/* * Performance event support - powerpc architecture code * * Copyright 2008-2009 Paul Mackerras, IBM Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/perf_event.h> #include <linux/percpu.h> #include <linux/hardirq.h> #include <linux/uaccess.h> #include <asm/reg.h> #include <asm/pmc.h> #include <asm/machdep.h> #include <asm/firmware.h> #include <asm/ptrace.h> #include <asm/code-patching.h> #define BHRB_MAX_ENTRIES 32 #define BHRB_TARGET 0x0000000000000002 #define BHRB_PREDICTION 0x0000000000000001 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL struct cpu_hw_events { int n_events; int n_percpu; int disabled; int n_added; int n_limited; u8 pmcs_enabled; struct perf_event *event[MAX_HWEVENTS]; u64 events[MAX_HWEVENTS]; unsigned int flags[MAX_HWEVENTS]; /* * The order of the MMCR array is: * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2 * - 32-bit, MMCR0, MMCR1, MMCR2 */ unsigned long mmcr[4]; struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; unsigned int group_flag; int n_txn_start; /* BHRB bits */ u64 bhrb_filter; /* BHRB HW branch filter */ int bhrb_users; void *bhrb_context; struct perf_branch_stack bhrb_stack; struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; }; static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); static struct power_pmu *ppmu; /* * Normally, to ignore kernel events we set the FCS (freeze counters * in supervisor mode) bit in MMCR0, but if the kernel runs with the * hypervisor bit set in the MSR, or if we are running on a processor * where the hypervisor bit is forced to 1 (as on Apple G5 processors), * then we need to use the FCHV bit to ignore kernel events. */ static unsigned int freeze_events_kernel = MMCR0_FCS; /* * 32-bit doesn't have MMCRA but does have an MMCR2, * and a few other names are different. */ #ifdef CONFIG_PPC32 #define MMCR0_FCHV 0 #define MMCR0_PMCjCE MMCR0_PMCnCE #define MMCR0_FC56 0 #define MMCR0_PMAO 0 #define MMCR0_EBE 0 #define MMCR0_BHRBA 0 #define MMCR0_PMCC 0 #define MMCR0_PMCC_U6 0 #define SPRN_MMCRA SPRN_MMCR2 #define MMCRA_SAMPLE_ENABLE 0 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) { return 0; } static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { } static inline u32 perf_get_misc_flags(struct pt_regs *regs) { return 0; } static inline void perf_read_regs(struct pt_regs *regs) { regs->result = 0; } static inline int perf_intr_is_nmi(struct pt_regs *regs) { return 0; } static inline int siar_valid(struct pt_regs *regs) { return 1; } static bool is_ebb_event(struct perf_event *event) { return false; } static int ebb_event_check(struct perf_event *event) { return 0; } static void ebb_event_add(struct perf_event *event) { } static void ebb_switch_out(unsigned long mmcr0) { } static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) { return cpuhw->mmcr[0]; } static inline void power_pmu_bhrb_enable(struct perf_event *event) {} static inline void power_pmu_bhrb_disable(struct perf_event *event) {} static void power_pmu_flush_branch_stack(void) {} static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {} static void pmao_restore_workaround(bool ebb) { } #endif /* CONFIG_PPC32 */ static bool regs_use_siar(struct pt_regs *regs) { return !!regs->result; } /* * Things that are specific to 64-bit implementations. */ #ifdef CONFIG_PPC64 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) { unsigned long mmcra = regs->dsisr; if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; if (slot > 1) return 4 * (slot - 1); } return 0; } /* * The user wants a data address recorded. * If we're not doing instruction sampling, give them the SDAR * (sampled data address). If we are doing instruction sampling, then * only give them the SDAR if it corresponds to the instruction * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. */ static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { unsigned long mmcra = regs->dsisr; bool sdar_valid; if (ppmu->flags & PPMU_HAS_SIER) sdar_valid = regs->dar & SIER_SDAR_VALID; else { unsigned long sdsync; if (ppmu->flags & PPMU_SIAR_VALID) sdsync = POWER7P_MMCRA_SDAR_VALID; else if (ppmu->flags & PPMU_ALT_SIPR) sdsync = POWER6_MMCRA_SDSYNC; else sdsync = MMCRA_SDSYNC; sdar_valid = mmcra & sdsync; } if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) *addrp = mfspr(SPRN_SDAR); } static bool regs_sihv(struct pt_regs *regs) { unsigned long sihv = MMCRA_SIHV; if (ppmu->flags & PPMU_HAS_SIER) return !!(regs->dar & SIER_SIHV); if (ppmu->flags & PPMU_ALT_SIPR) sihv = POWER6_MMCRA_SIHV; return !!(regs->dsisr & sihv); } static bool regs_sipr(struct pt_regs *regs) { unsigned long sipr = MMCRA_SIPR; if (ppmu->flags & PPMU_HAS_SIER) return !!(regs->dar & SIER_SIPR); if (ppmu->flags & PPMU_ALT_SIPR) sipr = POWER6_MMCRA_SIPR; return !!