/* * Copyright (c) 2003-2014 Broadcom Corporation * All Rights Reserved * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the Broadcom * license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <linux/dma-mapping.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/irq.h> #include <linux/bitops.h> #include <linux/pci_ids.h> #include <linux/nodemask.h> #include <asm/cpu.h> #include <asm/mipsregs.h> #include <asm/netlogic/common.h> #include <asm/netlogic/haldefs.h> #include <asm/netlogic/mips-extns.h> #include <asm/netlogic/xlp-hal/xlp.h> #include <asm/netlogic/xlp-hal/iomap.h> #define SATA_CTL 0x0 #define SATA_STATUS 0x1 /* Status Reg */ #define SATA_INT 0x2 /* Interrupt Reg */ #define SATA_INT_MASK 0x3 /* Interrupt Mask Reg */ #define SATA_BIU_TIMEOUT 0x4 #define AXIWRSPERRLOG 0x5 #define AXIRDSPERRLOG 0x6 #define BiuTimeoutLow 0x7 #define BiuTimeoutHi 0x8 #define BiuSlvErLow 0x9 #define BiuSlvErHi 0xa #define IO_CONFIG_SWAP_DIS 0xb #define CR_REG_TIMER 0xc #define CORE_ID 0xd #define AXI_SLAVE_OPT1 0xe #define PHY_MEM_ACCESS 0xf #define PHY0_CNTRL 0x10 #define PHY0_STAT 0x11 #define PHY0_RX_ALIGN 0x12 #define PHY0_RX_EQ_LO 0x13 #define PHY0_RX_EQ_HI 0x14 #define PHY0_BIST_LOOP 0x15 #define PHY1_CNTRL 0x16 #define PHY1_STAT 0x17 #define PHY1_RX_ALIGN 0x18 #define PHY1_RX_EQ_LO 0x19 #define PHY1_RX_EQ_HI 0x1a #define PHY1_BIST_LOOP 0x1b #define RdExBase 0x1c #define RdExLimit 0x1d #define CacheAllocBase 0x1e #define CacheAllocLimit 0x1f #define BiuSlaveCmdGstNum 0x20 /*SATA_CTL Bits */ #define SATA_RST_N BIT(0) /* Active low reset sata_core phy */ #define SataCtlReserve0 BIT(1) #define M_CSYSREQ BIT(2) /* AXI master low power, not used */ #define S_CSYSREQ BIT(3) /* AXI slave low power, not used */ #define P0_CP_DET BIT(8) /* Reserved, bring in from pad */ #define P0_MP_SW BIT(9) /* Mech Switch */ #define P0_DISABLE BIT(10) /* disable p0 */ #define P0_ACT_LED_EN BIT(11) /* Active LED enable */ #define P0_IRST_HARD_SYNTH BIT(12) /* PHY hard synth reset */ #define P0_IRST_HARD_TXRX BIT(13) /* PHY lane hard reset */ #define P0_IRST_POR BIT(14) /* PHY power on reset*/ #define P0_IPDTXL BIT(15) /* PHY Tx lane dis/power down */ #define P0_IPDRXL BIT(16) /* PHY Rx lane dis/power down */ #define P0_IPDIPDMSYNTH BIT(17) /* PHY synthesizer dis/porwer down */ #define P0_CP_POD_EN BIT(18) /* CP_POD enable */ #define P0_AT_BYPASS BIT(19) /* P0 address translation by pass */ #define P1_CP_DET BIT(20) /* Reserved,Cold Detect */ #define P1_MP_SW BIT(21) /* Mech Switch */ #define P1_DISABLE BIT(22) /* disable p1 */ #define P1_ACT_LED_EN BIT(23) /* Active LED enable */ #define P1_IRST_HARD_SYNTH BIT(24) /* PHY hard synth reset */ #define P1_IRST_HARD_TXRX BIT(25) /* PHY lane hard reset */ #define P1_IRST_POR BIT(26) /* PHY power on reset*/ #define P1_IPDTXL BIT(27) /* PHY Tx lane dis/porwer down */ #define P1_IPDRXL BIT(28) /* PHY Rx lane dis/porwer down */ #define P1_IPDIPDMSYNTH BIT(29) /* PHY synthesizer dis/porwer down */ #define P1_CP_POD_EN BIT(30) #define P1_AT_BYPASS BIT(31) /* P1 address translation by pass */ /* Status register */ #define M_CACTIVE BIT(0) /* m_cactive, not used */ #define S_CACTIVE BIT(1) /* s_cactive, not used */ #define P0_PHY_READY BIT(8) /* phy is ready */ #define P0_CP_POD BIT(9) /* Cold PowerOn */ #define P0_SLUMBER BIT(10) /* power mode slumber */ #define P0_PATIAL BIT(11) /* power mode patial */ #define P0_PHY_SIG_DET BIT(12) /* phy dignal detect */ #define P0_PHY_CALI BIT(13) /* phy calibration