)
		val |= 0xFFFFFFF0;

	return val;
}

static u32 _s32_to_s5(s32 data)
{
	u32     val;

	if (data > 15)
		data = 15;
	else if (data < -16)
		data = -16;

	val = data & 0x001F;

	return val;
}

/****************************************************************************/
static s32 _s6_to_s32(u32 data)
{
	s32     val;

	val = (data & 0x001F);

	if ((data & BIT(5)) != 0)
		val |= 0xFFFFFFE0;

	return val;
}

static u32 _s32_to_s6(s32 data)
{
	u32     val;

	if (data > 31)
		data = 31;
	else if (data < -32)
		data = -32;

	val = data & 0x003F;

	return val;
}

/****************************************************************************/
static s32 _floor(s32 n)
{
	if (n > 0)
		n += 5;
	else
		n -= 5;

	return n/10;
}

/****************************************************************************/
/*
 * The following code is sqare-root function.
 * sqsum is the input and the output is sq_rt;
 * The maximum of sqsum = 2^27 -1;
 */
static u32 _sqrt(u32 sqsum)
{
	u32     sq_rt;

	int     g0, g1, g2, g3, g4;
	int     seed;
	int     next;
	int     step;

	g4 =  sqsum / 100000000;
	g3 = (sqsum - g4*100000000) / 1000000;
	g2 = (sqsum - g4*100000000 - g3*1000000) / 10000;
	g1 = (sqsum - g4*100000000 - g3*1000000 - g2*10000) / 100;
	g0 = (sqsum - g4*100000000 - g3*1000000 - g2*10000 - g1*100);

	next = g4;
	step = 0;
	seed = 0;
	while (((seed+1)*(step+1)) <= next) {
		step++;
		seed++;
	}

	sq_rt = seed * 10000;
	next = (next-(seed*step))*100 + g3;

	step = 0;
	seed = 2 * seed * 10;
	while (((seed+1)*(step+1)) <= next) {
		step++;
		seed++;
	}

	sq_rt = sq_rt + step * 1000;
	next = (next - seed * step) * 100 + g2;
	seed = (seed + step) * 10;
	step = 0;
	while (((seed+1)*(step+1)) <= next) {
		step++;
		seed++;
	}

	sq_rt = sq_rt + step * 100;
	next = (next - seed * step) * 100 + g1;
	seed = (seed + step) * 10;
	step = 0;

	while (((seed+1)*(step+1)) <= next) {
		step++;
		seed++;
	}

	sq_rt = sq_rt + step * 10;
	next = (next - seed * step) * 100 + g0;
	seed = (seed + step) * 10;
	step = 0;

	while (((seed+1)*(step+1)) <= next) {
		step++;
		seed++;
	}

	sq_rt = sq_rt + step;

	return sq_rt;
}

/****************************************************************************/
static void _sin_cos(s32 angle, s32 *sin, s32 *cos)
{
	s32 X, Y, TargetAngle, CurrAngle;
	unsigned    Step;

	X = FIXED(AG_CONST);      /* AG_CONST * cos(0) */
	Y = 0;                    /* AG_CONST * sin(0) */
	TargetAngle = abs(angle);
	CurrAngle = 0;

	for (Step = 0; Step < 12; Step++) {
		s32 NewX;

		if (TargetAngle > CurrAngle) {
			NewX = X - (Y >> Step);
			Y = (X >> Step) + Y;
			X = NewX;
			CurrAngle += Angles[Step];
		} else {
			NewX = X + (Y >> Step);
			Y = -(X >> Step) + Y;
			X = NewX;
			CurrAngle -= Angles[Step];
		}
	}

	if (angle > 0) {
		*cos = X;
		*sin = Y;
	} else {
		*cos = X;
		*sin = -Y;
	}
}

static unsigned char hal_get_dxx_reg(struct hw_data *pHwData, u16 number,
				     u32 *pValue)
{
	if (number < 0x1000)
		number += 0x1000;
	return Wb35Reg_ReadSync(pHwData, number, pValue);
}
#define hw_get_dxx_reg(_A, _B, _C) hal_get_dxx_reg(_A, _B, (u32 *)_C)

static unsigned char hal_set_dxx_reg(struct hw_data *pHwData, u16 number,
				     u32 value)
{
	unsigned char ret;

	if (number < 0x1000)
		number += 0x1000;
	ret = Wb35Reg_WriteSync(pHwData, number, value);
	return ret;
}
#define hw_set_dxx_reg(_A, _B, _C) hal_set_dxx_reg(_A, _B, (u32)_C)


static void _reset_rx_cal(struct hw_data *phw_data)
{
	u32     val;

	hw_get_dxx_reg(phw_data, 0x54, &val);

	if (phw_data->revision == 0x2002) /* 1st-cut */
		val &= 0xFFFF0000;
	else /* 2nd-cut */
		val &= 0x000003FF;

	hw_set_dxx_reg(phw_data, 0x54, val);
}


/**************for winbond calibration*********/



/**********************************************/
static void _rxadc_dc_offset_cancellation_winbond(struct hw_data *phw_data, u32 frequency)
{
	u32     reg_agc_ctrl3;
	u32     reg_a_acq_ctrl;
	u32     reg_b_acq_ctrl;
	u32     val;

	PHY_DEBUG(("[CAL] -> [1]_rxadc_dc_offset_cancellation()\n"));
	phy_init_rf(phw_data);

	/* set calibration channel */
	if ((RF_WB_242 == phw_data->phy_type) ||
		(RF_WB_242_1 == phw_data->phy_type)) /* 20060619.5 Add */{
		if ((frequency >= 2412) && (frequency <= 2484)) {
			/* w89rf242 change frequency to 2390Mhz */
			PHY_DEBUG(("[CAL] W89RF242/11G/Channel=2390Mhz\n"));
			phy_set_rf_data(phw_data, 3, (3<<24)|0x025586);

		}
	} else {

	}

	/* reset cancel_dc_i[9:5] and cancel_dc_q[4:0] in register DC_Cancel */
	hw_get_dxx_reg(phw_data, 0x5C, &val);
	val &= ~(0x03FF);
	hw_set_dxx_reg(phw_data, 0x5C, val);

	/* reset the TX and RX IQ calibration data */
	hw_set_dxx_reg(phw_data, 0x3C, 0);
	hw_set_dxx_reg(phw_data, 0x54, 0);

	hw_set_dxx_reg(phw_data, 0x58, 0x30303030); /* IQ_Alpha Changed */

	/* a. Disable AGC */
	hw_get_dxx_reg(phw_data, REG_AGC_CTRL3, &reg_agc_ctrl3);
	reg_agc_ctrl3 &= ~BIT(2);
	reg_agc_ctrl3 |= (MASK_LNA_FIX_GAIN|MASK_AGC_FIX);
	hw_set_dxx_reg(phw_data, REG_AGC_CTRL3, reg_agc_ctrl3);

	hw_get_dxx_reg(phw_data, REG_AGC_CTRL5, &val);
	val |= MASK_AGC_FIX_GAIN;
	hw_set_dxx_reg(phw_data, REG_AGC_CTRL5, val);

