/* * Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights * reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the NetLogic * license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <linux/kernel.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/smp.h> #include <linux/irq.h> #include <asm/mmu_context.h> #include <asm/netlogic/interrupt.h> #include <asm/netlogic/mips-extns.h> #include <asm/netlogic/haldefs.h> #include <asm/netlogic/common.h> #if defined(CONFIG_CPU_XLP) #include <asm/netlogic/xlp-hal/iomap.h> #include <asm/netlogic/xlp-hal/xlp.h> #include <asm/netlogic/xlp-hal/pic.h> #elif defined(CONFIG_CPU_XLR) #include <asm/netlogic/xlr/iomap.h> #include <asm/netlogic/xlr/pic.h> #include <asm/netlogic/xlr/xlr.h> #else #error "Unknown CPU" #endif void nlm_send_ipi_single(int logical_cpu, unsigned int action) { int cpu, node; uint64_t picbase; cpu = cpu_logical_map(logical_cpu); node = nlm_cpuid_to_node(cpu); picbase = nlm_get_node(node)->picbase; if (action & SMP_CALL_FUNCTION) nlm_pic_send_ipi(picbase, cpu, IRQ_IPI_SMP_FUNCTION, 0); if (action & SMP_RESCHEDULE_YOURSELF) nlm_pic_send_ipi(picbase, cpu, IRQ_IPI_SMP_RESCHEDULE, 0); } void nlm_send_ipi_mask(const struct cpumask *mask, unsigned int action) { int cpu; for_each_cpu(cpu, mask) { nlm_send_ipi_single(cpu, action); } } /* IRQ_IPI_SMP_FUNCTION Handler */ void nlm_smp_function_ipi_handler(unsigned int irq, struct irq_desc *desc) { clear_c0_eimr(irq); ack_c0_eirr(irq); smp_call_function_interrupt(); set_c0_eimr(irq); } /* IRQ_IPI_SMP_RESCHEDULE handler */ void nlm_smp_resched_ipi_handler(unsigned int irq, struct irq_desc *desc) { clear_c0_eimr(irq); ack_c0_eirr(irq); scheduler_ipi(); set_c0_eimr(irq); } /* * Called before going into mips code, early cpu init */ void nlm_early_init_secondary(int cpu) { change_c0_config(CONF_CM_CMASK, 0x3); #ifdef CONFIG_CPU_XLP xlp_mmu_init(); #endif write_c0_ebase(nlm_current_node()->ebase); } /* * Code to run on secondary just after probing the CPU */ static void nlm_init_secondary(void) { int hwtid; hwtid = hard_smp_processor_id(); current_cpu_data.core = hwtid / NLM_THREADS_PER_CORE; nlm_percpu_init(hwtid); nlm_smp_irq_init(hwtid); } void nlm_prepare_cpus(unsigned int max_cpus) { /* declare we are SMT capable */ smp_num_siblings = nlm_threads_per_core; } void nlm_smp_finish(void) { local_irq_enable(); } /* * Boot all other cpus in the system, initialize them, and bring them into * the boot function */ unsigned long nlm_next_gp; unsigned long nlm_next_sp; static cpumask_t phys_cpu_present_mask; void nlm_boot_secondary(int logical_cpu, struct task_struct *idle) { int cpu, node; cpu = cpu_logical_map(logical_cpu); node = nlm_cpuid_to_node(logical_cpu); nlm_next_sp = (unsigned long)__KSTK_TOS(idle); nlm_next_gp = (unsigned long)task_thread_info(idle); /* barrier for sp/gp store above */ __sync(); nlm_pic_send_ipi(nlm_get_node(node)->picbase, cpu, 1, 1); /* NMI */ } void __init nlm_smp_setup(void) { unsigned int boot_cpu; int num_cpus, i, ncore, node; volatile u32 *cpu_ready = nlm_get_boot_data(BOOT_CPU_READY); char buf[64]; boot_cpu = hard_smp_processor_id(); cpumask_clear(&phys_cpu_present_mask); cpumask_set_cpu(boot_cpu, &phys_cpu_present_mask); __cpu_number_map[boot_cpu] = 0; __cpu_logical_map[0] = boot_cpu; set_cpu_possible(0, true); num_cpus = 1; for (i = 0; i < NR_CPUS; i++) { /* * cpu_ready array is not set for the boot_cpu, * it is only set for ASPs (see smpboot.S) */ if (cpu_ready[i]) { cpumask_set_cpu(i, &phys_cpu_present_mask); __cpu_number_map[i] = num_cpus; __cpu_logical_map[num_cpus] = i; set_cpu_possible(num_cpus, true); node = nlm_cpuid_to_node(i); cpumask_set_cpu(num_cpus, &nlm_get_node(node)->cpumask); ++num_cpus; } } cpumask_scnprintf(buf, ARRAY_SIZE(buf), &phys_cpu_present_mask); pr_info("Physical CPU mask: %s\n", buf); cpumask_scnprintf(buf, ARRAY_SIZE(buf), cpu_possible_mask); pr_info("Possible CPU mask: %s\n", buf); /* check with the cores we have woken up */ for (ncore = 0, i = 0; i < NLM_NR_NODES; i++) ncore += hweight32(nlm_get_node(i)->coremask); pr_info("Detected (%dc%dt) %d Slave CPU(s)\n", ncore, nlm_threads_per_core, num_cpus); /* switch NMI handler to boot CPUs */ nlm_set_nmi_handler(nlm_boot_secondary_cpus); } static int nlm_parse_cpumask(cpumask_t *wakeup_mask) { uint32_t core0_thr_mask, core_thr_mask; int threadmode, i, j; char buf[64]; core0_thr_mask = 0; for (i = 0; i < NLM_THREADS_PER_CORE; i++) if (cpumask_test_cpu(i, wakeup_mask)) core0_thr_mask |= (1 << i); switch (core0_thr_mask) { case 1: nlm_threads_per_core = 1; threadmode = 0; break; case 3: nlm_threads_per_core = 2; threadmode = 2; break; case 0xf: nlm_threads_per_core = 4; threadmode = 3; break; default: goto unsupp; } /* Verify other cores CPU masks */ for (i = 0; i < NR_CPUS; i += NLM_THREADS_PER_CORE) { core_thr_mask = 0; for (j = 0; j < NLM_THREADS_PER_CORE; j++) if (cpumask_test_cpu(i + j, wakeup_mask)) core_thr_mask |= (1 << j); if (core_thr_mask != 0 && core_thr_mask != core0_thr_mask) goto unsupp; } return threadmode; unsupp: cpumask_scnprintf(buf, ARRAY_SIZE(buf), wakeup_mask); panic("Unsupported CPU mask %s", buf); return 0; } int nlm_wakeup_secondary_cpus(void) { u32 *reset_data; int threadmode; /* verify the mask and setup core config variables */ threadmode = nlm_parse_cpumask(&nlm_cpumask); /* Setup CPU init parameters */ reset_data = nlm_get_boot_data(BOOT_THREAD_MODE); *reset_data = threadmode; #ifdef CONFIG_CPU_XLP xlp_wakeup_secondary_cpus(); #else xlr_wakeup_secondary_cpus(); #endif return 0; } struct plat_smp_ops nlm_smp_ops = { .send_ipi_single = nlm_send_ipi_single, .send_ipi_mask = nlm_send_ipi_mask, .init_secondary = nlm_init_secondary, .smp_finish = nlm_smp_finish, .boot_secondary = nlm_boot_secondary, .smp_setup = nlm_smp_setup, .prepare_cpus = nlm_prepare_cpus, };