(regs->dsisr & sipr); } static inline u32 perf_flags_from_msr(struct pt_regs *regs) { if (regs->msr & MSR_PR) return PERF_RECORD_MISC_USER; if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) return PERF_RECORD_MISC_HYPERVISOR; return PERF_RECORD_MISC_KERNEL; } static inline u32 perf_get_misc_flags(struct pt_regs *regs) { bool use_siar = regs_use_siar(regs); if (!use_siar) return perf_flags_from_msr(regs); /* * If we don't have flags in MMCRA, rather than using * the MSR, we intuit the flags from the address in * SIAR which should give slightly more reliable * results */ if (ppmu->flags & PPMU_NO_SIPR) { unsigned long siar = mfspr(SPRN_SIAR); if (siar >= PAGE_OFFSET) return PERF_RECORD_MISC_KERNEL; return PERF_RECORD_MISC_USER; } /* PR has priority over HV, so order below is important */ if (regs_sipr(regs)) return PERF_RECORD_MISC_USER; if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) return PERF_RECORD_MISC_HYPERVISOR; return PERF_RECORD_MISC_KERNEL; } /* * Overload regs->dsisr to store MMCRA so we only need to read it once * on each interrupt. * Overload regs->dar to store SIER if we have it. * Overload regs->result to specify whether we should use the MSR (result * is zero) or the SIAR (result is non zero). */ static inline void perf_read_regs(struct pt_regs *regs) { unsigned long mmcra = mfspr(SPRN_MMCRA); int marked = mmcra & MMCRA_SAMPLE_ENABLE; int use_siar; regs->dsisr = mmcra; if (ppmu->flags & PPMU_HAS_SIER) regs->dar = mfspr(SPRN_SIER); /* * If this isn't a PMU exception (eg a software event) the SIAR is * not valid. Use pt_regs. * * If it is a marked event use the SIAR. * * If the PMU doesn't update the SIAR for non marked events use * pt_regs. * * If the PMU has HV/PR flags then check to see if they * place the exception in userspace. If so, use pt_regs. In * continuous sampling mode the SIAR and the PMU exception are * not synchronised, so they may be many instructions apart. * This can result in confusing backtraces. We still want * hypervisor samples as well as samples in the kernel with * interrupts off hence the userspace check. */ if (TRAP(regs) != 0xf00) use_siar = 0; else if (marked) use_siar = 1; else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) use_siar = 0; else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) use_siar = 0; else use_siar = 1; regs->result = use_siar; } /* * If interrupts were soft-disabled when a PMU interrupt occurs, treat * it as an NMI. */ static inline int perf_intr_is_nmi(struct pt_regs *regs) { return !regs->softe; } /* * On processors like P7+ that have the SIAR-Valid bit, marked instructions * must be sampled only if the SIAR-valid bit is set. * * For unmarked instructions and for processors that don't have the SIAR-Valid * bit, assume that SIAR is valid. */ static inline int siar_valid(struct pt_regs *regs) { unsigned long mmcra = regs->dsisr; int marked = mmcra & MMCRA_SAMPLE_ENABLE; if (marked) { if (ppmu->flags & PPMU_HAS_SIER) return regs->dar & SIER_SIAR_VALID; if (ppmu->flags & PPMU_SIAR_VALID) return mmcra & POWER7P_MMCRA_SIAR_VALID; } return 1; } /* Reset all possible BHRB entries */ static void power_pmu_bhrb_reset(void) { asm volatile(PPC_CLRBHRB); } static void power_pmu_bhrb_enable(struct perf_event *event) { struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); if (!ppmu->bhrb_nr) return; /* Clear BHRB if we changed task context to avoid data leaks */ if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { power_pmu_bhrb_reset(); cpuhw->bhrb_context = event->ctx; } cpuhw->bhrb_users++; } static void power_pmu_bhrb_disable(struct perf_event *event) { struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); if (!ppmu->bhrb_nr) return; cpuhw->bhrb_users--; WARN_ON_ONCE(cpuhw->bhrb_users < 0); if (!cpuhw->disabled && !cpuhw->bhrb_users) { /* BHRB cannot be turned off when other * events are active on the PMU. */ /* avoid stale pointer */ cpuhw->bhrb_context = NULL; } } /* Called from ctxsw to prevent one process's branch entries to * mingle with the other process's entries during context switch. */ static void power_pmu_flush_branch_stack(void) { if (ppmu->bhrb_nr) power_pmu_bhrb_reset(); } /* Calculate the to address for a branch */ static __u64 power_pmu_bhrb_to(u64 addr) { unsigned int instr; int ret; __u64 target; if (is_kernel_addr(addr)) return branch_target((unsigned int *)addr); /* Userspace: need copy instruction here then translate it */ pagefault_disable(); ret = __get_user_inatomic(instr, (unsigned int __user *)addr); if (ret) { pagefault_enable(); return 0; } pagefault_enable(); target = branch_target(&instr); if ((!target) || (instr & BRANCH_ABSOLUTE)) return target; /* Translate relative branch target from kernel to user address */ return target - (unsigned long)&instr + addr; } /* Processing BHRB entries */ static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) { u64 