	/* b. Turn off BB RX */
	hw_get_dxx_reg(phw_data, REG_A_ACQ_CTRL, &reg_a_acq_ctrl);
	reg_a_acq_ctrl |= MASK_AMER_OFF_REG;
	hw_set_dxx_reg(phw_data, REG_A_ACQ_CTRL, reg_a_acq_ctrl);

	hw_get_dxx_reg(phw_data, REG_B_ACQ_CTRL, &reg_b_acq_ctrl);
	reg_b_acq_ctrl |= MASK_BMER_OFF_REG;
	hw_set_dxx_reg(phw_data, REG_B_ACQ_CTRL, reg_b_acq_ctrl);

	/* c. Make sure MAC is in receiving mode
	 * d. Turn ON ADC calibration
	 *    - ADC calibrator is triggered by this signal rising from 0 to 1 */
	hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &val);
	val &= ~MASK_ADC_DC_CAL_STR;
	hw_set_dxx_reg(phw_data, REG_MODE_CTRL, val);

	val |= MASK_ADC_DC_CAL_STR;
	hw_set_dxx_reg(phw_data, REG_MODE_CTRL, val);

	/* e. The results are shown in "adc_dc_cal_i[8:0] and adc_dc_cal_q[8:0]" */
#ifdef _DEBUG
	hw_get_dxx_reg(phw_data, REG_OFFSET_READ, &val);
	PHY_DEBUG(("[CAL]    REG_OFFSET_READ = 0x%08X\n", val));

	PHY_DEBUG(("[CAL]    ** adc_dc_cal_i = %d (0x%04X)\n",
			   _s9_to_s32(val&0x000001FF), val&0x000001FF));
	PHY_DEBUG(("[CAL]    ** adc_dc_cal_q = %d (0x%04X)\n",
			   _s9_to_s32((val&0x0003FE00)>>9),
			   (val&0x0003FE00)>>9));
#endif

	hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &val);
	val &= ~MASK_ADC_DC_CAL_STR;
	hw_set_dxx_reg(phw_data, REG_MODE_CTRL, val);

	/* f. Turn on BB RX */
	/* hw_get_dxx_reg(phw_data, REG_A_ACQ_CTRL, &reg_a_acq_ctrl); */
	reg_a_acq_ctrl &= ~MASK_AMER_OFF_REG;
	hw_set_dxx_reg(phw_data, REG_A_ACQ_CTRL, reg_a_acq_ctrl);

	/* hw_get_dxx_reg(phw_data, REG_B_ACQ_CTRL, &reg_b_acq_ctrl); */
	reg_b_acq_ctrl &= ~MASK_BMER_OFF_REG;
	hw_set_dxx_reg(phw_data, REG_B_ACQ_CTRL, reg_b_acq_ctrl);

	/* g. Enable AGC */
	/* hw_get_dxx_reg(phw_data, REG_AGC_CTRL3, &val); */
	reg_agc_ctrl3 |= BIT(2);
	reg_agc_ctrl3 &= ~(MASK_LNA_FIX_GAIN|MASK_AGC_FIX);
	hw_set_dxx_reg(phw_data, REG_AGC_CTRL3, reg_agc_ctrl3);
}

/* 20060612.1.a 20060718.1 Modify */
static u8 _tx_iq_calibration_loop_winbond(struct hw_data *phw_data,
						   s32 a_2_threshold,
						   s32 b_2_threshold)
{
	u32     reg_mode_ctrl;
	s32     iq_mag_0_tx;
	s32     iqcal_tone_i0;
	s32     iqcal_tone_q0;
	s32     iqcal_tone_i;
	s32     iqcal_tone_q;
	u32     sqsum;
	s32     rot_i_b;
	s32     rot_q_b;
	s32     tx_cal_flt_b[4];
	s32     tx_cal[4];
	s32     tx_cal_reg[4];
	s32     a_2, b_2;
	s32     sin_b, sin_2b;
	s32     cos_b, cos_2b;
	s32     divisor;
	s32     temp1, temp2;
	u32     val;
	u16     loop;
	s32     iqcal_tone_i_avg, iqcal_tone_q_avg;
	u8      verify_count;
	int capture_time;

	PHY_DEBUG(("[CAL] -> _tx_iq_calibration_loop()\n"));
	PHY_DEBUG(("[CAL]    ** a_2_threshold = %d\n", a_2_threshold));
	PHY_DEBUG(("[CAL]    ** b_2_threshold = %d\n", b_2_threshold));

	verify_count = 0;

	hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &reg_mode_ctrl);
	PHY_DEBUG(("[CAL]    MODE_CTRL (read) = 0x%08X\n", reg_mode_ctrl));

	loop = LOOP_TIMES;

	while (loop > 0) {
		PHY_DEBUG(("[CAL] [%d.] <_tx_iq_calibration_loop>\n",
				   (LOOP_TIMES-loop+1)));

		iqcal_tone_i_avg = 0;
		iqcal_tone_q_avg = 0;
		if (!hw_set_dxx_reg(phw_data, 0x3C, 0x00)) /* 20060718.1 modify */
			return 0;
		for (capture_time = 0; capture_time < 10; capture_time++) {
			/*
			 * a. Set iqcal_mode[1:0] to 0x2 and set "calib_start"
			 *    to 0x1 to enable "IQ calibration Mode II"
			 */
			reg_mode_ctrl &= ~(MASK_IQCAL_TONE_SEL|MASK_IQCAL_MODE);
			reg_mode_ctrl &= ~MASK_IQCAL_MODE;
			reg_mode_ctrl |= (MASK_CALIB_START|0x02);
			reg_mode_ctrl |= (MASK_CALIB_START|0x02|2<<2);
			hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
			PHY_DEBUG(("[CAL]    MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));

			/* b. */
			hw_get_dxx_reg(phw_data, REG_CALIB_READ1, &val);
			PHY_DEBUG(("[CAL]    CALIB_READ1 = 0x%08X\n", val));

			iqcal_tone_i0 = _s13_to_s32(val & 0x00001FFF);
			iqcal_tone_q0 = _s13_to_s32((val & 0x03FFE000) >> 13);
			PHY_DEBUG(("[CAL]    ** iqcal_tone_i0=%d, iqcal_tone_q0=%d\n",
				   iqcal_tone_i0, iqcal_tone_q0));

			sqsum = iqcal_tone_i0*iqcal_tone_i0 +
			iqcal_tone_q0*iqcal_tone_q0;
			iq_mag_0_tx = (s32) _sqrt(sqsum);
			PHY_DEBUG(("[CAL]    ** iq_mag_0_tx=%d\n", iq_mag_0_tx));

			/* c. Set "calib_start" to 0x0 */
			reg_mode_ctrl &= ~MASK_CALIB_START;
			hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
			PHY_DEBUG(("[CAL]    MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));

			/*
			 * d. Set iqcal_mode[1:0] to 0x3 and set "calib_start"
			 *    to 0x1 to enable "IQ calibration Mode II"
			 */
			/* hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &val); */
			hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &reg_mode_ctrl);
			reg_mode_ctrl &= ~MASK_IQCAL_MODE;
			reg_mode_ctrl |= (MASK_CALIB_START|0x03);
			hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
			PHY_DEBUG(("[CAL]    MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));

