/* * linux/arch/arm/mach-integrator/integrator_ap.c * * Copyright (C) 2000-2003 Deep Blue Solutions Ltd * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/list.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/syscore_ops.h> #include <linux/amba/bus.h> #include <linux/amba/kmi.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/irqchip.h> #include <linux/mtd/physmap.h> #include <linux/clk.h> #include <linux/platform_data/clk-integrator.h> #include <linux/of_irq.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/stat.h> #include <linux/sys_soc.h> #include <linux/termios.h> #include <linux/sched_clock.h> #include <linux/clk-provider.h> #include <asm/hardware/arm_timer.h> #include <asm/setup.h> #include <asm/param.h> /* HZ */ #include <asm/mach-types.h> #include <asm/mach/arch.h> #include <asm/mach/irq.h> #include <asm/mach/map.h> #include <asm/mach/time.h> #include "hardware.h" #include "cm.h" #include "common.h" #include "pci_v3.h" #include "lm.h" /* Base address to the AP system controller */ void __iomem *ap_syscon_base; /* Base address to the external bus interface */ static void __iomem *ebi_base; /* * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx * is the (PA >> 12). * * Setup a VA for the Integrator interrupt controller (for header #0, * just for now). */ #define VA_IC_BASE __io_address(INTEGRATOR_IC_BASE) /* * Logical Physical * ef000000 Cache flush * f1100000 11000000 System controller registers * f1300000 13000000 Counter/Timer * f1400000 14000000 Interrupt controller * f1600000 16000000 UART 0 * f1700000 17000000 UART 1 * f1a00000 1a000000 Debug LEDs * f1b00000 1b000000 GPIO */ static struct map_desc ap_io_desc[] __initdata __maybe_unused = { { .virtual = IO_ADDRESS(INTEGRATOR_CT_BASE), .pfn = __phys_to_pfn(INTEGRATOR_CT_BASE), .length = SZ_4K, .type = MT_DEVICE }, { .virtual = IO_ADDRESS(INTEGRATOR_IC_BASE), .pfn = __phys_to_pfn(INTEGRATOR_IC_BASE), .length = SZ_4K, .type = MT_DEVICE }, { .virtual = IO_ADDRESS(INTEGRATOR_UART0_BASE), .pfn = __phys_to_pfn(INTEGRATOR_UART0_BASE), .length = SZ_4K, .type = MT_DEVICE }, { .virtual = IO_ADDRESS(INTEGRATOR_DBG_BASE), .pfn = __phys_to_pfn(INTEGRATOR_DBG_BASE), .length = SZ_4K, .type = MT_DEVICE }, { .virtual = IO_ADDRESS(INTEGRATOR_AP_GPIO_BASE), .pfn = __phys_to_pfn(INTEGRATOR_AP_GPIO_BASE), .length = SZ_4K, .type = MT_DEVICE } }; static void __init ap_map_io(void) { iotable_init(ap_io_desc, ARRAY_SIZE(ap_io_desc)); pci_v3_early_init(); } #ifdef CONFIG_PM static unsigned long ic_irq_enable; static int irq_suspend(void) { ic_irq_enable = readl(VA_IC_BASE + IRQ_ENABLE); return 0; } static void irq_resume(void) { /* disable all irq sources */ cm_clear_irqs(); writel(-1, VA_IC_BASE + IRQ_ENABLE_CLEAR); writel(-1, VA_IC_BASE + FIQ_ENABLE_CLEAR); writel(ic_irq_enable, VA_IC_BASE + IRQ_ENABLE_SET); } #else #define irq_suspend NULL #define irq_resume NULL #endif static struct syscore_ops irq_syscore_ops = { .suspend = irq_suspend, .resume = irq_resume, }; static int __init irq_syscore_init(void) { register_syscore_ops(&irq_syscore_ops); return 0; } device_initcall(irq_syscore_init); /* * Flash handling. */ static int ap_flash_init(struct platform_device *dev) { u32 tmp; writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP, ap_syscon_base + INTEGRATOR_SC_CTRLC_OFFSET); tmp = readl(ebi_base + INTEGRATOR_EBI_CSR1_OFFSET) | INTEGRATOR_EBI_WRITE_ENABLE; writel(tmp, ebi_base + INTEGRATOR_EBI_CSR1_OFFSET); if (!