val; u64 addr; int r_index, u_index, pred; r_index = 0; u_index = 0; while (r_index < ppmu->bhrb_nr) { /* Assembly read function */ val = read_bhrb(r_index++); if (!val) /* Terminal marker: End of valid BHRB entries */ break; else { addr = val & BHRB_EA; pred = val & BHRB_PREDICTION; if (!addr) /* invalid entry */ continue; /* Branches are read most recent first (ie. mfbhrb 0 is * the most recent branch). * There are two types of valid entries: * 1) a target entry which is the to address of a * computed goto like a blr,bctr,btar. The next * entry read from the bhrb will be branch * corresponding to this target (ie. the actual * blr/bctr/btar instruction). * 2) a from address which is an actual branch. If a * target entry proceeds this, then this is the * matching branch for that target. If this is not * following a target entry, then this is a branch * where the target is given as an immediate field * in the instruction (ie. an i or b form branch). * In this case we need to read the instruction from * memory to determine the target/to address. */ if (val & BHRB_TARGET) { /* Target branches use two entries * (ie. computed gotos/XL form) */ cpuhw->bhrb_entries[u_index].to = addr; cpuhw->bhrb_entries[u_index].mispred = pred; cpuhw->bhrb_entries[u_index].predicted = ~pred; /* Get from address in next entry */ val = read_bhrb(r_index++); addr = val & BHRB_EA; if (val & BHRB_TARGET) { /* Shouldn't have two targets in a row.. Reset index and try again */ r_index--; addr = 0; } cpuhw->bhrb_entries[u_index].from = addr; } else { /* Branches to immediate field (ie I or B form) */ cpuhw->bhrb_entries[u_index].from = addr; cpuhw->bhrb_entries[u_index].to = power_pmu_bhrb_to(addr); cpuhw->bhrb_entries[u_index].mispred = pred; cpuhw->bhrb_entries[u_index].predicted = ~pred; } u_index++; } } cpuhw->bhrb_stack.nr = u_index; return; } static bool is_ebb_event(struct perf_event *event) { /* * This could be a per-PMU callback, but we'd rather avoid the cost. We * check that the PMU supports EBB, meaning those that don't can still * use bit 63 of the event code for something else if they wish. */ return (ppmu->flags & PPMU_ARCH_207S) && ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); } static int ebb_event_check(struct perf_event *event) { struct perf_event *leader = event->group_leader; /* Event and group leader must agree on EBB */ if (is_ebb_event(leader) != is_ebb_event(event)) return -EINVAL; if (is_ebb_event(event)) { if (!(event->attach_state & PERF_ATTACH_TASK)) return -EINVAL; if (!leader->attr.pinned || !leader->attr.exclusive) return -EINVAL; if (event->attr.freq || event->attr.inherit || event->attr.sample_type || event->attr.sample_period || event->attr.enable_on_exec) return -EINVAL; } return 0; } static void ebb_event_add(struct perf_event *event) { if (!is_ebb_event(event) || current->thread.used_ebb) return; /* * IFF this is the first time we've added an EBB event, set * PMXE in the user MMCR0 so we can detect when it's cleared by * userspace. We need this so that we can context switch while * userspace is in the EBB handler (where PMXE is 0). */ current->thread.used_ebb = 1; current->thread.mmcr0 |= MMCR0_PMXE; } static void ebb_switch_out(unsigned long mmcr0) { if (!(mmcr0 & MMCR0_EBE)) return; current->thread.siar = mfspr(SPRN_SIAR); current->thread.sier = mfspr(SPRN_SIER); current->thread.sdar = mfspr(SPRN_SDAR); current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; } static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) { unsigned long mmcr0 = cpuhw->mmcr[0]; if (!ebb) goto out; /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; /* * Add any bits from the user MMCR0, FC or PMAO. This is compatible * with pmao_restore_workaround() because we may add PMAO but we never * clear it here. */ mmcr0 |= current->thread.mmcr0; /* * Be careful not to set PMXE if userspace had it cleared. This is also * compatible with pmao_restore_workaround() because it has already * cleared PMXE and we leave PMAO alone. */ if (!(current->thread.mmcr0 & MMCR0_PMXE)) mmcr0 &= ~MMCR0_PMXE; mtspr(SPRN_SIAR, current->thread.siar); mtspr(SPRN_SIER, current->thread.sier); mtspr(SPRN_SDAR, current->thread.sdar); /* * Merge the kernel & user values of MMCR2. The semantics we implement * are that the user MMCR2 can set bits, ie. cause counters to freeze, * but not clear bits. If a task wants to be able to clear bits, ie. * unfreeze counters, it should not set exclude_xxx in its events and * instead manage the MMCR2 entirely by itself. */ mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2); out: return mmcr0; } static void pmao_restore_workaround(bool ebb) { unsigned pmcs[6]; if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) return; /* * On POWER8E there is a hardware defect which affects