			/* e. */
			hw_get_dxx_reg(phw_data, REG_CALIB_READ1, &val);
			PHY_DEBUG(("[CAL]    CALIB_READ1 = 0x%08X\n", val));

			iqcal_tone_i = _s13_to_s32(val & 0x00001FFF);
			iqcal_tone_q = _s13_to_s32((val & 0x03FFE000) >> 13);
			PHY_DEBUG(("[CAL]    ** iqcal_tone_i = %d, iqcal_tone_q = %d\n",
					   iqcal_tone_i, iqcal_tone_q));
			if (capture_time == 0)
				continue;
			else {
				iqcal_tone_i_avg = (iqcal_tone_i_avg*(capture_time-1) + iqcal_tone_i)/capture_time;
				iqcal_tone_q_avg = (iqcal_tone_q_avg*(capture_time-1) + iqcal_tone_q)/capture_time;
			}
		}

		iqcal_tone_i = iqcal_tone_i_avg;
		iqcal_tone_q = iqcal_tone_q_avg;


		rot_i_b = (iqcal_tone_i * iqcal_tone_i0 +
				   iqcal_tone_q * iqcal_tone_q0) / 1024;
		rot_q_b = (iqcal_tone_i * iqcal_tone_q0 * (-1) +
				   iqcal_tone_q * iqcal_tone_i0) / 1024;
		PHY_DEBUG(("[CAL]    ** rot_i_b = %d, rot_q_b = %d\n",
				   rot_i_b, rot_q_b));

		/* f. */
		divisor = ((iq_mag_0_tx * iq_mag_0_tx * 2)/1024 - rot_i_b) * 2;

		if (divisor == 0) {
			PHY_DEBUG(("[CAL] ** <_tx_iq_calibration_loop> ERROR *******\n"));
			PHY_DEBUG(("[CAL] ** divisor=0 to calculate EPS and THETA !!\n"));
			PHY_DEBUG(("[CAL] ******************************************\n"));
			break;
		}

		a_2 = (rot_i_b * 32768) / divisor;
		b_2 = (rot_q_b * (-32768)) / divisor;
		PHY_DEBUG(("[CAL]    ***** EPSILON/2 = %d\n", a_2));
		PHY_DEBUG(("[CAL]    ***** THETA/2   = %d\n", b_2));

		phw_data->iq_rsdl_gain_tx_d2 = a_2;
		phw_data->iq_rsdl_phase_tx_d2 = b_2;

		/* if ((abs(a_2) < 150) && (abs(b_2) < 100)) */
		/* if ((abs(a_2) < 200) && (abs(b_2) < 200)) */
		if ((abs(a_2) < a_2_threshold) && (abs(b_2) < b_2_threshold)) {
			verify_count++;

			PHY_DEBUG(("[CAL] ** <_tx_iq_calibration_loop> *************\n"));
			PHY_DEBUG(("[CAL] ** VERIFY OK # %d !!\n", verify_count));
			PHY_DEBUG(("[CAL] ******************************************\n"));

			if (verify_count > 2) {
				PHY_DEBUG(("[CAL] ** <_tx_iq_calibration_loop> *********\n"));
				PHY_DEBUG(("[CAL] ** TX_IQ_CALIBRATION (EPS,THETA) OK !!\n"));
				PHY_DEBUG(("[CAL] **************************************\n"));
				return 0;
			}

			continue;
		} else
			verify_count = 0;

		_sin_cos(b_2, &sin_b, &cos_b);
		_sin_cos(b_2*2, &sin_2b, &cos_2b);
		PHY_DEBUG(("[CAL]    ** sin(b/2)=%d, cos(b/2)=%d\n", sin_b, cos_b));
		PHY_DEBUG(("[CAL]    ** sin(b)=%d, cos(b)=%d\n", sin_2b, cos_2b));

		if (cos_2b == 0) {
			PHY_DEBUG(("[CAL] ** <_tx_iq_calibration_loop> ERROR *******\n"));
			PHY_DEBUG(("[CAL] ** cos(b)=0 !!\n"));
			PHY_DEBUG(("[CAL] ******************************************\n"));
			break;
		}

		/* 1280 * 32768 = 41943040 */
		temp1 = (41943040/cos_2b)*cos_b;

		/* temp2 = (41943040/cos_2b)*sin_b*(-1); */
		if (phw_data->revision == 0x2002) /* 1st-cut */
			temp2 = (41943040/cos_2b)*sin_b*(-1);
		else /* 2nd-cut */
			temp2 = (41943040*4/cos_2b)*sin_b*(-1);

		tx_cal_flt_b[0] = _floor(temp1/(32768+a_2));
		tx_cal_flt_b[1] = _floor(temp2/(32768+a_2));
		tx_cal_flt_b[2] = _floor(temp2/(32768-a_2));
		tx_cal_flt_b[3] = _floor(temp1/(32768-a_2));
		PHY_DEBUG(("[CAL]    ** tx_cal_flt_b[0] = %d\n", tx_cal_flt_b[0]));
		PHY_DEBUG(("[CAL]       tx_cal_flt_b[1] = %d\n", tx_cal_flt_b[1]));
		PHY_DEBUG(("[CAL]       tx_cal_flt_b[2] = %d\n", tx_cal_flt_b[2]));
		PHY_DEBUG(("[CAL]       tx_cal_flt_b[3] = %d\n", tx_cal_flt_b[3]));

		tx_cal[2] = tx_cal_flt_b[2];
		tx_cal[2] = tx_cal[2] + 3;
		tx_cal[1] = tx_cal[2];
		tx_cal[3] = tx_cal_flt_b[3] - 128;
		tx_cal[0] = -tx_cal[3] + 1;

		PHY_DEBUG(("[CAL]       tx_cal[0] = %d\n", tx_cal[0]));
		PHY_DEBUG(("[CAL]       tx_cal[1] = %d\n", tx_cal[1]));
		PHY_DEBUG(("[CAL]       tx_cal[2] = %d\n", tx_cal[2]));
		PHY_DEBUG(("[CAL]       tx_cal[3] = %d\n", tx_cal[3]));

		/* if ((tx_cal[0] == 0) && (tx_cal[1] == 0) &&
		      (tx_cal[2] == 0) && (tx_cal[3] == 0))
		  { */
		/*    PHY_DEBUG(("[CAL] ** <_tx_iq_calibration_loop> *************\n"));
		 *    PHY_DEBUG(("[CAL] ** TX_IQ_CALIBRATION COMPLETE !!\n"));
		 *    PHY_DEBUG(("[CAL] ******************************************\n"));
		 *    return 0;
		  } */

		/* g. */
		if (phw_data->revision == 0x2002) /* 1st-cut */{
			hw_get_dxx_reg(phw_data, 0x54, &val);
			PHY_DEBUG(("[CAL]    ** 0x54 = 0x%08X\n", val));
			tx_cal_reg[0] = _s4_to_s32((val & 0xF0000000) >> 28);
			tx_cal_reg[1] = _s4_to_s32((val & 0x0F000000) >> 24);
			tx_cal_reg[2] = _s4_to_s32((val & 0x00F00000) >> 20);
			tx_cal_reg[3] = _s4_to_s32((val & 0x000F0000) >> 16);
		} else /* 2nd-cut */{
			hw_get_dxx_reg(phw_data, 0x3C, &val);
			PHY_DEBUG(("[CAL]    ** 0x3C = 0x%08X\n", val));
			tx_cal_reg[0] = _s5_to_s32((val & 0xF8000000) >> 27);
			tx_cal_reg[1] = _s6_to_s32((val & 0x07E00000) >> 21);
			tx_cal_reg[2] = _s6_to_s32((val & 0x001F8000) >> 15);
			tx_cal_reg[3] = _s5_to_s32((val & 0x00007C00) >> 10);