(readl(ebi_base + INTEGRATOR_EBI_CSR1_OFFSET) & INTEGRATOR_EBI_WRITE_ENABLE)) { writel(0xa05f, ebi_base + INTEGRATOR_EBI_LOCK_OFFSET); writel(tmp, ebi_base + INTEGRATOR_EBI_CSR1_OFFSET); writel(0, ebi_base + INTEGRATOR_EBI_LOCK_OFFSET); } return 0; } static void ap_flash_exit(struct platform_device *dev) { u32 tmp; writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP, ap_syscon_base + INTEGRATOR_SC_CTRLC_OFFSET); tmp = readl(ebi_base + INTEGRATOR_EBI_CSR1_OFFSET) & ~INTEGRATOR_EBI_WRITE_ENABLE; writel(tmp, ebi_base + INTEGRATOR_EBI_CSR1_OFFSET); if (readl(ebi_base + INTEGRATOR_EBI_CSR1_OFFSET) & INTEGRATOR_EBI_WRITE_ENABLE) { writel(0xa05f, ebi_base + INTEGRATOR_EBI_LOCK_OFFSET); writel(tmp, ebi_base + INTEGRATOR_EBI_CSR1_OFFSET); writel(0, ebi_base + INTEGRATOR_EBI_LOCK_OFFSET); } } static void ap_flash_set_vpp(struct platform_device *pdev, int on) { if (on) writel(INTEGRATOR_SC_CTRL_nFLVPPEN, ap_syscon_base + INTEGRATOR_SC_CTRLS_OFFSET); else writel(INTEGRATOR_SC_CTRL_nFLVPPEN, ap_syscon_base + INTEGRATOR_SC_CTRLC_OFFSET); } static struct physmap_flash_data ap_flash_data = { .width = 4, .init = ap_flash_init, .exit = ap_flash_exit, .set_vpp = ap_flash_set_vpp, }; /* * For the PL010 found in the Integrator/AP some of the UART control is * implemented in the system controller and accessed using a callback * from the driver. */ static void integrator_uart_set_mctrl(struct amba_device *dev, void __iomem *base, unsigned int mctrl) { unsigned int ctrls = 0, ctrlc = 0, rts_mask, dtr_mask; u32 phybase = dev->res.start; if (phybase == INTEGRATOR_UART0_BASE) { /* UART0 */ rts_mask = 1 << 4; dtr_mask = 1 << 5; } else { /* UART1 */ rts_mask = 1 << 6; dtr_mask = 1 << 7; } if (mctrl & TIOCM_RTS) ctrlc |= rts_mask; else ctrls |= rts_mask; if (mctrl & TIOCM_DTR) ctrlc |= dtr_mask; else ctrls |= dtr_mask; __raw_writel(ctrls, ap_syscon_base + INTEGRATOR_SC_CTRLS_OFFSET); __raw_writel(ctrlc, ap_syscon_base + INTEGRATOR_SC_CTRLC_OFFSET); } struct amba_pl010_data ap_uart_data = { .set_mctrl = integrator_uart_set_mctrl, }; /* * Where is the timer (VA)? */ #define TIMER0_VA_BASE __io_address(INTEGRATOR_TIMER0_BASE) #define TIMER1_VA_BASE __io_address(INTEGRATOR_TIMER1_BASE) #define TIMER2_VA_BASE __io_address(INTEGRATOR_TIMER2_BASE) static unsigned long timer_reload; static u64 notrace integrator_read_sched_clock(void) { return -readl((void __iomem *) TIMER2_VA_BASE + TIMER_VALUE); } static void integrator_clocksource_init(unsigned long inrate, void __iomem *base) { u32 ctrl = TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC; unsigned long rate = inrate; if (rate >= 1500000) { rate /= 16; ctrl |= TIMER_CTRL_DIV16; } writel(0xffff, base + TIMER_LOAD); writel(ctrl, base + TIMER_CTRL); clocksource_mmio_init(base + TIMER_VALUE, "timer2", rate, 200, 16, clocksource_mmio_readl_down); sched_clock_register(integrator_read_sched_clock, 16, rate); } static void __iomem * clkevt_base; /* * IRQ handler for the timer */ static irqreturn_t integrator_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; /* clear the interrupt */ writel(1, clkevt_base + TIMER_INTCLR); evt->event_handler(evt); return IRQ_HANDLED; } static void clkevt_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { u32 ctrl = readl(clkevt_base + TIMER_CTRL) & ~TIMER_CTRL_ENABLE; /* Disable timer */ writel(ctrl, clkevt_base + TIMER_CTRL); switch (mode) { case CLOCK_EVT_MODE_PERIODIC: /* Enable the timer and start the periodic tick */ writel(timer_reload, clkevt_base + TIMER_LOAD); ctrl |= TIMER_CTRL_PERIODIC | TIMER_CTRL_ENABLE; writel(ctrl, clkevt_base + TIMER_CTRL); break; case CLOCK_EVT_MODE_ONESHOT: /* Leave the timer disabled, .set_next_event will enable it */ ctrl &= ~TIMER_CTRL_PERIODIC; writel(ctrl, clkevt_base + TIMER_CTRL); break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_RESUME: default: /* Just leave in disabled state */ break; } } static int clkevt_set_next_event(unsigned long next, struct clock_event_device *evt) { unsigned long ctrl = readl(clkevt_base + TIMER_CTRL); writel(ctrl & ~TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL); writel(next, clkevt_base + TIMER_LOAD); writel(ctrl | TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL); return 0; } static struct clock_event_device integrator_clockevent = { .name = "timer1", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_mode = clkevt_set_mode, .set_next_event = clkevt_set_next_event, .rating = 300, }; static struct irqaction integrator_timer_irq = { .name = "timer", .flags = IRQF_TIMER | IRQF_IRQPOLL, .handler = integrator_timer_interrupt, .dev_id = &integrator_clockevent, }; static void integrator_clockevent_init(unsigned long inrate, void __iomem *base, int irq) { unsigned long rate = inrate; unsigned int ctrl = 0; clkevt_base = base; /* Calculate and program a divisor */ if (rate > 0x100000 * HZ) { rate /= 256; ctrl |= TIMER_CTRL_DIV256; } else if (rate > 0x10000 * HZ) { rate /= 16; ctrl |= TIMER_CTRL_DIV16; } timer_reload = rate / HZ; writel(ctrl, clkevt_base + TIMER_CTRL); setup_irq(irq, &integrator_timer_irq); clockevents_config_and_register(&integrator_clockevent, rate, 1, 0xffffU); } void __init ap_init_early(void) { } static void __init ap_of_timer_init(void) { struct device_node *node; const char *path; void __iomem *base; int err; int irq; struct clk *clk; unsigned long rate; of_clk_init(NULL); err = of_property_read_string(of_aliases, "arm,timer-primary", &path); if (WARN_ON(err)) return; node = of_find_node_by_path(path); base = of_iomap(node, 0); if (WARN_ON(!base)) return; clk = of_clk_get(node, 0); BUG_ON(IS_ERR(clk)); clk_prepare_enable(clk); rate = clk_get_rate(clk); writel(0, base + TIMER_CTRL); integrator_clocksource_init(rate, base); err = of_property_read_string(of_aliases, "arm,timer-secondary", &path); if (WARN_ON(err)) return; node = of_find_node_by_path(path); base = of_iomap(node, 0); if (WARN_ON(!base)) return; irq = irq_of_parse_and_map(node, 0); clk = of_clk_get(node, 0); BUG_ON(IS_ERR(clk)); clk_prepare_enable(clk); rate = clk_get_rate(clk); writel(0, base + TIMER_CTRL); integrator_clockevent_init(rate, base, irq); } static void __init ap_init_irq_of(void) { cm_init(); irqchip_init(); } /* For the Device Tree, add in the UART callbacks as AUXDATA */ static struct of_dev_auxdata ap_auxdata_lookup[] __initdata = { OF_DEV_AUXDATA("arm,primecell", INTEGRATOR_RTC_BASE, "rtc", NULL), OF_DEV_AUXDATA("arm,primecell", INTEGRATOR_UART0_BASE, "uart0", &ap_uart_data), OF_DEV_AUXDATA("arm,primecell", INTEGRATOR_UART1_BASE, "uart1", &ap_uart_data), OF_DEV_AUXDATA("arm,primecell", KMI0_BASE, "kmi0", NULL), OF_DEV_AUXDATA("arm,primecell", KMI1_BASE, "kmi1", NULL), OF_DEV_AUXDATA("cfi-flash", INTEGRATOR_FLASH_BASE, "physmap-flash", &ap_flash_data), { /* sentinel */ }, }; static const struct of_device_id ap_syscon_match[] = { { .compatible = "arm,integrator-ap-syscon"}, { }, }; static const struct of_device_id ebi_match[] = { { .compatible = "arm,external-bus-interface"}, { }, }; static void __init ap_init_of(void) { unsigned long sc_dec; struct device_node *syscon; struct device_node *ebi; struct device *parent; struct soc_device *soc_dev; struct soc_device_attribute *soc_dev_attr; u32 ap_sc_id; int i; syscon = of_find_matching_node(NULL, ap_syscon_match); if (!syscon) return; ebi = of_find_matching_node(NULL, ebi_match); if (!ebi) return; ap_syscon_base = of_iomap(syscon, 0); if (!ap_syscon_base) return; ebi_base = of_iomap(ebi, 0); if (!ebi_base) return; of_platform_populate(NULL, of_default_bus_match_table, ap_auxdata_lookup, NULL); ap_sc_id = readl(ap_syscon_base); soc_dev_attr = kzalloc(sizeof(*soc_dev_attr), GFP_KERNEL); if (!soc_dev_attr) return; soc_dev_attr->soc_id = "XVC"; soc_dev_attr->machine = "Integrator/AP"; soc_dev_attr->family = "Integrator"; soc_dev_attr->revision = kasprintf(GFP_KERNEL, "%c", 'A' + (ap_sc_id & 0x0f)); soc_dev = soc_device_register(soc_dev_attr); if (IS_ERR(soc_dev)) { kfree(soc_dev_attr->revision); kfree(soc_dev_attr); return; } parent = soc_device_to_device(soc_dev); integrator_init_sysfs(parent, ap_sc_id); sc_dec = readl(ap_syscon_base + INTEGRATOR_SC_DEC_OFFSET); for (i = 0; i < 4; i++) { struct lm_device *lmdev; if ((sc_dec & (16 << i)) == 0) continue; lmdev = kzalloc(sizeof(struct lm_device), GFP_KERNEL); if (!lmdev) continue; lmdev->resource.start = 0xc0000000 + 0x10000000 * i; lmdev->resource.end = lmdev->resource.start + 0x0fffffff; lmdev->resource.flags = IORESOURCE_MEM; lmdev->irq = irq_of_parse_and_map(syscon, i); lmdev->id = i; lm_device_register(lmdev); } } static const char * ap_dt_board_compat[] = { "arm,integrator-ap", NULL, }; DT_MACHINE_START(INTEGRATOR_AP_DT, "ARM Integrator/AP (Device Tree)") .reserve = integrator_reserve, .map_io = ap_map_io, .init_early = ap_init_early, .init_irq = ap_init_irq_of, .init_time = ap_of_timer_init, .init_machine = ap_init_of, .restart = integrator_restart, .dt_compat = ap_dt_board_compat, MACHINE_END