done */ #define P1_PHY_READY BIT(16) /* phy is ready */ #define P1_CP_POD BIT(17) /* Cold PowerOn */ #define P1_SLUMBER BIT(18) /* power mode slumber */ #define P1_PATIAL BIT(19) /* power mode patial */ #define P1_PHY_SIG_DET BIT(20) /* phy dignal detect */ #define P1_PHY_CALI BIT(21) /* phy calibration done */ /* SATA CR_REG_TIMER bits */ #define CR_TIME_SCALE (0x1000 << 0) /* SATA PHY specific registers start and end address */ #define RXCDRCALFOSC0 0x0065 #define CALDUTY 0x006e #define RXDPIF 0x8065 #define PPMDRIFTMAX_HI 0x80A4 #define nlm_read_sata_reg(b, r) nlm_read_reg(b, r) #define nlm_write_sata_reg(b, r, v) nlm_write_reg(b, r, v) #define nlm_get_sata_pcibase(node) \ nlm_pcicfg_base(XLP9XX_IO_SATA_OFFSET(node)) #define nlm_get_sata_regbase(node) \ (nlm_get_sata_pcibase(node) + 0x100) /* SATA PHY config for register block 1 0x0065 .. 0x006e */ static const u8 sata_phy_config1[] = { 0xC9, 0xC9, 0x07, 0x07, 0x18, 0x18, 0x01, 0x01, 0x22, 0x00 }; /* SATA PHY config for register block 2 0x0x8065 .. 0x0x80A4 */ static const u8 sata_phy_config2[] = { 0xAA, 0x00, 0x4C, 0xC9, 0xC9, 0x07, 0x07, 0x18, 0x18, 0x05, 0x0C, 0x10, 0x00, 0x10, 0x00, 0xFF, 0xCF, 0xF7, 0xE1, 0xF5, 0xFD, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xE3, 0xE7, 0xDB, 0xF5, 0xFD, 0xFD, 0xF5, 0xF5, 0xFF, 0xFF, 0xE3, 0xE7, 0xDB, 0xF5, 0xFD, 0xFD, 0xF5, 0xF5, 0xFF, 0xFF, 0xFF, 0xF5, 0x3F, 0x00, 0x32, 0x00, 0x03, 0x01, 0x05, 0x05, 0x04, 0x00, 0x00, 0x08, 0x04, 0x00, 0x00, 0x04, }; const int sata_phy_debug = 0; /* set to verify PHY writes */ static void sata_clear_glue_reg(u64 regbase, u32 off, u32 bit) { u32 reg_val; reg_val = nlm_read_sata_reg(regbase, off); nlm_write_sata_reg(regbase, off, (reg_val & ~bit)); } static void sata_set_glue_reg(u64 regbase, u32 off, u32 bit) { u32 reg_val; reg_val = nlm_read_sata_reg(regbase, off); nlm_write_sata_reg(regbase, off, (reg_val | bit)); } static void write_phy_reg(u64 regbase, u32 addr, u32 physel, u8 data) { nlm_write_sata_reg(regbase, PHY_MEM_ACCESS, (1u << 31) | (physel << 24) | (data << 16) | addr); udelay(850); } static u8 read_phy_reg(u64 regbase, u32 addr, u32 physel) { u32 val; nlm_write_sata_reg(regbase, PHY_MEM_ACCESS, (0 << 31) | (physel << 24) | (0 << 16) | addr); udelay(850); val = nlm_read_sata_reg(regbase, PHY_MEM_ACCESS); return (val >> 16) & 0xff; } static void config_sata_phy(u64 regbase) { u32 port, i, reg; for (port = 0; port < 2; port++) { for (i = 0, reg = RXCDRCALFOSC0; reg <= CALDUTY; reg++, i++) write_phy_reg(regbase, reg, port, sata_phy_config1[i]); for (i = 0, reg = RXDPIF; reg <= PPMDRIFTMAX_HI; reg++, i++) write_phy_reg(regbase, reg, port, sata_phy_config2[i]); } } static void check_phy_register(u64 regbase, u32 addr, u32 physel, u8 xdata) { u8 data; data = read_phy_reg(regbase, addr, physel); pr_info("PHY read addr = 0x%x physel = %d data = 0x%x %s\n", addr, physel, data, data == xdata ? "TRUE" : "FALSE"); } static void verify_sata_phy_config(u64 regbase) { u32 port, i, reg; for (port = 0; port < 2; port++) { for (i = 0, reg = RXCDRCALFOSC0; reg <= CALDUTY; reg++, i++) check_phy_register(regbase, reg, port, sata_phy_config1[i]); for (i = 0, reg = RXDPIF; reg <= PPMDRIFTMAX_HI; reg++, i++) check_phy_register(regbase, reg, port, sata_phy_config2[i]); } } static void nlm_sata_firmware_init(int node) { u32 reg_val; u64 regbase; int n; pr_info("Initializing XLP9XX On-chip AHCI...