		}

		PHY_DEBUG(("[CAL]    ** tx_cal_reg[0] = %d\n", tx_cal_reg[0]));
		PHY_DEBUG(("[CAL]       tx_cal_reg[1] = %d\n", tx_cal_reg[1]));
		PHY_DEBUG(("[CAL]       tx_cal_reg[2] = %d\n", tx_cal_reg[2]));
		PHY_DEBUG(("[CAL]       tx_cal_reg[3] = %d\n", tx_cal_reg[3]));

		if (phw_data->revision == 0x2002) /* 1st-cut */{
			if (((tx_cal_reg[0] == 7) || (tx_cal_reg[0] == (-8))) &&
				((tx_cal_reg[3] == 7) || (tx_cal_reg[3] == (-8)))) {
				PHY_DEBUG(("[CAL] ** <_tx_iq_calibration_loop> *********\n"));
				PHY_DEBUG(("[CAL] ** TX_IQ_CALIBRATION SATUATION !!\n"));
				PHY_DEBUG(("[CAL] **************************************\n"));
				break;
			}
		} else /* 2nd-cut */{
			if (((tx_cal_reg[0] == 31) || (tx_cal_reg[0] == (-32))) &&
				((tx_cal_reg[3] == 31) || (tx_cal_reg[3] == (-32)))) {
				PHY_DEBUG(("[CAL] ** <_tx_iq_calibration_loop> *********\n"));
				PHY_DEBUG(("[CAL] ** TX_IQ_CALIBRATION SATUATION !!\n"));
				PHY_DEBUG(("[CAL] **************************************\n"));
				break;
			}
		}

		tx_cal[0] = tx_cal[0] + tx_cal_reg[0];
		tx_cal[1] = tx_cal[1] + tx_cal_reg[1];
		tx_cal[2] = tx_cal[2] + tx_cal_reg[2];
		tx_cal[3] = tx_cal[3] + tx_cal_reg[3];
		PHY_DEBUG(("[CAL]    ** apply tx_cal[0] = %d\n", tx_cal[0]));
		PHY_DEBUG(("[CAL]       apply tx_cal[1] = %d\n", tx_cal[1]));
		PHY_DEBUG(("[CAL]       apply tx_cal[2] = %d\n", tx_cal[2]));
		PHY_DEBUG(("[CAL]       apply tx_cal[3] = %d\n", tx_cal[3]));

		if (phw_data->revision == 0x2002) /* 1st-cut */{
			val &= 0x0000FFFF;
			val |= ((_s32_to_s4(tx_cal[0]) << 28)|
					(_s32_to_s4(tx_cal[1]) << 24)|
					(_s32_to_s4(tx_cal[2]) << 20)|
					(_s32_to_s4(tx_cal[3]) << 16));
			hw_set_dxx_reg(phw_data, 0x54, val);
			PHY_DEBUG(("[CAL]    ** CALIB_DATA = 0x%08X\n", val));
			return 0;
		} else /* 2nd-cut */{
			val &= 0x000003FF;
			val |= ((_s32_to_s5(tx_cal[0]) << 27)|
					(_s32_to_s6(tx_cal[1]) << 21)|
					(_s32_to_s6(tx_cal[2]) << 15)|
					(_s32_to_s5(tx_cal[3]) << 10));
			hw_set_dxx_reg(phw_data, 0x3C, val);
			PHY_DEBUG(("[CAL]    ** TX_IQ_CALIBRATION = 0x%08X\n", val));
			return 0;
		}

		/* i. Set "calib_start" to 0x0 */
		reg_mode_ctrl &= ~MASK_CALIB_START;
		hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
		PHY_DEBUG(("[CAL]    MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));

		loop--;
	}

	return 1;
}

static void _tx_iq_calibration_winbond(struct hw_data *phw_data)
{
	u32     reg_agc_ctrl3;
#ifdef _DEBUG
	s32     tx_cal_reg[4];

#endif
	u32     reg_mode_ctrl;
	u32     val;
	u8      result;

	PHY_DEBUG(("[CAL] -> [4]_tx_iq_calibration()\n"));

	/* 0x01 0xEE3FC2  ; 3B8FF  ; Calibration (6a). enable TX IQ calibration loop circuits */
	phy_set_rf_data(phw_data, 1, (1<<24)|0xEE3FC2);
	/* 0x0B 0x1905D6  ; 06417  ; Calibration (6b). enable TX I/Q cal loop squaring circuit */
	phy_set_rf_data(phw_data, 11, (11<<24)|0x19BDD6); /* 20060612.1.a 0x1905D6); */
	/* 0x05 0x24C60A  ; 09318  ; Calibration (6c). setting TX-VGA gain: TXGCH=2 & GPK=110 --> to be optimized */
	phy_set_rf_data(phw_data, 5, (5<<24)|0x24C60A); /* 0x24C60A (high temperature) */
	/* 0x06 0x06880C  ; 01A20  ; Calibration (6d). RXGCH=00; RXGCL=100 000 (RXVGA=32) --> to be optimized */
	phy_set_rf_data(phw_data, 6, (6<<24)|0x34880C); /* 20060612.1.a 0x06890C); */
	/* 0x00 0xFDF1C0  ; 3F7C7  ; Calibration (6e). turn on IQ imbalance/Test mode */
	phy_set_rf_data(phw_data, 0, (0<<24)|0xFDF1C0);
	/* ; [BB-chip]: Calibration (6f).Send test pattern */
	/* ; [BB-chip]: Calibration (6g). Search RXGCL optimal value */
	/* ; [BB-chip]: Calibration (6h). Calculate TX-path IQ imbalance and setting TX path IQ compensation table */
	/* phy_set_rf_data(phw_data, 3, (3<<24)|0x025586); */

	msleep(30); /* 20060612.1.a 30ms delay. Add the follow 2 lines */
	/* To adjust TXVGA to fit iq_mag_0 range from 1250 ~ 1750 */
	adjust_TXVGA_for_iq_mag(phw_data);

	/* a. Disable AGC */
	hw_get_dxx_reg(phw_data, REG_AGC_CTRL3, &reg_agc_ctrl3);
	reg_agc_ctrl3 &= ~BIT(2);
	reg_agc_ctrl3 |= (MASK_LNA_FIX_GAIN|MASK_AGC_FIX);
	hw_set_dxx_reg(phw_data, REG_AGC_CTRL3, reg_agc_ctrl3);

	hw_get_dxx_reg(phw_data, REG_AGC_CTRL5, &val);
	val |= MASK_AGC_FIX_GAIN;
	hw_set_dxx_reg(phw_data, REG_AGC_CTRL5, val);

	result = _tx_iq_calibration_loop_winbond(phw_data, 150, 100);

	if (result > 0) {
		if (phw_data->revision == 0x2002) /* 1st-cut */{
			hw_get_dxx_reg(phw_data, 0x54, &val);
			val &= 0x0000FFFF;
			hw_set_dxx_reg(phw_data, 0x54, val);
		} else /* 2nd-cut*/{
			hw_get_dxx_reg(phw_data, 0x3C, &val);
			val &= 0x000003FF;
			hw_set_dxx_reg(phw_data, 0x3C, val);
		}

