/* * linux/arch/arm/mach-at91/clock.c * * Copyright (C) 2005 David Brownell * Copyright (C) 2005 Ivan Kokshaysky * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/debugfs.h> #include <linux/seq_file.h> #include <linux/list.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/spinlock.h> #include <linux/delay.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/of_address.h> #include <linux/clk/at91_pmc.h> #include <mach/hardware.h> #include <mach/cpu.h> #include <asm/proc-fns.h> #include "clock.h" #include "generic.h" void __iomem *at91_pmc_base; EXPORT_SYMBOL_GPL(at91_pmc_base); /* * There's a lot more which can be done with clocks, including cpufreq * integration, slow clock mode support (for system suspend), letting * PLLB be used at other rates (on boards that don't need USB), etc. */ #define clk_is_primary(x) ((x)->type & CLK_TYPE_PRIMARY) #define clk_is_programmable(x) ((x)->type & CLK_TYPE_PROGRAMMABLE) #define clk_is_peripheral(x) ((x)->type & CLK_TYPE_PERIPHERAL) #define clk_is_sys(x) ((x)->type & CLK_TYPE_SYSTEM) /* * Chips have some kind of clocks : group them by functionality */ #define cpu_has_utmi() ( cpu_is_at91sam9rl() \ || cpu_is_at91sam9g45() \ || cpu_is_at91sam9x5() \ || cpu_is_sama5d3()) #define cpu_has_1056M_plla() (cpu_is_sama5d3()) #define cpu_has_800M_plla() ( cpu_is_at91sam9g20() \ || cpu_is_at91sam9g45() \ || cpu_is_at91sam9x5() \ || cpu_is_at91sam9n12()) #define cpu_has_300M_plla() (cpu_is_at91sam9g10()) #define cpu_has_240M_plla() (cpu_is_at91sam9261() \ || cpu_is_at91sam9263() \ || cpu_is_at91sam9rl()) #define cpu_has_210M_plla() (cpu_is_at91sam9260()) #define cpu_has_pllb() (!(cpu_is_at91sam9rl() \ || cpu_is_at91sam9g45() \ || cpu_is_at91sam9x5() \ || cpu_is_sama5d3())) #define cpu_has_upll() (cpu_is_at91sam9g45() \ || cpu_is_at91sam9x5() \ || cpu_is_sama5d3()) /* USB host HS & FS */ #define cpu_has_uhp() (!cpu_is_at91sam9rl()) /* USB device FS only */ #define cpu_has_udpfs() (!(cpu_is_at91sam9rl() \ || cpu_is_at91sam9g45() \ || cpu_is_at91sam9x5() \ || cpu_is_sama5d3())) #define cpu_has_plladiv2() (cpu_is_at91sam9g45() \ || cpu_is_at91sam9x5() \ || cpu_is_at91sam9n12() \ || cpu_is_sama5d3()) #define cpu_has_mdiv3() (cpu_is_at91sam9g45() \ || cpu_is_at91sam9x5() \ || cpu_is_at91sam9n12() \ || cpu_is_sama5d3()) #define cpu_has_alt_prescaler() (cpu_is_at91sam9x5() \ || cpu_is_at91sam9n12() \ || cpu_is_sama5d3()) static LIST_HEAD(clocks); static DEFINE_SPINLOCK(clk_lock); static u32 at91_pllb_usb_init; /* * Four primary clock sources: two crystal oscillators (32K, main), and * two PLLs. PLLA usually runs the master clock; and PLLB must run at * 48 MHz (unless no USB function clocks are needed). The main clock and * both PLLs are turned off to run in "slow clock mode" (system suspend). */ static struct clk clk32k = { .name = "clk32k", .rate_hz = AT91_SLOW_CLOCK, .users = 1, /* always on */ .id = 0, .type = CLK_TYPE_PRIMARY, }; static struct clk main_clk = { .name = "main", .pmc_mask = AT91_PMC_MOSCS, /* in PMC_SR */ .id = 1, .type = CLK_TYPE_PRIMARY, }; static struct clk plla = { .name = "plla", .parent = &main_clk, .pmc_mask = AT91_PMC_LOCKA, /* in PMC_SR */ .id = 2, .type = CLK_TYPE_PRIMARY | CLK_TYPE_PLL, }; static