#undef DEBUG /* * ARM performance counter support. * * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> * * This code is based on the sparc64 perf event code, which is in turn based * on the x86 code. Callchain code is based on the ARM OProfile backtrace * code. */ #define pr_fmt(fmt) "hw perfevents: " fmt #include <linux/kernel.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/uaccess.h> #include <linux/irq.h> #include <linux/irqdesc.h> #include <asm/irq_regs.h> #include <asm/pmu.h> #include <asm/stacktrace.h> static int armpmu_map_cache_event(const unsigned (*cache_map) [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX], u64 config) { unsigned int cache_type, cache_op, cache_result, ret; cache_type = (config >> 0) & 0xff; if (cache_type >= PERF_COUNT_HW_CACHE_MAX) return -EINVAL; cache_op = (config >> 8) & 0xff; if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) return -EINVAL; cache_result = (config >> 16) & 0xff; if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) return -EINVAL; ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; if (ret == CACHE_OP_UNSUPPORTED) return -ENOENT; return ret; } static int armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) { int mapping; if (config >= PERF_COUNT_HW_MAX) return -EINVAL; mapping = (*event_map)[config]; return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; } static int armpmu_map_raw_event(u32 raw_event_mask, u64 config) { return (int)(config & raw_event_mask); } int armpmu_map_event(struct perf_event *event, const unsigned (*event_map)[PERF_COUNT_HW_MAX], const unsigned (*cache_map) [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX], u32 raw_event_mask) { u64 config = event->attr.config; switch (event->attr.type) { case PERF_TYPE_HARDWARE: return armpmu_map_hw_event(event_map, config); case PERF_TYPE_HW_CACHE: return armpmu_map_cache_event(cache_map, config); case PERF_TYPE_RAW: return armpmu_map_raw_event(raw_event_mask, config); } return -ENOENT; } int armpmu_event_set_period(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; s64 left = local64_read(&hwc->period_left); s64 period = hwc->sample_period; int ret = 0; if (unlikely(left <= -period)) { left = period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } if (unlikely(left <= 0)) { left += period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } if (left > (s64)armpmu->max_period) left = armpmu->max_period; local64_set(&hwc->prev_count, (u64)-left); armpmu->write_counter(event, (u64)(-left) & 0xffffffff); perf_event_update_userpage(event); return ret; } u64 armpmu_event_update(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; u64 delta, prev_raw_count, new_raw_count; again: prev_raw_count = local64_read(&hwc->prev_count); new_raw_count = armpmu->read_counter(event); if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) goto again; delta = (new_raw_count - prev_raw_count) & armpmu->max_period; local64_add(delta, &event->count); local64_sub(delta, &hwc->period_left); return new_raw_count; } static void armpmu_read(struct perf_event *event) { armpmu_event_update(event); } static void armpmu_stop(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; /* * ARM pmu always has to update the counter, so ignore * PERF_EF_UPDATE, see comments in armpmu_start(). */ if (!(hwc->state & PERF_HES_STOPPED)) { armpmu->disable(event); armpmu_event_update(event); hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; } } static void armpmu_start(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; /* * ARM pmu always has to reprogram the period, so ignore * PERF_EF_RELOAD, see the comment below. */ if (flags & PERF_EF_RELOAD) WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); hwc->state = 0; /* * Set the period again. Some counters can't be stopped, so when we * were stopped we simply disabled the IRQ source and the counter * may have been left counting. If we don't do this step then we may * get an interrupt too soon or *way* too late if the overflow has * happened since disabling. */ armpmu_event_set_period(event); armpmu->enable(event); } static void armpmu_del(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct pmu_hw_events *hw_events = armpmu->get_hw_events(); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; armpmu_stop(event, PERF_EF_UPDATE); hw_events->events[idx] = NULL; clear_bit(idx, hw_events->used_mask); if (armpmu->clear_event_idx) armpmu->clear_event_idx(hw_events, event); perf_event_update_userpage(event); } static int armpmu_add(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct pmu_hw_events *hw_events = armpmu->get_hw_events(); struct hw_perf_event *hwc = &event->hw; int idx; int err = 0; perf_pmu_disable(event->pmu); /* If we don't have a space