		result = _tx_iq_calibration_loop_winbond(phw_data, 300, 200);

		if (result > 0) {
			if (phw_data->revision == 0x2002) /* 1st-cut */{
				hw_get_dxx_reg(phw_data, 0x54, &val);
				val &= 0x0000FFFF;
				hw_set_dxx_reg(phw_data, 0x54, val);
			} else /* 2nd-cut*/{
				hw_get_dxx_reg(phw_data, 0x3C, &val);
				val &= 0x000003FF;
				hw_set_dxx_reg(phw_data, 0x3C, val);
			}

			result = _tx_iq_calibration_loop_winbond(phw_data, 500, 400);
			if (result > 0) {
				if (phw_data->revision == 0x2002) /* 1st-cut */{
					hw_get_dxx_reg(phw_data, 0x54, &val);
					val &= 0x0000FFFF;
					hw_set_dxx_reg(phw_data, 0x54, val);
				} else /* 2nd-cut */{
					hw_get_dxx_reg(phw_data, 0x3C, &val);
					val &= 0x000003FF;
					hw_set_dxx_reg(phw_data, 0x3C, val);
				}


				result = _tx_iq_calibration_loop_winbond(phw_data, 700, 500);

				if (result > 0) {
					PHY_DEBUG(("[CAL] ** <_tx_iq_calibration> **************\n"));
					PHY_DEBUG(("[CAL] ** TX_IQ_CALIBRATION FAILURE !!\n"));
					PHY_DEBUG(("[CAL] **************************************\n"));

					if (phw_data->revision == 0x2002) /* 1st-cut */{
						hw_get_dxx_reg(phw_data, 0x54, &val);
						val &= 0x0000FFFF;
						hw_set_dxx_reg(phw_data, 0x54, val);
					} else /* 2nd-cut */{
						hw_get_dxx_reg(phw_data, 0x3C, &val);
						val &= 0x000003FF;
						hw_set_dxx_reg(phw_data, 0x3C, val);
					}
				}
			}
		}
	}

	/* i. Set "calib_start" to 0x0 */
	hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &reg_mode_ctrl);
	reg_mode_ctrl &= ~MASK_CALIB_START;
	hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
	PHY_DEBUG(("[CAL]    MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));

	/* g. Enable AGC */
	/* hw_get_dxx_reg(phw_data, REG_AGC_CTRL3, &val); */
	reg_agc_ctrl3 |= BIT(2);
	reg_agc_ctrl3 &= ~(MASK_LNA_FIX_GAIN|MASK_AGC_FIX);
	hw_set_dxx_reg(phw_data, REG_AGC_CTRL3, reg_agc_ctrl3);

#ifdef _DEBUG
	if (phw_data->revision == 0x2002) /* 1st-cut */{
		hw_get_dxx_reg(phw_data, 0x54, &val);
		PHY_DEBUG(("[CAL]    ** 0x54 = 0x%08X\n", val));
		tx_cal_reg[0] = _s4_to_s32((val & 0xF0000000) >> 28);
		tx_cal_reg[1] = _s4_to_s32((val & 0x0F000000) >> 24);
		tx_cal_reg[2] = _s4_to_s32((val & 0x00F00000) >> 20);
		tx_cal_reg[3] = _s4_to_s32((val & 0x000F0000) >> 16);
	} else /* 2nd-cut */ {
		hw_get_dxx_reg(phw_data, 0x3C, &val);
		PHY_DEBUG(("[CAL]    ** 0x3C = 0x%08X\n", val));
		tx_cal_reg[0] = _s5_to_s32((val & 0xF8000000) >> 27);
		tx_cal_reg[1] = _s6_to_s32((val & 0x07E00000) >> 21);
		tx_cal_reg[2] = _s6_to_s32((val & 0x001F8000) >> 15);
		tx_cal_reg[3] = _s5_to_s32((val & 0x00007C00) >> 10);

	}

	PHY_DEBUG(("[CAL]    ** tx_cal_reg[0] = %d\n", tx_cal_reg[0]));
	PHY_DEBUG(("[CAL]       tx_cal_reg[1] = %d\n", tx_cal_reg[1]));
	PHY_DEBUG(("[CAL]       tx_cal_reg[2] = %d\n", tx_cal_reg[2]));
	PHY_DEBUG(("[CAL]       tx_cal_reg[3] = %d\n", tx_cal_reg[3]));
#endif


	/*
	 * for test - BEN
	 * RF Control Override
	 */
}

/*****************************************************/
static u8 _rx_iq_calibration_loop_winbond(struct hw_data *phw_data, u16 factor, u32 frequency)
{
	u32     reg_mode_ctrl;
	s32     iqcal_tone_i;
	s32     iqcal_tone_q;
	s32     iqcal_image_i;
	s32     iqcal_image_q;
	s32     rot_tone_i_b;
	s32     rot_tone_q_b;
	s32     rot_image_i_b;
	s32     rot_image_q_b;
	s32     rx_cal_flt_b[4];
	s32     rx_cal[4];
	s32     rx_cal_reg[4];
	s32     a_2, b_2;
	s32     sin_b, sin_2b;
	s32     cos_b, cos_2b;
	s32     temp1, temp2;
	u32     val;
	u16     loop;

	u32     pwr_tone;
	u32     pwr_image;
	u8      verify_count;

	s32     iqcal_tone_i_avg, iqcal_tone_q_avg;
	s32     iqcal_image_i_avg, iqcal_image_q_avg;
	u16	capture_time;

	PHY_DEBUG(("[CAL] -> [5]_rx_iq_calibration_loop()\n"));
	PHY_DEBUG(("[CAL] ** factor = %d\n", factor));

	hw_set_dxx_reg(phw_data, 0x58, 0x44444444); /* IQ_Alpha */

	/* b. */

	hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &reg_mode_ctrl);
	PHY_DEBUG(("[CAL]    MODE_CTRL (read) = 0x%08X\n", reg_mode_ctrl));

	verify_count = 0;

	/* for (loop = 0; loop < 1; loop++) */
	/* for (loop = 0; loop < LOOP_TIMES; loop++) */
	loop = LOOP_TIMES;
	while (loop > 0) {
		PHY_DEBUG(("[CAL] [%d.] <_rx_iq_calibration_loop>\n",
				   (LOOP_TIMES-loop+1)));
		iqcal_tone_i_avg = 0;
		iqcal_tone_q_avg = 0;
		iqcal_image_i_avg = 0;
		iqcal_image_q_avg = 0;
		capture_time = 0;

		for (capture_time = 0; capture_time < 10; capture_time++) {
			/* i. Set "calib_start" to 0x0 */
			reg_mode_ctrl &= ~MASK_CALIB_START;
			if (!hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl))/*20060718.1 modify */
				return 0;
			PHY_DEBUG(("[CAL]    MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));

			reg_mode_ctrl &= ~MASK_IQCAL_MODE;
			reg_mode_ctrl |= (MASK_CALIB_START|0x1);
			hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
			PHY_DEBUG(("[CAL]    MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));