void pllb_mode(struct clk *clk, int is_on) { u32 value; if (is_on) { is_on = AT91_PMC_LOCKB; value = at91_pllb_usb_init; } else value = 0; // REVISIT: Add work-around for AT91RM9200 Errata #26 ? at91_pmc_write(AT91_CKGR_PLLBR, value); do { cpu_relax(); } while ((at91_pmc_read(AT91_PMC_SR) & AT91_PMC_LOCKB) != is_on); } static struct clk pllb = { .name = "pllb", .parent = &main_clk, .pmc_mask = AT91_PMC_LOCKB, /* in PMC_SR */ .mode = pllb_mode, .id = 3, .type = CLK_TYPE_PRIMARY | CLK_TYPE_PLL, }; static void pmc_sys_mode(struct clk *clk, int is_on) { if (is_on) at91_pmc_write(AT91_PMC_SCER, clk->pmc_mask); else at91_pmc_write(AT91_PMC_SCDR, clk->pmc_mask); } static void pmc_uckr_mode(struct clk *clk, int is_on) { unsigned int uckr = at91_pmc_read(AT91_CKGR_UCKR); if (is_on) { is_on = AT91_PMC_LOCKU; at91_pmc_write(AT91_CKGR_UCKR, uckr | clk->pmc_mask); } else at91_pmc_write(AT91_CKGR_UCKR, uckr & ~(clk->pmc_mask)); do { cpu_relax(); } while ((at91_pmc_read(AT91_PMC_SR) & AT91_PMC_LOCKU) != is_on); } /* USB function clocks (PLLB must be 48 MHz) */ static struct clk udpck = { .name = "udpck", .parent = &pllb, .mode = pmc_sys_mode, }; struct clk utmi_clk = { .name = "utmi_clk", .parent = &main_clk, .pmc_mask = AT91_PMC_UPLLEN, /* in CKGR_UCKR */ .mode = pmc_uckr_mode, .type = CLK_TYPE_PLL, }; static struct clk uhpck = { .name = "uhpck", /*.parent = ... we choose parent at runtime */ .mode = pmc_sys_mode, }; /* * The master clock is divided from the CPU clock (by 1-4). It's used for * memory, interfaces to on-chip peripherals, the AIC, and sometimes more * (e.g baud rate generation). It's sourced from one of the primary clocks. */ struct clk mck = { .name = "mck", .pmc_mask = AT91_PMC_MCKRDY, /* in PMC_SR */ }; static void pmc_periph_mode(struct clk *clk, int is_on) { u32 regval = 0; /* * With sama5d3 devices, we are managing clock division so we have to * use the Peripheral Control Register introduced from at91sam9x5 * devices. */ if (cpu_is_sama5d3()) { regval |= AT91_PMC_PCR_CMD; /* write command */ regval |= clk->pid & AT91_PMC_PCR_PID; /* peripheral selection */ regval |= AT91_PMC_PCR_DIV(clk->div); if (is_on) regval |= AT91_PMC_PCR_EN; /* enable clock */ at91_pmc_write(AT91_PMC_PCR, regval); } else { if (is_on) at91_pmc_write(AT91_PMC_PCER, clk->pmc_mask); else at91_pmc_write(AT91_PMC_PCDR, clk->pmc_mask); } } static struct clk __init *at91_css_to_clk(unsigned long css) { switch (css) { case AT91_PMC_CSS_SLOW: return &clk32k; case AT91_PMC_CSS_MAIN: return &main_clk; case AT91_PMC_CSS_PLLA: return &plla; case AT91_PMC_CSS_PLLB: if (cpu_has_upll()) /* CSS_PLLB == CSS_UPLL */ return &utmi_clk; else if (cpu_has_pllb()) return &pllb; break; /* alternate PMC: can use master clock */ case AT91_PMC_CSS_MASTER: return &mck; } return NULL; } static int pmc_prescaler_divider(u32 reg) { if (cpu_has_alt_prescaler()) { return 1 << ((reg & AT91_PMC_ALT_PRES) >> PMC_ALT_PRES_OFFSET); } else { return 1 << ((reg & AT91_PMC_PRES) >> PMC_PRES_OFFSET); } } static void __clk_enable(struct clk *clk) { if (clk->parent) __clk_enable(clk->parent); if (clk->users++ == 0 && clk->mode) clk->mode(clk, 1); } int clk_enable(struct clk *clk) { unsigned long