the PMU context * switch logic, ie. power_pmu_disable/enable(). * * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 * by the hardware. Sometime later the actual PMU exception is * delivered. * * If we context switch, or simply disable/enable, the PMU prior to the * exception arriving, the exception will be lost when we clear PMAO. * * When we reenable the PMU, we will write the saved MMCR0 with PMAO * set, and this _should_ generate an exception. However because of the * defect no exception is generated when we write PMAO, and we get * stuck with no counters counting but no exception delivered. * * The workaround is to detect this case and tweak the hardware to * create another pending PMU exception. * * We do that by setting up PMC6 (cycles) for an imminent overflow and * enabling the PMU. That causes a new exception to be generated in the * chip, but we don't take it yet because we have interrupts hard * disabled. We then write back the PMU state as we want it to be seen * by the exception handler. When we reenable interrupts the exception * handler will be called and see the correct state. * * The logic is the same for EBB, except that the exception is gated by * us having interrupts hard disabled as well as the fact that we are * not in userspace. The exception is finally delivered when we return * to userspace. */ /* Only if PMAO is set and PMAO_SYNC is clear */ if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) return; /* If we're doing EBB, only if BESCR[GE] is set */ if (ebb && !(current->thread.bescr & BESCR_GE)) return; /* * We are already soft-disabled in power_pmu_enable(). We need to hard * enable to actually prevent the PMU exception from firing. */ hard_irq_disable(); /* * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. * Using read/write_pmc() in a for loop adds 12 function calls and * almost doubles our code size. */ pmcs[0] = mfspr(SPRN_PMC1); pmcs[1] = mfspr(SPRN_PMC2); pmcs[2] = mfspr(SPRN_PMC3); pmcs[3] = mfspr(SPRN_PMC4); pmcs[4] = mfspr(SPRN_PMC5); pmcs[5] = mfspr(SPRN_PMC6); /* Ensure all freeze bits are unset */ mtspr(SPRN_MMCR2, 0); /* Set up PMC6 to overflow in one cycle */ mtspr(SPRN_PMC6, 0x7FFFFFFE); /* Enable exceptions and unfreeze PMC6 */ mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); /* Now we need to refreeze and restore the PMCs */ mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); mtspr(SPRN_PMC1, pmcs[0]); mtspr(SPRN_PMC2, pmcs[1]); mtspr(SPRN_PMC3, pmcs[2]); mtspr(SPRN_PMC4, pmcs[3]); mtspr(SPRN_PMC5, pmcs[4]); mtspr(SPRN_PMC6, pmcs[5]); } #endif /* CONFIG_PPC64 */ static void perf_event_interrupt(struct pt_regs *regs); /* * Read one performance monitor counter (PMC). */ static unsigned long read_pmc(int idx) { unsigned long val; switch (idx) { case 1: val = mfspr(SPRN_PMC1); break; case 2: val = mfspr(SPRN_PMC2); break; case 3: val = mfspr(SPRN_PMC3); break; case 4: val = mfspr(SPRN_PMC4); break; case 5: val = mfspr(SPRN_PMC5); break; case 6: val = mfspr(SPRN_PMC6); break; #ifdef CONFIG_PPC64 case 7: val = mfspr(SPRN_PMC7); break; case 8: val = mfspr(SPRN_PMC8); break; #endif /* CONFIG_PPC64 */ default: printk(KERN_ERR "oops trying to read PMC%d\n", idx); val = 0; } return val; } /* * Write one PMC. */ static void write_pmc(int idx, unsigned long val) { switch (idx) { case 1: mtspr(SPRN_PMC1, val); break; case 2: mtspr(SPRN_PMC2, val); break; case 3: mtspr(SPRN_PMC3, val); break; case 4: mtspr(SPRN_PMC4, val); break; case 5: mtspr(SPRN_PMC5, val); break; case 6: mtspr(SPRN_PMC6, val); break; #ifdef CONFIG_PPC64 case 7: mtspr(SPRN_PMC7, val); break; case 8: mtspr(SPRN_PMC8, val); break; #endif /* CONFIG_PPC64 */ default: printk(KERN_ERR "oops trying to write PMC%d\n", idx); } } /* Called from sysrq_handle_showregs() */ void perf_event_print_debug(void) { unsigned long sdar, sier, flags; u32 pmcs[MAX_HWEVENTS]; int i; if (!ppmu->n_counter) return; local_irq_save(flags); pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", smp_processor_id(), ppmu->name, ppmu->n_counter); for (i = 0; i < ppmu->n_counter; i++) pmcs[i] = read_pmc(i + 1); for (; i < MAX_HWEVENTS; i++) pmcs[i] = 0xdeadbeef; pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", pmcs[0], pmcs[1], pmcs[2], pmcs[3]); if (ppmu->n_counter > 4) pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", pmcs[4], pmcs[5], pmcs[6], pmcs[7]); pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); sdar = sier = 0; #ifdef CONFIG_PPC64 sdar = mfspr(SPRN_SDAR); if (ppmu->flags & PPMU_HAS_SIER) sier = mfspr(SPRN_SIER); if (ppmu->flags & PPMU_ARCH_207S) { pr_info("MMCR2: %016lx EBBHR: %016lx\n", mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); pr_info("EBBRR: %016lx BESCR: %016lx\n", mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); } #endif pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n", mfspr(SPRN_SIAR), sdar, sier); local_irq_restore(flags); } /* * Check if a set of events can all go on the PMU at once. * If they can't, this will look at alternative codes for the events * and see if any combination of alternative codes is feasible. * The feasible set is returned in event_id[]. */ static int power_check_constraints(struct cpu_hw_events *cpuhw, u64 event_id[], unsigned int cflags[], int n_ev) { unsigned long mask, value, nv; unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; int i, j; unsigned long addf = ppmu->add_fields; unsigned long tadd = ppmu->test_adder; if (n_ev > ppmu->n_counter) return -1; /* First see if the events will go on as-is */ for (i = 0; i < n_ev; ++i) { if ((cflags[i] & PPMU_LIMITED_PMC_REQD) && !ppmu->limited_pmc_event(event_id[i])) { ppmu->get_alternatives(event_id[i], cflags[i], cpuhw->alternatives[i]); event_id[i] = cpuhw->alternatives[i][0]; } if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], &cpuhw->avalues[i][0])) return -1; } value = mask = 0; for (i = 0; i < n_ev; ++i) { nv = (value | cpuhw->avalues[i][0]) + (value & cpuhw->avalues[i][0] & addf); if ((((nv + tadd) ^ value) & mask) != 0 || (((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0]) != 0) break; value = nv; mask |= cpuhw->amasks[i][0]; } if (i == n_ev) return 0; /* all OK */ /* doesn't work, gather alternatives... */ if (!ppmu->get_alternatives) return -1; for (i = 0; i < n_ev; ++i) { choice[i] = 0; n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], cpuhw->alternatives[i]); for (j = 1; j < n_alt[i]; ++j) ppmu->get_constraint(cpuhw->alternatives[i][j], &cpuhw->amasks[i][j], &cpuhw->avalues[i][j]); } /* enumerate all possibilities and see if any will work */ i = 0; j = -1; value = mask = nv = 0; while (i < n_ev) { if (j >= 0) { /* we're backtracking, restore context */ value = svalues[i]; mask = smasks[i]; j = choice[i]; } /* * See if any alternative k for event_id i, * where k > j, will satisfy the constraints. */ while (++j < n_alt[i]) { nv = (value | cpuhw->avalues[i][j]) + (value & cpuhw->avalues[i][j] & addf); if ((((nv + tadd) ^ value) & mask) == 0 && (((nv + tadd) ^ cpuhw->avalues[i][j]) & cpuhw->amasks[i][j]) == 0) break; } if (j >= n_alt[i]) { /* * No feasible alternative, backtrack * to event_id i-1 and continue enumerating its * alternatives from where we got up to. */ if (--i < 0) return -1; } else { /* * Found a feasible alternative for event_id i, * remember where we got up to with this event_id, * go on to the next event_id, and start with * the first alternative for it. */ choice[i] = j; svalues[i] = value; smasks[i] = mask; value = nv; mask |= cpuhw->amasks[i][j]; ++i; j = -1; } } /* OK, we have a feasible combination, tell the caller the solution */ for (i = 0; i < n_ev; ++i) event_id[i] = cpuhw->alternatives[i][choice[i]]; return 0; } /* * Check if newly-added events have consistent settings for * exclude_{user,kernel,hv} with each other and any previously * added events. */ static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], int n_prev, int n_new) { int eu = 0, ek = 0, eh = 0; int i, n, first; struct perf_event *event; /* * If the PMU we're on supports per event exclude settings then we * don't need to do any of this logic. NB. This assumes no PMU has both * per event exclude and limited PMCs. */ if (ppmu->flags & PPMU_ARCH_207S) return 0; n = n_prev + n_new; if (n <= 1) return 0; first = 1; for (i = 0; i < n; ++i) { if (cflags[i] & PPMU_LIMITED_PMC_OK) { cflags[i] &= ~PPMU_LIMITED_PMC_REQD; continue; } event = ctrs[i]; if (first) { eu = event->attr.exclude_user; ek = event->attr.exclude_kernel; eh = event->attr.exclude_hv; first = 0; } else if (event->attr.exclude_user != eu || event->attr.exclude_kernel != ek || event->attr.exclude_hv != eh) { return -EAGAIN; } } if (eu || ek || eh) for (i = 0; i < n; ++i) if (cflags[i] & PPMU_LIMITED_PMC_OK) cflags[i] |= PPMU_LIMITED_PMC_REQD; return 0; } static u64 check_and_compute_delta(u64 prev, u64 val) { u64 delta = (val - prev) & 0xfffffffful; /* * POWER7 can roll back counter values, if the new value is smaller * than the previous value it will cause the delta and the counter to * have bogus values unless we rolled a counter over. If a coutner is * rolled back, it will be smaller, but within 256, which is the maximum * number of events to rollback at once. If we dectect a rollback * return 0. This can lead to a small lack of precision in the * counters. */ if (prev > val && (prev - val) < 256) delta = 0; return delta; } static void power_pmu_read(struct perf_event *event) { s64 val, delta, prev; if (event->hw.state & PERF_HES_STOPPED) return; if (!event->hw.idx) return; if (is_ebb_event(event)) { val = read_pmc(event->hw.idx); local64_set(&event->hw.prev_count, val); return; } /* * Performance