			/* c. */
			hw_get_dxx_reg(phw_data, REG_CALIB_READ1, &val);
			PHY_DEBUG(("[CAL]    CALIB_READ1 = 0x%08X\n", val));

			iqcal_tone_i = _s13_to_s32(val & 0x00001FFF);
			iqcal_tone_q = _s13_to_s32((val & 0x03FFE000) >> 13);
			PHY_DEBUG(("[CAL]    ** iqcal_tone_i = %d, iqcal_tone_q = %d\n",
				iqcal_tone_i, iqcal_tone_q));

			hw_get_dxx_reg(phw_data, REG_CALIB_READ2, &val);
			PHY_DEBUG(("[CAL]    CALIB_READ2 = 0x%08X\n", val));

			iqcal_image_i = _s13_to_s32(val & 0x00001FFF);
			iqcal_image_q = _s13_to_s32((val & 0x03FFE000) >> 13);
			PHY_DEBUG(("[CAL]    ** iqcal_image_i = %d, iqcal_image_q = %d\n",
				iqcal_image_i, iqcal_image_q));
			if (capture_time == 0)
				continue;
			else {
				iqcal_image_i_avg = (iqcal_image_i_avg*(capture_time-1) + iqcal_image_i)/capture_time;
				iqcal_image_q_avg = (iqcal_image_q_avg*(capture_time-1) + iqcal_image_q)/capture_time;
				iqcal_tone_i_avg = (iqcal_tone_i_avg*(capture_time-1) + iqcal_tone_i)/capture_time;
				iqcal_tone_q_avg = (iqcal_tone_q_avg*(capture_time-1) + iqcal_tone_q)/capture_time;
			}
		}


		iqcal_image_i = iqcal_image_i_avg;
		iqcal_image_q = iqcal_image_q_avg;
		iqcal_tone_i = iqcal_tone_i_avg;
		iqcal_tone_q = iqcal_tone_q_avg;

		/* d. */
		rot_tone_i_b = (iqcal_tone_i * iqcal_tone_i +
					iqcal_tone_q * iqcal_tone_q) / 1024;
		rot_tone_q_b = (iqcal_tone_i * iqcal_tone_q * (-1) +
					iqcal_tone_q * iqcal_tone_i) / 1024;
		rot_image_i_b = (iqcal_image_i * iqcal_tone_i -
					iqcal_image_q * iqcal_tone_q) / 1024;
		rot_image_q_b = (iqcal_image_i * iqcal_tone_q +
					iqcal_image_q * iqcal_tone_i) / 1024;

		PHY_DEBUG(("[CAL]    ** rot_tone_i_b  = %d\n", rot_tone_i_b));
		PHY_DEBUG(("[CAL]    ** rot_tone_q_b  = %d\n", rot_tone_q_b));
		PHY_DEBUG(("[CAL]    ** rot_image_i_b = %d\n", rot_image_i_b));
		PHY_DEBUG(("[CAL]    ** rot_image_q_b = %d\n", rot_image_q_b));

		/* f. */
		if (rot_tone_i_b == 0) {
			PHY_DEBUG(("[CAL] ** <_rx_iq_calibration_loop> ERROR *******\n"));
			PHY_DEBUG(("[CAL] ** rot_tone_i_b=0 to calculate EPS and THETA !!\n"));
			PHY_DEBUG(("[CAL] ******************************************\n"));
			break;
		}

		a_2 = (rot_image_i_b * 32768) / rot_tone_i_b -
			phw_data->iq_rsdl_gain_tx_d2;
		b_2 = (rot_image_q_b * 32768) / rot_tone_i_b -
			phw_data->iq_rsdl_phase_tx_d2;

		PHY_DEBUG(("[CAL]    ** iq_rsdl_gain_tx_d2 = %d\n",
			   phw_data->iq_rsdl_gain_tx_d2));
		PHY_DEBUG(("[CAL]    ** iq_rsdl_phase_tx_d2= %d\n",
			   phw_data->iq_rsdl_phase_tx_d2));
		PHY_DEBUG(("[CAL]    ***** EPSILON/2 = %d\n", a_2));
		PHY_DEBUG(("[CAL]    ***** THETA/2   = %d\n", b_2));

		_sin_cos(b_2, &sin_b, &cos_b);
		_sin_cos(b_2*2, &sin_2b, &cos_2b);
		PHY_DEBUG(("[CAL]    ** sin(b/2)=%d, cos(b/2)=%d\n", sin_b, cos_b));
		PHY_DEBUG(("[CAL]    ** sin(b)=%d, cos(b)=%d\n", sin_2b, cos_2b));

		if (cos_2b == 0) {
			PHY_DEBUG(("[CAL] ** <_rx_iq_calibration_loop> ERROR *******\n"));
			PHY_DEBUG(("[CAL] ** cos(b)=0 !!\n"));
			PHY_DEBUG(("[CAL] ******************************************\n"));
			break;
		}

		/* 1280 * 32768 = 41943040 */
		temp1 = (41943040/cos_2b)*cos_b;

		/* temp2 = (41943040/cos_2b)*sin_b*(-1); */
		if (phw_data->revision == 0x2002)/* 1st-cut */
			temp2 = (41943040/cos_2b)*sin_b*(-1);
		else/* 2nd-cut */
			temp2 = (41943040*4/cos_2b)*sin_b*(-1);

		rx_cal_flt_b[0] = _floor(temp1/(32768+a_2));
		rx_cal_flt_b[1] = _floor(temp2/(32768-a_2));
		rx_cal_flt_b[2] = _floor(temp2/(32768+a_2));
		rx_cal_flt_b[3] = _floor(temp1/(32768-a_2));

		PHY_DEBUG(("[CAL]    ** rx_cal_flt_b[0] = %d\n", rx_cal_flt_b[0]));
		PHY_DEBUG(("[CAL]       rx_cal_flt_b[1] = %d\n", rx_cal_flt_b[1]));
		PHY_DEBUG(("[CAL]       rx_cal_flt_b[2] = %d\n", rx_cal_flt_b[2]));
		PHY_DEBUG(("[CAL]       rx_cal_flt_b[3] = %d\n", rx_cal_flt_b[3]));

		rx_cal[0] = rx_cal_flt_b[0] - 128;
		rx_cal[1] = rx_cal_flt_b[1];
		rx_cal[2] = rx_cal_flt_b[2];
		rx_cal[3] = rx_cal_flt_b[3] - 128;
		PHY_DEBUG(("[CAL]    ** rx_cal[0] = %d\n", rx_cal[0]));
		PHY_DEBUG(("[CAL]       rx_cal[1] = %d\n", rx_cal[1]));
		PHY_DEBUG(("[CAL]       rx_cal[2] = %d\n", rx_cal[2]));
		PHY_DEBUG(("[CAL]       rx_cal[3] = %d\n", rx_cal[3]));

		/* e. */
		pwr_tone = (iqcal_tone_i*iqcal_tone_i + iqcal_tone_q*iqcal_tone_q);
		pwr_image = (iqcal_image_i*iqcal_image_i +
			     iqcal_image_q*iqcal_image_q)*factor;

		PHY_DEBUG(("[CAL]    ** pwr_tone  = %d\n", pwr_tone));
		PHY_DEBUG(("[CAL]    ** pwr_image  = %d\n", pwr_image));

		if (pwr_tone > pwr_image) {
			verify_count++;