flags; spin_lock_irqsave(&clk_lock, flags); __clk_enable(clk); spin_unlock_irqrestore(&clk_lock, flags); return 0; } EXPORT_SYMBOL(clk_enable); static void __clk_disable(struct clk *clk) { BUG_ON(clk->users == 0); if (--clk->users == 0 && clk->mode) clk->mode(clk, 0); if (clk->parent) __clk_disable(clk->parent); } void clk_disable(struct clk *clk) { unsigned long flags; spin_lock_irqsave(&clk_lock, flags); __clk_disable(clk); spin_unlock_irqrestore(&clk_lock, flags); } EXPORT_SYMBOL(clk_disable); unsigned long clk_get_rate(struct clk *clk) { unsigned long flags; unsigned long rate; spin_lock_irqsave(&clk_lock, flags); for (;;) { rate = clk->rate_hz; if (rate || !clk->parent) break; clk = clk->parent; } spin_unlock_irqrestore(&clk_lock, flags); return rate; } EXPORT_SYMBOL(clk_get_rate); /*------------------------------------------------------------------------*/ /* * For now, only the programmable clocks support reparenting (MCK could * do this too, with care) or rate changing (the PLLs could do this too, * ditto MCK but that's more for cpufreq). Drivers may reparent to get * a better rate match; we don't. */ long clk_round_rate(struct clk *clk, unsigned long rate) { unsigned long flags; unsigned prescale; unsigned long actual; unsigned long prev = ULONG_MAX; if (!clk_is_programmable(clk)) return -EINVAL; spin_lock_irqsave(&clk_lock, flags); actual = clk->parent->rate_hz; for (prescale = 0; prescale < 7; prescale++) { if (actual > rate) prev = actual; if (actual && actual <= rate) { if ((prev - rate) < (rate - actual)) { actual = prev; prescale--; } break; } actual >>= 1; } spin_unlock_irqrestore(&clk_lock, flags); return (prescale < 7) ? actual : -ENOENT; } EXPORT_SYMBOL(clk_round_rate); int clk_set_rate(struct clk *clk, unsigned long rate) { unsigned long flags; unsigned prescale; unsigned long prescale_offset, css_mask; unsigned long actual; if (!clk_is_programmable(clk)) return -EINVAL; if (clk->users) return -EBUSY; if (cpu_has_alt_prescaler()) { prescale_offset = PMC_ALT_PRES_OFFSET; css_mask = AT91_PMC_ALT_PCKR_CSS; } else { prescale_offset = PMC_PRES_OFFSET; css_mask = AT91_PMC_CSS; } spin_lock_irqsave(&clk_lock, flags); actual = clk->parent->rate_hz; for (prescale = 0; prescale < 7; prescale++) { if (actual && actual <= rate) { u32 pckr; pckr = at91_pmc_read(AT91_PMC_PCKR(clk->id)); pckr &= css_mask; /* keep clock selection */ pckr |= prescale << prescale_offset; at91_pmc_write(AT91_PMC_PCKR(clk->id), pckr); clk->rate_hz = actual; break; } actual >>= 1; } spin_unlock_irqrestore(&clk_lock, flags); return (prescale < 7) ? actual : -ENOENT; } EXPORT_SYMBOL(clk_set_rate); struct clk *clk_get_parent(struct clk *clk) { return clk->parent; } EXPORT_SYMBOL(clk_get_parent); int clk_set_parent(struct clk *clk, struct clk *parent) { unsigned long flags; if (clk->users) return -EBUSY; if (!clk_is_primary(parent) || !clk_is_programmable(clk)) return -EINVAL; if (cpu_is_at91sam9rl() && parent->id == AT91_PMC_CSS_PLLB) return -EINVAL; spin_lock_irqsave(&clk_lock, flags); clk->rate_hz = parent->rate_hz; clk->parent = parent; at91_pmc_write(AT91_PMC_PCKR(clk->id), parent->id); spin_unlock_irqrestore(&clk_lock, flags); return 0; } EXPORT_SYMBOL(clk_set_parent); /* establish