\n"); regbase = nlm_get_sata_regbase(node); /* Reset port0 */ sata_clear_glue_reg(regbase, SATA_CTL, P0_IRST_POR); sata_clear_glue_reg(regbase, SATA_CTL, P0_IRST_HARD_TXRX); sata_clear_glue_reg(regbase, SATA_CTL, P0_IRST_HARD_SYNTH); sata_clear_glue_reg(regbase, SATA_CTL, P0_IPDTXL); sata_clear_glue_reg(regbase, SATA_CTL, P0_IPDRXL); sata_clear_glue_reg(regbase, SATA_CTL, P0_IPDIPDMSYNTH); /* port1 */ sata_clear_glue_reg(regbase, SATA_CTL, P1_IRST_POR); sata_clear_glue_reg(regbase, SATA_CTL, P1_IRST_HARD_TXRX); sata_clear_glue_reg(regbase, SATA_CTL, P1_IRST_HARD_SYNTH); sata_clear_glue_reg(regbase, SATA_CTL, P1_IPDTXL); sata_clear_glue_reg(regbase, SATA_CTL, P1_IPDRXL); sata_clear_glue_reg(regbase, SATA_CTL, P1_IPDIPDMSYNTH); udelay(300); /* Set PHY */ sata_set_glue_reg(regbase, SATA_CTL, P0_IPDTXL); sata_set_glue_reg(regbase, SATA_CTL, P0_IPDRXL); sata_set_glue_reg(regbase, SATA_CTL, P0_IPDIPDMSYNTH); sata_set_glue_reg(regbase, SATA_CTL, P1_IPDTXL); sata_set_glue_reg(regbase, SATA_CTL, P1_IPDRXL); sata_set_glue_reg(regbase, SATA_CTL, P1_IPDIPDMSYNTH); udelay(1000); sata_set_glue_reg(regbase, SATA_CTL, P0_IRST_POR); udelay(1000); sata_set_glue_reg(regbase, SATA_CTL, P1_IRST_POR); udelay(1000); /* setup PHY */ config_sata_phy(regbase); if (sata_phy_debug) verify_sata_phy_config(regbase); udelay(1000); sata_set_glue_reg(regbase, SATA_CTL, P0_IRST_HARD_TXRX); sata_set_glue_reg(regbase, SATA_CTL, P0_IRST_HARD_SYNTH); sata_set_glue_reg(regbase, SATA_CTL, P1_IRST_HARD_TXRX); sata_set_glue_reg(regbase, SATA_CTL, P1_IRST_HARD_SYNTH); udelay(300); /* Override reset in serial PHY mode */ sata_set_glue_reg(regbase, CR_REG_TIMER, CR_TIME_SCALE); /* Set reset SATA */ sata_set_glue_reg(regbase, SATA_CTL, SATA_RST_N); sata_set_glue_reg(regbase, SATA_CTL, M_CSYSREQ); sata_set_glue_reg(regbase, SATA_CTL, S_CSYSREQ); pr_debug("Waiting for PHYs to come up.\n"); n = 10000; do { reg_val = nlm_read_sata_reg(regbase, SATA_STATUS); if ((reg_val & P1_PHY_READY) && (reg_val & P0_PHY_READY)) break; udelay(10); } while (--n > 0); if (reg_val & P0_PHY_READY) pr_info("PHY0 is up.\n"); else pr_info("PHY0 is down.\n"); if (reg_val & P1_PHY_READY) pr_info("PHY1 is up.\n"); else pr_info("PHY1 is down.\n"); pr_info("XLP AHCI Init Done.\n"); } static int __init nlm_ahci_init(void) { int node; if (!cpu_is_xlp9xx()) return 0; for (node = 0; node < NLM_NR_NODES; node++) if (nlm_node_present(node)) nlm_sata_firmware_init(node); return 0; } static void nlm_sata_intr_ack(struct irq_data *data) { u64 regbase; u32 val; int node; node = data->irq / NLM_IRQS_PER_NODE; regbase = nlm_get_sata_regbase(node); val = nlm_read_sata_reg(regbase, SATA_INT); sata_set_glue_reg(regbase, SATA_INT, val); } static void nlm_sata_fixup_bar(struct pci_dev *dev) { dev->resource[5] = dev->resource[0]; memset(&dev->resource[0], 0, sizeof(dev->resource[0])); } static void nlm_sata_fixup_final(struct pci_dev *dev) { u32 val; u64 regbase; int node; /* Find end bridge function to find node */ node = xlp_socdev_to_node(dev); regbase = nlm_get_sata_regbase(node); /* clear pending interrupts and then enable them */ val = nlm_read_sata_reg(regbase, SATA_INT); sata_set_glue_reg(regbase, SATA_INT, val); /* Enable only the core interrupt */ sata_set_glue_reg(regbase, SATA_INT_MASK, 0x1); dev->irq = nlm_irq_to_xirq(node, PIC_SATA_IRQ); nlm_set_pic_extra_ack(node, PIC_SATA_IRQ, nlm_sata_intr_ack); } arch_initcall(nlm_ahci_init); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_XLP9XX_SATA, nlm_sata_fixup_bar); DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_XLP9XX_SATA, nlm_sata_fixup_final);