			PHY_DEBUG(("[CAL] ** <_rx_iq_calibration_loop> *************\n"));
			PHY_DEBUG(("[CAL] ** VERIFY OK # %d !!\n", verify_count));
			PHY_DEBUG(("[CAL] ******************************************\n"));

			if (verify_count > 2) {
				PHY_DEBUG(("[CAL] ** <_rx_iq_calibration_loop> *********\n"));
				PHY_DEBUG(("[CAL] ** RX_IQ_CALIBRATION OK !!\n"));
				PHY_DEBUG(("[CAL] **************************************\n"));
				return 0;
			}

			continue;
		}
		/* g. */
		hw_get_dxx_reg(phw_data, 0x54, &val);
		PHY_DEBUG(("[CAL]    ** 0x54 = 0x%08X\n", val));

		if (phw_data->revision == 0x2002) /* 1st-cut */{
			rx_cal_reg[0] = _s4_to_s32((val & 0x0000F000) >> 12);
			rx_cal_reg[1] = _s4_to_s32((val & 0x00000F00) >>  8);
			rx_cal_reg[2] = _s4_to_s32((val & 0x000000F0) >>  4);
			rx_cal_reg[3] = _s4_to_s32((val & 0x0000000F));
		} else /* 2nd-cut */{
			rx_cal_reg[0] = _s5_to_s32((val & 0xF8000000) >> 27);
			rx_cal_reg[1] = _s6_to_s32((val & 0x07E00000) >> 21);
			rx_cal_reg[2] = _s6_to_s32((val & 0x001F8000) >> 15);
			rx_cal_reg[3] = _s5_to_s32((val & 0x00007C00) >> 10);
		}

		PHY_DEBUG(("[CAL]    ** rx_cal_reg[0] = %d\n", rx_cal_reg[0]));
		PHY_DEBUG(("[CAL]       rx_cal_reg[1] = %d\n", rx_cal_reg[1]));
		PHY_DEBUG(("[CAL]       rx_cal_reg[2] = %d\n", rx_cal_reg[2]));
		PHY_DEBUG(("[CAL]       rx_cal_reg[3] = %d\n", rx_cal_reg[3]));

		if (phw_data->revision == 0x2002) /* 1st-cut */{
			if (((rx_cal_reg[0] == 7) || (rx_cal_reg[0] == (-8))) &&
				((rx_cal_reg[3] == 7) || (rx_cal_reg[3] == (-8)))) {
				PHY_DEBUG(("[CAL] ** <_rx_iq_calibration_loop> *********\n"));
				PHY_DEBUG(("[CAL] ** RX_IQ_CALIBRATION SATUATION !!\n"));
				PHY_DEBUG(("[CAL] **************************************\n"));
				break;
			}
		} else /* 2nd-cut */{
			if (((rx_cal_reg[0] == 31) || (rx_cal_reg[0] == (-32))) &&
				((rx_cal_reg[3] == 31) || (rx_cal_reg[3] == (-32)))) {
				PHY_DEBUG(("[CAL] ** <_rx_iq_calibration_loop> *********\n"));
				PHY_DEBUG(("[CAL] ** RX_IQ_CALIBRATION SATUATION !!\n"));
				PHY_DEBUG(("[CAL] **************************************\n"));
				break;
			}
		}

		rx_cal[0] = rx_cal[0] + rx_cal_reg[0];
		rx_cal[1] = rx_cal[1] + rx_cal_reg[1];
		rx_cal[2] = rx_cal[2] + rx_cal_reg[2];
		rx_cal[3] = rx_cal[3] + rx_cal_reg[3];
		PHY_DEBUG(("[CAL]    ** apply rx_cal[0] = %d\n", rx_cal[0]));
		PHY_DEBUG(("[CAL]       apply rx_cal[1] = %d\n", rx_cal[1]));
		PHY_DEBUG(("[CAL]       apply rx_cal[2] = %d\n", rx_cal[2]));
		PHY_DEBUG(("[CAL]       apply rx_cal[3] = %d\n", rx_cal[3]));

		hw_get_dxx_reg(phw_data, 0x54, &val);
		if (phw_data->revision == 0x2002) /* 1st-cut */{
			val &= 0x0000FFFF;
			val |= ((_s32_to_s4(rx_cal[0]) << 12)|
					(_s32_to_s4(rx_cal[1]) <<  8)|
					(_s32_to_s4(rx_cal[2]) <<  4)|
					(_s32_to_s4(rx_cal[3])));
			hw_set_dxx_reg(phw_data, 0x54, val);
		} else /* 2nd-cut */{
			val &= 0x000003FF;
			val |= ((_s32_to_s5(rx_cal[0]) << 27)|
					(_s32_to_s6(rx_cal[1]) << 21)|
					(_s32_to_s6(rx_cal[2]) << 15)|
					(_s32_to_s5(rx_cal[3]) << 10));
			hw_set_dxx_reg(phw_data, 0x54, val);

			if (loop == 3)
				return 0;
		}
		PHY_DEBUG(("[CAL]    ** CALIB_DATA = 0x%08X\n", val));

		loop--;
	}

	return 1;
}

/*************************************************/

/***************************************************************/
static void _rx_iq_calibration_winbond(struct hw_data *phw_data, u32 frequency)
{
/* figo 20050523 marked this flag for can't compile for release */
#ifdef _DEBUG
	s32     rx_cal_reg[4];
	u32     val;
#endif

	u8      result;

	PHY_DEBUG(("[CAL] -> [5]_rx_iq_calibration()\n"));
/* a. Set RFIC to "RX calibration mode" */
	/* ; ----- Calibration (7). RX path IQ imbalance calibration loop */
	/*	0x01 0xFFBFC2  ; 3FEFF  ; Calibration (7a). enable RX IQ calibration loop circuits */
	phy_set_rf_data(phw_data, 1, (1<<24)|0xEFBFC2);
	/*	0x0B 0x1A01D6  ; 06817  ; Calibration (7b). enable RX I/Q cal loop SW1 circuits */
	phy_set_rf_data(phw_data, 11, (11<<24)|0x1A05D6);
	/* 0x05 0x24848A  ; 09212  ; Calibration (7c). setting TX-VGA gain (TXGCH) to 2 --> to be optimized */
	phy_set_rf_data(phw_data, 5, (5<<24) | phw_data->txvga_setting_for_cal);
	/* 0x06 0x06840C  ; 01A10  ; Calibration (7d). RXGCH=00; RXGCL=010 000 (RXVGA) --> to be optimized */
	phy_set_rf_data(phw_data, 6, (6<<24)|0x06834C);
	/* 0x00 0xFFF1C0  ; 3F7C7  ; Calibration (7e). turn on IQ imbalance/Test mode */
	phy_set_rf_data(phw_data, 0, (0<<24)|0xFFF1C0);

	/*  ; [BB-chip]: Calibration (7f). Send test pattern */
	/*	; [BB-chip]: Calibration (7g). Search RXGCL optimal value */
	/*	; [BB-chip]: Calibration (7h). Calculate RX-path IQ imbalance and setting RX path IQ compensation table */

	result = _rx_iq_calibration_loop_winbond(phw_data, 12589, frequency);

	if (result > 0) {
		_reset_rx_cal(phw_data);
		result = _rx_iq_calibration_loop_winbond(phw_data, 7943, frequency);

		if (result > 0) {
			_reset_rx_cal(phw_data);
			result = _rx_iq_calibration_loop_winbond(phw_data, 5011, frequency);

			if (result > 0) {
				PHY_DEBUG(("[CAL] ** <_rx_iq_calibration> **************\n"));
				PHY_DEBUG(("[CAL] ** RX_IQ_CALIBRATION FAILURE !!\n"));
				PHY_DEBUG(("[CAL] **************************************\n"));
				_reset_rx_cal(phw_data);
			}
		}
	}