for the counter then finish early. */ idx = armpmu->get_event_idx(hw_events, event); if (idx < 0) { err = idx; goto out; } /* * If there is an event in the counter we are going to use then make * sure it is disabled. */ event->hw.idx = idx; armpmu->disable(event); hw_events->events[idx] = event; hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; if (flags & PERF_EF_START) armpmu_start(event, PERF_EF_RELOAD); /* Propagate our changes to the userspace mapping. */ perf_event_update_userpage(event); out: perf_pmu_enable(event->pmu); return err; } static int validate_event(struct pmu_hw_events *hw_events, struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); if (is_software_event(event)) return 1; if (event->state < PERF_EVENT_STATE_OFF) return 1; if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) return 1; return armpmu->get_event_idx(hw_events, event) >= 0; } static int validate_group(struct perf_event *event) { struct perf_event *sibling, *leader = event->group_leader; struct pmu_hw_events fake_pmu; DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS); /* * Initialise the fake PMU. We only need to populate the * used_mask for the purposes of validation. */ memset(fake_used_mask, 0, sizeof(fake_used_mask)); fake_pmu.used_mask = fake_used_mask; if (!validate_event(&fake_pmu, leader)) return -EINVAL; list_for_each_entry(sibling, &leader->sibling_list, group_entry) { if (!validate_event(&fake_pmu, sibling)) return -EINVAL; } if (!validate_event(&fake_pmu, event)) return -EINVAL; return 0; } static irqreturn_t armpmu_dispatch_irq(int irq, void *dev) { struct arm_pmu *armpmu; struct platform_device *plat_device; struct arm_pmu_platdata *plat; int ret; u64 start_clock, finish_clock; if (irq_is_percpu(irq)) dev = *(void **)dev; armpmu = dev; plat_device = armpmu->plat_device; plat = dev_get_platdata(&plat_device->dev); start_clock = sched_clock(); if (plat && plat->handle_irq) ret = plat->handle_irq(irq, dev, armpmu->handle_irq); else ret = armpmu->handle_irq(irq, dev); finish_clock = sched_clock(); perf_sample_event_took(finish_clock - start_clock); return ret; } static void armpmu_release_hardware(struct arm_pmu *armpmu) { armpmu->free_irq(armpmu); pm_runtime_put_sync(&armpmu->plat_device->dev); } static int armpmu_reserve_hardware(struct arm_pmu *armpmu) { int err; struct platform_device *pmu_device = armpmu->plat_device; if (!pmu_device) return -ENODEV; pm_runtime_get_sync(&pmu_device->dev); err = armpmu->request_irq(armpmu, armpmu_dispatch_irq); if (err) { armpmu_release_hardware(armpmu); return err; } return 0; } static void hw_perf_event_destroy(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); atomic_t *active_events = &armpmu->active_events; struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex; if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) { armpmu_release_hardware(armpmu); mutex_unlock(pmu_reserve_mutex); } } static int event_requires_mode_exclusion(struct perf_event_attr *attr) { return attr->exclude_idle || attr->exclude_user || attr->exclude_kernel || attr->exclude_hv; } static int __hw_perf_event_init(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int mapping; mapping = armpmu->map_event(event); if (mapping < 0) { pr_debug("event %x:%llx not supported\n", event->attr.type, event->attr.config); return mapping; } /* * We don't assign an index until we actually place the event onto * hardware. Use -1 to signify that we haven't decided where to put it * yet. For SMP systems, each core has it's own PMU so we can't do any * clever allocation or constraints checking at this point. */ hwc->idx = -1; hwc->config_base = 0; hwc->config = 0; hwc->event_base = 0; /* * Check whether we need to exclude the counter from certain modes. */ if ((!armpmu->set_event_filter || armpmu->set_event_filter(hwc, &event->attr)) && event_requires_mode_exclusion(&event->attr)) { pr_debug("ARM performance counters do not support " "mode exclusion\n"); return -EOPNOTSUPP; } /* * Store the event encoding into the config_base field. */ hwc->config_base |= (unsigned long)mapping; if (!is_sampling_event(event)) { /* * For non-sampling runs, limit the sample_period to half * of the counter width. That way, the new counter value * is far less likely to overtake the previous one unless * you have some serious IRQ latency issues. */ hwc->sample_period = armpmu->max_period >> 1; hwc->last_period = hwc->sample_period; local64_set(&hwc->period_left, hwc->sample_period); } if (event->group_leader != event) { if (validate_group(event) != 0) return -EINVAL; } return 0; } static int armpmu_event_init(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); int err = 0; atomic_t *active_events = &armpmu->active_events; /* does not support