PCK0..PCKN parentage and rate */ static void __init init_programmable_clock(struct clk *clk) { struct clk *parent; u32 pckr; unsigned int css_mask; if (cpu_has_alt_prescaler()) css_mask = AT91_PMC_ALT_PCKR_CSS; else css_mask = AT91_PMC_CSS; pckr = at91_pmc_read(AT91_PMC_PCKR(clk->id)); parent = at91_css_to_clk(pckr & css_mask); clk->parent = parent; clk->rate_hz = parent->rate_hz / pmc_prescaler_divider(pckr); } /*------------------------------------------------------------------------*/ #ifdef CONFIG_DEBUG_FS static int at91_clk_show(struct seq_file *s, void *unused) { u32 scsr, pcsr, pcsr1 = 0, uckr = 0, sr; struct clk *clk; scsr = at91_pmc_read(AT91_PMC_SCSR); pcsr = at91_pmc_read(AT91_PMC_PCSR); if (cpu_is_sama5d3()) pcsr1 = at91_pmc_read(AT91_PMC_PCSR1); sr = at91_pmc_read(AT91_PMC_SR); seq_printf(s, "SCSR = %8x\n", scsr); seq_printf(s, "PCSR = %8x\n", pcsr); if (cpu_is_sama5d3()) seq_printf(s, "PCSR1 = %8x\n", pcsr1); seq_printf(s, "MOR = %8x\n", at91_pmc_read(AT91_CKGR_MOR)); seq_printf(s, "MCFR = %8x\n", at91_pmc_read(AT91_CKGR_MCFR)); seq_printf(s, "PLLA = %8x\n", at91_pmc_read(AT91_CKGR_PLLAR)); if (cpu_has_pllb()) seq_printf(s, "PLLB = %8x\n", at91_pmc_read(AT91_CKGR_PLLBR)); if (cpu_has_utmi()) { uckr = at91_pmc_read(AT91_CKGR_UCKR); seq_printf(s, "UCKR = %8x\n", uckr); } seq_printf(s, "MCKR = %8x\n", at91_pmc_read(AT91_PMC_MCKR)); if (cpu_has_upll() || cpu_is_at91sam9n12()) seq_printf(s, "USB = %8x\n", at91_pmc_read(AT91_PMC_USB)); seq_printf(s, "SR = %8x\n", sr); seq_printf(s, "\n"); list_for_each_entry(clk, &clocks, node) { char *state; if (clk->mode == pmc_sys_mode) { state = (scsr & clk->pmc_mask) ? "on" : "off"; } else if (clk->mode == pmc_periph_mode) { if (cpu_is_sama5d3()) { u32 pmc_mask = 1 << (clk->pid % 32); if (clk->pid > 31) state = (pcsr1 & pmc_mask) ? "on" : "off"; else state = (pcsr & pmc_mask) ? "on" : "off"; } else { state = (pcsr & clk->pmc_mask) ? "on" : "off"; } } else if (clk->mode == pmc_uckr_mode) { state = (uckr & clk->pmc_mask) ? "on" : "off"; } else if (clk->pmc_mask) { state = (sr & clk->pmc_mask) ? "on" : "off"; } else if (clk == &clk32k || clk == &main_clk) { state = "on"; } else { state = ""; } seq_printf(s, "%-10s users=%2d %-3s %9lu Hz %s\n", clk->name, clk->users, state, clk_get_rate(clk), clk->parent ? clk->parent->name : ""); } return 0; } static int at91_clk_open(struct inode *inode, struct file *file) { return single_open(file, at91_clk_show, NULL); } static const struct file_operations at91_clk_operations = { .open = at91_clk_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int __init at91_clk_debugfs_init(void) { /* /sys/kernel/debug/at91_clk */ (void) debugfs_create_file("at91_clk", S_IFREG | S_IRUGO, NULL, NULL, &at91_clk_operations); return 0; } postcore_initcall(at91_clk_debugfs_init); #endif /*------------------------------------------------------------------------*/ /* Register a new clock */ static void __init at91_clk_add(struct clk *clk) { list_add_tail(&clk->node, &clocks); clk->cl.con_id = clk->name; clk->cl.clk = clk; clkdev_add(&clk->cl); } int __init clk_register(struct clk *clk) { if (clk_is_peripheral(clk)) { if (!clk->parent) clk->parent = &mck; if (cpu_is_sama5d3()) clk->rate_hz = DIV_ROUND_UP(clk->parent->rate_hz, 1 << clk->div); clk->mode = pmc_periph_mode; } else if (clk_is_sys(clk)) { clk->parent = &mck; clk->mode = pmc_sys_mode; } else if (clk_is_programmable(clk)) { clk->mode = pmc_sys_mode; init_programmable_clock(clk); } at91_clk_add(clk); return 0; } /*------------------------------------------------------------------------*/ static u32 __init at91_pll_rate(struct clk *pll, u32 freq, u32 reg) { unsigned mul, div; div = reg & 0xff; if (cpu_is_sama5d3()) mul = AT91_PMC3_MUL_GET(reg); else mul = AT91_PMC_MUL_GET(reg); if (div && mul) { freq /= div; freq *= mul + 1; } else freq = 0; return freq; } static u32 __init at91_usb_rate(struct clk *pll, u32 freq, u32 reg) { if (pll == &pllb && (reg & AT91_PMC_USB96M)) return freq / 2; else if (pll == &utmi_clk || cpu_is_at91sam9n12()) return freq / (1 + ((reg & AT91_PMC_OHCIUSBDIV) >> 8)); else return freq; } static unsigned __init at91_pll_calc(unsigned main_freq, unsigned out_freq) { unsigned i, div = 0, mul = 0, diff = 1 << 30; unsigned ret = (out_freq > 155000000) ? 0xbe00 : 0x3e00; /* PLL output max 240 MHz (or 180 MHz per errata) */ if (out_freq > 240000000) goto fail; for (i = 1; i < 256; i++) { int diff1; unsigned input, mul1; /* * PLL input between 1MHz and 32MHz per spec, but lower * frequences seem necessary in some cases so allow 100K. * Warning: some newer products need 2MHz min. */ input = main_freq / i; if (cpu_is_at91sam9g20() && input < 2000000) continue; if (input < 100000) continue; if (input > 32000000) continue; mul1 = out_freq / input; if (cpu_is_at91sam9g20() && mul > 63) continue; if (mul1 > 2048) continue; if (mul1 < 2) goto fail; diff1 = out_freq - input * mul1; if (diff1 < 0) diff1 = -diff1; if (diff > diff1) { diff = diff1; div = i; mul = mul1; if (diff == 0) break; } } if (i == 256 && diff > (out_freq >> 5)) goto fail; return ret | ((mul - 1) << 16) | div; fail: return 0; } static struct clk *const standard_pmc_clocks[] __initconst = { /* four primary clocks */ &clk32k, &main_clk, &plla, /* MCK */ &mck }; /* PLLB generated USB full speed clock init */ static void __init at91_pllb_usbfs_clock_init(unsigned long main_clock) { unsigned int reg; /* * USB clock init: choose 48 MHz PLLB value, * disable 48MHz clock during usb peripheral suspend. * * REVISIT: assumes MCK doesn't derive from PLLB! */ uhpck.parent = &pllb; reg = at91_pllb_usb_init = at91_pll_calc(main_clock, 48000000 * 2); pllb.rate_hz = at91_pll_rate(&pllb, main_clock, at91_pllb_usb_init); if (cpu_is_at91rm9200()) { reg = at91_pllb_usb_init |= AT91_PMC_USB96M; uhpck.pmc_mask = AT91RM9200_PMC_UHP; udpck.pmc_mask = AT91RM9200_PMC_UDP; at91_pmc_write(AT91_PMC_SCER, AT91RM9200_PMC_MCKUDP); } else if (cpu_is_at91sam9260() || cpu_is_at91sam9261() || cpu_is_at91sam9263() || cpu_is_at91sam9g20() || cpu_is_at91sam9g10()) { reg = at91_pllb_usb_init |= AT91_PMC_USB96M; uhpck.pmc_mask = AT91SAM926x_PMC_UHP; udpck.pmc_mask = AT91SAM926x_PMC_UDP; } else if (cpu_is_at91sam9n12()) { /* Divider for USB clock is in USB clock register for 9n12 */ reg = AT91_PMC_USBS_PLLB; /* For PLLB output 96M, set usb divider 2 (USBDIV + 1) */ reg |= AT91_PMC_OHCIUSBDIV_2; at91_pmc_write(AT91_PMC_USB, reg); /* Still setup masks */ uhpck.pmc_mask = AT91SAM926x_PMC_UHP; udpck.pmc_mask = AT91SAM926x_PMC_UDP; } at91_pmc_write(AT91_CKGR_PLLBR, 0); udpck.rate_hz = at91_usb_rate(&pllb, pllb.rate_hz, reg); uhpck.rate_hz = at91_usb_rate(&pllb, pllb.rate_hz, reg); } /* UPLL generated USB full speed clock init */ static void __init at91_upll_usbfs_clock_init(unsigned long main_clock) { /* * USB clock init: choose 480 MHz from UPLL, */ unsigned int usbr = AT91_PMC_USBS_UPLL; /* Setup divider by 10 to reach 48 MHz */ usbr |= ((10 - 1) << 8) & AT91_PMC_OHCIUSBDIV; at91_pmc_write(AT91_PMC_USB, usbr); /* Now set uhpck values */ uhpck.parent = &utmi_clk; uhpck.pmc_mask = AT91SAM926x_PMC_UHP; uhpck.rate_hz = at91_usb_rate(&utmi_clk, utmi_clk.rate_hz, usbr); } static int __init at91_pmc_init(unsigned long main_clock) { unsigned tmp, freq, mckr; int i; int pll_overclock = false; /* * When the bootloader initialized the main oscillator correctly, * there's no problem using the cycle counter. But if it didn't, * or when using oscillator bypass mode, we must be told the speed * of the main clock. */ if (!main_clock) { do { tmp = at91_pmc_read(AT91_CKGR_MCFR); } while (!(tmp & AT91_PMC_MAINRDY)); main_clock = (tmp & AT91_PMC_MAINF) * (AT91_SLOW_CLOCK / 16); } main_clk.rate_hz = main_clock; /* report if PLLA is more than mildly overclocked */ plla.rate_hz = at91_pll_rate(&plla, main_clock, at91_pmc_read(AT91_CKGR_PLLAR)); if (cpu_has_1056M_plla()) { if (plla.rate_hz > 1056000000) pll_overclock = true; } else if (cpu_has_800M_plla()) { if (plla.rate_hz > 800000000) pll_overclock = true; } else if (cpu_has_300M_plla()) { if (plla.rate_hz > 300000000) pll_overclock = true; } else if (cpu_has_240M_plla()) { if (plla.rate_hz > 240000000) pll_overclock = true; } else if (cpu_has_210M_plla()) { if (plla.rate_hz > 210000000) pll_overclock = true; } else { if (plla.rate_hz > 209000000) pll_overclock = true; } if (pll_overclock) pr_info("Clocks: PLLA overclocked, %ld MHz\n", plla.rate_hz / 1000000); if (cpu_has_plladiv2()) { mckr = at91_pmc_read(AT91_PMC_MCKR); plla.rate_hz /= (1 << ((mckr & AT91_PMC_PLLADIV2) >> 12)); /* plla divisor by 2 */ } if (!cpu_has_pllb() && cpu_has_upll()) { /* setup UTMI clock as the fourth primary clock * (instead of pllb) */ utmi_clk.type |= CLK_TYPE_PRIMARY; utmi_clk.id = 3; } /* * USB HS clock init */ if (cpu_has_utmi()) { /* * multiplier is hard-wired to 40 * (obtain the USB High Speed 480 MHz when input is 12 MHz) */ utmi_clk.rate_hz = 40 * utmi_clk.parent->rate_hz; /* UTMI bias and PLL are managed at the same time */ if (cpu_has_upll()) utmi_clk.pmc_mask |= AT91_PMC_BIASEN; } /* * USB FS clock init */ if (cpu_has_pllb()) at91_pllb_usbfs_clock_init(main_clock); if (cpu_has_upll()) /* assumes that we choose UPLL for USB and not PLLA */ at91_upll_usbfs_clock_init(main_clock); /* * MCK and CPU derive from one of those primary clocks. * For now, assume this parentage won't change. */ mckr = at91_pmc_read(AT91_PMC_MCKR); mck.parent = at91_css_to_clk(mckr & AT91_PMC_CSS); freq = mck.parent->rate_hz; freq /= pmc_prescaler_divider(mckr); /* prescale */ if (cpu_is_at91rm9200()) { mck.rate_hz = freq / (1 + ((mckr & AT91_PMC_MDIV) >> 