#ifdef _DEBUG
	hw_get_dxx_reg(phw_data, 0x54, &val);
	PHY_DEBUG(("[CAL]    ** 0x54 = 0x%08X\n", val));

	if (phw_data->revision == 0x2002) /* 1st-cut */{
		rx_cal_reg[0] = _s4_to_s32((val & 0x0000F000) >> 12);
		rx_cal_reg[1] = _s4_to_s32((val & 0x00000F00) >>  8);
		rx_cal_reg[2] = _s4_to_s32((val & 0x000000F0) >>  4);
		rx_cal_reg[3] = _s4_to_s32((val & 0x0000000F));
	} else /* 2nd-cut */{
		rx_cal_reg[0] = _s5_to_s32((val & 0xF8000000) >> 27);
		rx_cal_reg[1] = _s6_to_s32((val & 0x07E00000) >> 21);
		rx_cal_reg[2] = _s6_to_s32((val & 0x001F8000) >> 15);
		rx_cal_reg[3] = _s5_to_s32((val & 0x00007C00) >> 10);
	}

	PHY_DEBUG(("[CAL]    ** rx_cal_reg[0] = %d\n", rx_cal_reg[0]));
	PHY_DEBUG(("[CAL]       rx_cal_reg[1] = %d\n", rx_cal_reg[1]));
	PHY_DEBUG(("[CAL]       rx_cal_reg[2] = %d\n", rx_cal_reg[2]));
	PHY_DEBUG(("[CAL]       rx_cal_reg[3] = %d\n", rx_cal_reg[3]));
#endif

}

/*******************************************************/
void phy_calibration_winbond(struct hw_data *phw_data, u32 frequency)
{
	u32     reg_mode_ctrl;
	u32     iq_alpha;

	PHY_DEBUG(("[CAL] -> phy_calibration_winbond()\n"));

	hw_get_dxx_reg(phw_data, 0x58, &iq_alpha);

	_rxadc_dc_offset_cancellation_winbond(phw_data, frequency);
	/* _txidac_dc_offset_cancellation_winbond(phw_data); */
	/* _txqdac_dc_offset_cancellation_winbond(phw_data); */

	_tx_iq_calibration_winbond(phw_data);
	_rx_iq_calibration_winbond(phw_data, frequency);

	/*********************************************************************/
	hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &reg_mode_ctrl);
	reg_mode_ctrl &= ~(MASK_IQCAL_TONE_SEL|MASK_IQCAL_MODE|MASK_CALIB_START); /* set when finish */
	hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
	PHY_DEBUG(("[CAL]    MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));

	/* i. Set RFIC to "Normal mode" */
	hw_set_dxx_reg(phw_data, 0x58, iq_alpha);

	/*********************************************************************/
	phy_init_rf(phw_data);

}

/******************/
void phy_set_rf_data(struct hw_data *pHwData, u32 index, u32 value)
{
	u32 ltmp = 0;

	switch (pHwData->phy_type) {
	case RF_MAXIM_2825:
	case RF_MAXIM_V1: /* 11g Winbond 2nd BB(with Phy board (v1) + Maxim 331) */
		ltmp = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse(value, 18);
		break;

	case RF_MAXIM_2827:
		ltmp = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse(value, 18);
		break;

	case RF_MAXIM_2828:
		ltmp = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse(value, 18);
		break;

	case RF_MAXIM_2829:
		ltmp = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse(value, 18);
		break;

	case RF_AIROHA_2230:
	case RF_AIROHA_2230S: /* 20060420 Add this */
		ltmp = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse(value, 20);
		break;

	case RF_AIROHA_7230:
		ltmp = (1 << 31) | (0 << 30) | (24 << 24) | (value&0xffffff);
		break;

	case RF_WB_242:
	case RF_WB_242_1:/* 20060619.5 Add */
		ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse(value, 24);
		break;
	}

	Wb35Reg_WriteSync(pHwData, 0x0864, ltmp);
}

/* 20060717 modify as Bruce's mail */
unsigned char adjust_TXVGA_for_iq_mag(struct hw_data *phw_data)
{
	int init_txvga = 0;
	u32     reg_mode_ctrl;
	u32     val;
	s32     iqcal_tone_i0;
	s32     iqcal_tone_q0;
	u32     sqsum;
	s32     iq_mag_0_tx;
	u8	reg_state;
	int	current_txvga;


	reg_state = 0;
	for (init_txvga = 0; init_txvga < 10; init_txvga++) {
		current_txvga = (0x24C40A|(init_txvga<<6));
		phy_set_rf_data(phw_data, 5, ((5<<24)|current_txvga));
		phw_data->txvga_setting_for_cal = current_txvga;

		msleep(30);/* 20060612.1.a */

		if (!hw_get_dxx_reg(phw_data, REG_MODE_CTRL, &reg_mode_ctrl))/* 20060718.1 modify */
			return false;

		PHY_DEBUG(("[CAL]    MODE_CTRL (read) = 0x%08X\n", reg_mode_ctrl));

		/*
		 * a. Set iqcal_mode[1:0] to 0x2 and set "calib_start" to 0x1 to
		 *    enable "IQ alibration Mode II"
		 */
		reg_mode_ctrl &= ~(MASK_IQCAL_TONE_SEL|MASK_IQCAL_MODE);
		reg_mode_ctrl &= ~MASK_IQCAL_MODE;
		reg_mode_ctrl |= (MASK_CALIB_START|0x02);
		reg_mode_ctrl |= (MASK_CALIB_START|0x02|2<<2);
		hw_set_dxx_reg(phw_data, REG_MODE_CTRL, reg_mode_ctrl);
		PHY_DEBUG(("[CAL]    MODE_CTRL (write) = 0x%08X\n", reg_mode_ctrl));

		udelay(1);/* 20060612.1.a */

		udelay(300);/* 20060612.1.a */

		/* b. */
		hw_get_dxx_reg(phw_data, REG_CALIB_READ1, &val);

		PHY_DEBUG(("[CAL]    CALIB_READ1 = 0x%08X\n", val));
		udelay(300);/* 20060612.1.a */

		iqcal_tone_i0 = _s13_to_s32(val & 0x00001FFF);
		iqcal_tone_q0 = _s13_to_s32((val & 0x03FFE000) >> 13);
		PHY_DEBUG(("[CAL]    ** iqcal_tone_i0=%d, iqcal_tone_q0=%d\n",
				   iqcal_tone_i0, iqcal_tone_q0));

		sqsum = iqcal_tone_i0*iqcal_tone_i0 + iqcal_tone_q0*iqcal_tone_q0;
		iq_mag_0_tx = (s32) _sqrt(sqsum);
		PHY_DEBUG(("[CAL]    ** auto_adjust_txvga_for_iq_mag_0_tx=%d\n",
			   iq_mag_0_tx));

		if (iq_mag_0_tx >= 700 && iq_mag_0_tx <= 1750)
			break;
		else if (iq_mag_0_tx > 1750) {
			init_txvga = -2;
			continue;
		} else
			continue;

	}

	if (iq_mag_0_tx >= 700 && iq_mag_0_tx <= 1750)
		return true;
	else
		return false;
}