taken branch sampling */ if (has_branch_stack(event)) return -EOPNOTSUPP; if (armpmu->map_event(event) == -ENOENT) return -ENOENT; event->destroy = hw_perf_event_destroy; if (!atomic_inc_not_zero(active_events)) { mutex_lock(&armpmu->reserve_mutex); if (atomic_read(active_events) == 0) err = armpmu_reserve_hardware(armpmu); if (!err) atomic_inc(active_events); mutex_unlock(&armpmu->reserve_mutex); } if (err) return err; err = __hw_perf_event_init(event); if (err) hw_perf_event_destroy(event); return err; } static void armpmu_enable(struct pmu *pmu) { struct arm_pmu *armpmu = to_arm_pmu(pmu); struct pmu_hw_events *hw_events = armpmu->get_hw_events(); int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); if (enabled) armpmu->start(armpmu); } static void armpmu_disable(struct pmu *pmu) { struct arm_pmu *armpmu = to_arm_pmu(pmu); armpmu->stop(armpmu); } #ifdef CONFIG_PM_RUNTIME static int armpmu_runtime_resume(struct device *dev) { struct arm_pmu_platdata *plat = dev_get_platdata(dev); if (plat && plat->runtime_resume) return plat->runtime_resume(dev); return 0; } static int armpmu_runtime_suspend(struct device *dev) { struct arm_pmu_platdata *plat = dev_get_platdata(dev); if (plat && plat->runtime_suspend) return plat->runtime_suspend(dev); return 0; } #endif const struct dev_pm_ops armpmu_dev_pm_ops = { SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL) }; static void armpmu_init(struct arm_pmu *armpmu) { atomic_set(&armpmu->active_events, 0); mutex_init(&armpmu->reserve_mutex); armpmu->pmu = (struct pmu) { .pmu_enable = armpmu_enable, .pmu_disable = armpmu_disable, .event_init = armpmu_event_init, .add = armpmu_add, .del = armpmu_del, .start = armpmu_start, .stop = armpmu_stop, .read = armpmu_read, }; } int armpmu_register(struct arm_pmu *armpmu, int type) { armpmu_init(armpmu); pm_runtime_enable(&armpmu->plat_device->dev); pr_info("enabled with %s PMU driver, %d counters available\n", armpmu->name, armpmu->num_events); return perf_pmu_register(&armpmu->pmu, armpmu->name, type); } /* * Callchain handling code. */ /* * The registers we're interested in are at the end of the variable * length saved register structure. The fp points at the end of this * structure so the address of this struct is: * (struct frame_tail *)(xxx->fp)-1 * * This code has been adapted from the ARM OProfile support. */ struct frame_tail { struct frame_tail __user *fp; unsigned long sp; unsigned long lr; } __attribute__((packed)); /* * Get the return address for a single stackframe and return a pointer to the * next frame tail. */ static struct frame_tail __user * user_backtrace(struct frame_tail __user *tail, struct perf_callchain_entry *entry) { struct frame_tail buftail; unsigned long err; if (!access_ok(VERIFY_READ, tail, sizeof(buftail))) return NULL; pagefault_disable(); err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail)); pagefault_enable(); if (err) return NULL; perf_callchain_store(entry, buftail.lr); /* * Frame pointers should strictly progress back up the stack * (towards higher addresses). */ if (tail + 1 >= buftail.fp) return NULL; return buftail.fp - 1; } void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs) { struct frame_tail __user *tail; if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { /* We don't support guest os callchain now */ return; } perf_callchain_store(entry, regs->ARM_pc); if (!current->mm) return; tail = (struct frame_tail __user *)regs->ARM_fp - 1; while ((entry->nr < PERF_MAX_STACK_DEPTH) && tail && !((unsigned long)tail & 0x3)) tail = user_backtrace(tail, entry); } /* * Gets called by walk_stackframe() for every stackframe. This will be called * whist unwinding the stackframe and is like a subroutine return so we use * the PC. */ static int callchain_trace(struct stackframe *fr, void *data) { struct perf_callchain_entry *entry = data; perf_callchain_store(entry, fr->pc); return 0; } void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs) { struct stackframe fr; if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { /* We don't support guest os callchain now */ return; } arm_get_current_stackframe(regs, &fr); walk_stackframe(&fr, callchain_trace, entry); } unsigned long perf_instruction_pointer(struct pt_regs *regs) { if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) return perf_guest_cbs->get_guest_ip(); return instruction_pointer(regs); } unsigned long perf_misc_flags(struct pt_regs *regs) { int misc = 0; if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { if (perf_guest_cbs->is_user_mode()) misc |= PERF_RECORD_MISC_GUEST_USER; else misc |= PERF_RECORD_MISC_GUEST_KERNEL; } else { if (user_mode(regs)) misc |= PERF_RECORD_MISC_USER; else misc |= PERF_RECORD_MISC_KERNEL; } return misc; }