monitor interrupts come even when interrupts * are soft-disabled, as long as interrupts are hard-enabled. * Therefore we treat them like NMIs. */ do { prev = local64_read(&event->hw.prev_count); barrier(); val = read_pmc(event->hw.idx); delta = check_and_compute_delta(prev, val); if (!delta) return; } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); local64_add(delta, &event->count); /* * A number of places program the PMC with (0x80000000 - period_left). * We never want period_left to be less than 1 because we will program * the PMC with a value >= 0x800000000 and an edge detected PMC will * roll around to 0 before taking an exception. We have seen this * on POWER8. * * To fix this, clamp the minimum value of period_left to 1. */ do { prev = local64_read(&event->hw.period_left); val = prev - delta; if (val < 1) val = 1; } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); } /* * On some machines, PMC5 and PMC6 can't be written, don't respect * the freeze conditions, and don't generate interrupts. This tells * us if `event' is using such a PMC. */ static int is_limited_pmc(int pmcnum) { return (ppmu->flags & PPMU_LIMITED_PMC5_6) && (pmcnum == 5 || pmcnum == 6); } static void freeze_limited_counters(struct cpu_hw_events *cpuhw, unsigned long pmc5, unsigned long pmc6) { struct perf_event *event; u64 val, prev, delta; int i; for (i = 0; i < cpuhw->n_limited; ++i) { event = cpuhw->limited_counter[i]; if (!event->hw.idx) continue; val = (event->hw.idx == 5) ? pmc5 : pmc6; prev = local64_read(&event->hw.prev_count); event->hw.idx = 0; delta = check_and_compute_delta(prev, val); if (delta) local64_add(delta, &event->count); } } static void thaw_limited_counters(struct cpu_hw_events *cpuhw, unsigned long pmc5, unsigned long pmc6) { struct perf_event *event; u64 val, prev; int i; for (i = 0; i < cpuhw->n_limited; ++i) { event = cpuhw->limited_counter[i]; event->hw.idx = cpuhw->limited_hwidx[i]; val = (event->hw.idx == 5) ? pmc5 : pmc6; prev = local64_read(&event->hw.prev_count); if (check_and_compute_delta(prev, val)) local64_set(&event->hw.prev_count, val); perf_event_update_userpage(event); } } /* * Since limited events don't respect the freeze conditions, we * have to read them immediately after freezing or unfreezing the * other events. We try to keep the values from the limited * events as consistent as possible by keeping the delay (in * cycles and instructions) between freezing/unfreezing and reading * the limited events as small and consistent as possible. * Therefore, if any limited events are in use, we read them * both, and always in the same order, to minimize variability, * and do it inside the same asm that writes MMCR0. */ static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) { unsigned long pmc5, pmc6; if (!cpuhw->n_limited) { mtspr(SPRN_MMCR0, mmcr0); return; } /* * Write MMCR0, then read PMC5 and PMC6 immediately. * To ensure we don't get a performance monitor interrupt * between writing MMCR0 and freezing/thawing the limited * events, we first write MMCR0 with the event overflow * interrupt enable bits turned off. */ asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" : "=&r" (pmc5), "=&r" (pmc6) : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), "i" (SPRN_MMCR0), "i" (SPRN_PMC5), "i" (SPRN_PMC6)); if (mmcr0 & MMCR0_FC) freeze_limited_counters(cpuhw, pmc5, pmc6); else thaw_limited_counters(cpuhw, pmc5, pmc6); /* * Write the full MMCR0 including the event overflow interrupt * enable bits, if necessary. */ if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) mtspr(SPRN_MMCR0, mmcr0); } /* * Disable all events to prevent PMU interrupts and to allow * events to be added or removed. */ static void power_pmu_disable(struct pmu *pmu) { struct cpu_hw_events *cpuhw; unsigned long flags, mmcr0, val; if (!ppmu) return; local_irq_save(flags); cpuhw = &__get_cpu_var(cpu_hw_events); if (!cpuhw->disabled) { /* * Check if we ever enabled the PMU on this cpu. */ if (!cpuhw->pmcs_enabled) { ppc_enable_pmcs(); cpuhw->pmcs_enabled = 1; } /* * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 */ val = mmcr0 = mfspr(SPRN_MMCR0); val |= MMCR0_FC; val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | MMCR0_FC56); /* * The barrier is to make sure the mtspr has been * executed and the PMU has frozen the events etc. * before we return. */ write_mmcr0(cpuhw, val); mb(); /* * Disable instruction sampling if it was enabled */ if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); mb(); } cpuhw->disabled = 1; cpuhw->n_added = 0; ebb_switch_out(mmcr0); } local_irq_restore(flags); } /* * Re-enable all events if disable == 0. * If we were previously disabled and events were added, then * put the new config on the PMU. */ static void power_pmu_enable(struct pmu *pmu) { struct perf_event *event; struct cpu_hw_events *cpuhw; unsigned long flags; long i; unsigned long val, mmcr0; s64 left; unsigned int hwc_index[MAX_HWEVENTS]; int n_lim; int idx; bool ebb; if (!ppmu) return; local_irq_save(flags); cpuhw = &__get_cpu_var(cpu_hw_events); if (!cpuhw->disabled) goto out; if (cpuhw->n_events == 0) { ppc_set_pmu_inuse(0); goto out; } cpuhw->disabled = 0; /* * EBB requires an exclusive group and all events must have the EBB * flag set, or not set, so we can just check a single event. Also we * know we have at least one event. */ ebb = is_ebb_event(cpuhw->event[0]); /* * If we didn't change anything, or only removed events, * no need to recalculate MMCR* settings and reset the PMCs. * Just reenable the PMU with the current MMCR* settings * (possibly updated for removal of events). */ if (!cpuhw->n_added) { mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); goto out_enable; } /* * Clear all MMCR settings and recompute them for the new set of events. */ memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr)); if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, cpuhw->mmcr, cpuhw->event)) { /* shouldn't ever get here */ printk(KERN_ERR "oops compute_mmcr failed\n"); goto out; } if (!(ppmu->flags & PPMU_ARCH_207S)) { /* * Add in MMCR0 freeze bits corresponding to the attr.exclude_* * bits for the first event. We have already checked that all * events have the same value for these bits as the first event. */ event = cpuhw->event[0]; if (event->attr.exclude_user) cpuhw->mmcr[0] |= MMCR0_FCP; if (event->attr.exclude_kernel) cpuhw->mmcr[0] |= freeze_events_kernel; if (event->attr.exclude_hv) cpuhw->mmcr[0] |= MMCR0_FCHV; } /* * Write the new configuration to MMCR* with the freeze * bit set and set the hardware events to their initial values. * Then unfreeze the events. */ ppc_set_pmu_inuse(1); mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) | MMCR0_FC); if (ppmu->flags & PPMU_ARCH_207S) mtspr(SPRN_MMCR2, cpuhw->mmcr[3]); /* * Read off any pre-existing events that need to move * to another PMC. */ for (i = 0; i < cpuhw->n_events; ++i) { event = cpuhw->event[i]; if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { power_pmu_read(event); write_pmc(event->hw.idx, 0); event->hw.idx = 0; } } /* * Initialize the PMCs for all the new and moved events. */ cpuhw->n_limited = n_lim = 0; for (i = 0; i < cpuhw->n_events; ++i) { event = cpuhw->event[i]; if (event->hw.idx) continue; idx = hwc_index[i] + 1; if (is_limited_pmc(idx)) { cpuhw->limited_counter[n_lim] = event; cpuhw->limited_hwidx[n_lim] = idx; ++n_lim; continue; } if (ebb) val = local64_read(&event->hw.prev_count); else { val = 0; if (event->hw.sample_period) { left = local64_read(&event->hw.period_left); if (left < 0x80000000L) val = 0x80000000L - left; } local64_set(&event->hw.prev_count, val); } event->hw.idx = idx; if (event->hw.state & PERF_HES_STOPPED) val = 0; write_pmc(idx, val); perf_event_update_userpage(event); } cpuhw->n_limited = n_lim; cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; out_enable: pmao_restore_workaround(ebb); mmcr0 = ebb_switch_in(ebb, cpuhw); mb(); if (cpuhw->bhrb_users) ppmu->config_bhrb(cpuhw->bhrb_filter); write_mmcr0(cpuhw, mmcr0); /* * Enable instruction sampling if necessary */ if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { mb(); mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); } out: local_irq_restore(flags); } static int collect_events(struct perf_event *group, int max_count, struct perf_event *ctrs[], u64 *events, unsigned int *flags) { int n = 0; struct perf_event *event; if (!is_software_event(group)) { if (n >= max_count) return -1; ctrs[n] = group; flags[n] = group->hw.event_base; events[n++] = group->hw.config; } list_for_each_entry(event, &group->sibling_list, group_entry) { if (!is_software_event(event) && event->state != PERF_EVENT_STATE_OFF) { if (n >= max_count) return -1; ctrs[n] = event; flags[n] = event->hw.event_base; events[n++] = event->hw.config; } } return n; } /* * Add a event to the PMU. * If all events are not already frozen, then we disable and * re-enable the PMU in order to get hw_perf_enable to do the * actual work of reconfiguring the PMU. */ static int power_pmu_add(struct perf_event *event, int ef_flags) { struct cpu_hw_events *cpuhw; unsigned long flags; int n0; int ret = -EAGAIN; local_irq_save(flags); perf_pmu_disable(event->pmu); /* * Add the event to the list (if there is room) * and check whether the total set is still feasible. */ cpuhw = &__get_cpu_var(cpu_hw_events); n0 = cpuhw->n_events; if (n0 >= ppmu->n_counter) goto out; cpuhw->event[n0] = event; cpuhw->events[n0] = event->hw.config; cpuhw->flags[n0] = event->hw.event_base; /* * This event may have been disabled/stopped in record_and_restart() * because we exceeded the ->event_limit. If re-starting the event, * clear the ->hw.state (STOPPED and UPTODATE flags), so the user * notification is re-enabled. */ if (!