8)); /* mdiv */ } else if (cpu_is_at91sam9g20()) { mck.rate_hz = (mckr & AT91_PMC_MDIV) ? freq / ((mckr & AT91_PMC_MDIV) >> 7) : freq; /* mdiv ; (x >> 7) = ((x >> 8) * 2) */ if (mckr & AT91_PMC_PDIV) freq /= 2; /* processor clock division */ } else if (cpu_has_mdiv3()) { mck.rate_hz = (mckr & AT91_PMC_MDIV) == AT91SAM9_PMC_MDIV_3 ? freq / 3 : freq / (1 << ((mckr & AT91_PMC_MDIV) >> 8)); /* mdiv */ } else { mck.rate_hz = freq / (1 << ((mckr & AT91_PMC_MDIV) >> 8)); /* mdiv */ } if (cpu_has_alt_prescaler()) { /* Programmable clocks can use MCK */ mck.type |= CLK_TYPE_PRIMARY; mck.id = 4; } /* Register the PMC's standard clocks */ for (i = 0; i < ARRAY_SIZE(standard_pmc_clocks); i++) at91_clk_add(standard_pmc_clocks[i]); if (cpu_has_pllb()) at91_clk_add(&pllb); if (cpu_has_uhp()) at91_clk_add(&uhpck); if (cpu_has_udpfs()) at91_clk_add(&udpck); if (cpu_has_utmi()) at91_clk_add(&utmi_clk); /* MCK and CPU clock are "always on" */ clk_enable(&mck); printk("Clocks: CPU %u MHz, master %u MHz, main %u.%03u MHz\n", freq / 1000000, (unsigned) mck.rate_hz / 1000000, (unsigned) main_clock / 1000000, ((unsigned) main_clock % 1000000) / 1000); return 0; } #if defined(CONFIG_OF) static struct of_device_id pmc_ids[] = { { .compatible = "atmel,at91rm9200-pmc" }, { .compatible = "atmel,at91sam9260-pmc" }, { .compatible = "atmel,at91sam9g45-pmc" }, { .compatible = "atmel,at91sam9n12-pmc" }, { .compatible = "atmel,at91sam9x5-pmc" }, { .compatible = "atmel,sama5d3-pmc" }, { /*sentinel*/ } }; static struct of_device_id osc_ids[] = { { .compatible = "atmel,osc" }, { /*sentinel*/ } }; int __init at91_dt_clock_init(void) { struct device_node *np; u32 main_clock = 0; np = of_find_matching_node(NULL, pmc_ids); if (!np) panic("unable to find compatible pmc node in dtb\n"); at91_pmc_base = of_iomap(np, 0); if (!at91_pmc_base) panic("unable to map pmc cpu registers\n"); of_node_put(np); /* retrieve the freqency of fixed clocks from device tree */ np = of_find_matching_node(NULL, osc_ids); if (np) { u32 rate; if (!of_property_read_u32(np, "clock-frequency", &rate)) main_clock = rate; } of_node_put(np); return at91_pmc_init(main_clock); } #endif int __init at91_clock_init(unsigned long main_clock) { at91_pmc_base = ioremap(AT91_PMC, 256); if (!at91_pmc_base) panic("Impossible to ioremap AT91_PMC 0x%x\n", AT91_PMC); return at91_pmc_init(main_clock); } /* * Several unused clocks may be active. Turn them off. */ static int __init at91_clock_reset(void) { unsigned long pcdr = 0; unsigned long pcdr1 = 0; unsigned long scdr = 0; struct clk *clk; list_for_each_entry(clk, &clocks, node) { if (clk->users > 0) continue; if (clk->mode == pmc_periph_mode) { if (cpu_is_sama5d3()) { u32 pmc_mask = 1 << (clk->pid % 32); if (clk->pid > 31) pcdr1 |= pmc_mask; else pcdr |= pmc_mask; } else pcdr |= clk->pmc_mask; } if (clk->mode == pmc_sys_mode) scdr |= clk->pmc_mask; pr_debug("Clocks: disable unused %s\n", clk->name); } at91_pmc_write(AT91_PMC_SCDR, scdr); at91_pmc_write(AT91_PMC_PCDR, pcdr); if (cpu_is_sama5d3()) at91_pmc_write(AT91_PMC_PCDR1, pcdr1); return 0; } late_initcall(at91_clock_reset); void at91sam9_idle(void) { at91_pmc_write(AT91_PMC_SCDR, AT91_PMC_PCK); cpu_do_idle(); }