(ef_flags & PERF_EF_START)) event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; else event->hw.state = 0; /* * If group events scheduling transaction was started, * skip the schedulability test here, it will be performed * at commit time(->commit_txn) as a whole */ if (cpuhw->group_flag & PERF_EVENT_TXN) goto nocheck; if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) goto out; if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) goto out; event->hw.config = cpuhw->events[n0]; nocheck: ebb_event_add(event); ++cpuhw->n_events; ++cpuhw->n_added; ret = 0; out: if (has_branch_stack(event)) { power_pmu_bhrb_enable(event); cpuhw->bhrb_filter = ppmu->bhrb_filter_map( event->attr.branch_sample_type); } perf_pmu_enable(event->pmu); local_irq_restore(flags); return ret; } /* * Remove a event from the PMU. */ static void power_pmu_del(struct perf_event *event, int ef_flags) { struct cpu_hw_events *cpuhw; long i; unsigned long flags; local_irq_save(flags); perf_pmu_disable(event->pmu); power_pmu_read(event); cpuhw = &__get_cpu_var(cpu_hw_events); for (i = 0; i < cpuhw->n_events; ++i) { if (event == cpuhw->event[i]) { while (++i < cpuhw->n_events) { cpuhw->event[i-1] = cpuhw->event[i]; cpuhw->events[i-1] = cpuhw->events[i]; cpuhw->flags[i-1] = cpuhw->flags[i]; } --cpuhw->n_events; ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr); if (event->hw.idx) { write_pmc(event->hw.idx, 0); event->hw.idx = 0; } perf_event_update_userpage(event); break; } } for (i = 0; i < cpuhw->n_limited; ++i) if (event == cpuhw->limited_counter[i]) break; if (i < cpuhw->n_limited) { while (++i < cpuhw->n_limited) { cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; } --cpuhw->n_limited; } if (cpuhw->n_events == 0) { /* disable exceptions if no events are running */ cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); } if (has_branch_stack(event)) power_pmu_bhrb_disable(event); perf_pmu_enable(event->pmu); local_irq_restore(flags); } /* * POWER-PMU does not support disabling individual counters, hence * program their cycle counter to their max value and ignore the interrupts. */ static void power_pmu_start(struct perf_event *event, int ef_flags) { unsigned long flags; s64 left; unsigned long val; if (!event->hw.idx || !event->hw.sample_period) return; if (!(event->hw.state & PERF_HES_STOPPED)) return; if (ef_flags & PERF_EF_RELOAD) WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); local_irq_save(flags); perf_pmu_disable(event->pmu); event->hw.state = 0; left = local64_read(&event->hw.period_left); val = 0; if (left < 0x80000000L) val = 0x80000000L - left; write_pmc(event->hw.idx, val); perf_event_update_userpage(event); perf_pmu_enable(event->pmu); local_irq_restore(flags); } static void power_pmu_stop(struct perf_event *event, int ef_flags) { unsigned long flags; if (!event->hw.idx || !event->hw.sample_period) return; if (event->hw.state & PERF_HES_STOPPED) return; local_irq_save(flags); perf_pmu_disable(event->pmu); power_pmu_read(event); event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; write_pmc(event->hw.idx, 0); perf_event_update_userpage(event); perf_pmu_enable(event->pmu); local_irq_restore(flags); } /* * Start group events scheduling transaction * Set the flag to make pmu::enable() not perform the * schedulability test, it will be performed at commit time */ static void power_pmu_start_txn(struct pmu *pmu) { struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); perf_pmu_disable(pmu); cpuhw->group_flag |= PERF_EVENT_TXN; cpuhw->n_txn_start = cpuhw->n_events; } /* * Stop group events scheduling transaction * Clear the flag and pmu::enable() will perform the * schedulability test. */ static void power_pmu_cancel_txn(struct pmu *pmu) { struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); cpuhw->group_flag &= ~PERF_EVENT_TXN; perf_pmu_enable(pmu); } /* * Commit group events scheduling transaction * Perform the group schedulability test as a whole * Return 0 if success */ static int power_pmu_commit_txn(struct pmu *pmu) { struct cpu_hw_events *cpuhw; long i, n; if (!ppmu) return -EAGAIN; cpuhw = &__get_cpu_var(cpu_hw_events); n = cpuhw->n_events; if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) return -EAGAIN; i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); if (i < 0) return -EAGAIN; for (i = cpuhw->n_txn_start; i < n; ++i) cpuhw->event[i]->hw.config = cpuhw->events[i]; cpuhw->group_flag &= ~PERF_EVENT_TXN; perf_pmu_enable(pmu); return 0; } /* * Return 1 if we might be able to put event on a limited PMC, * or 0 if not. * A event can only go on a limited PMC if it counts something * that a limited PMC can count, doesn't require interrupts, and * doesn't exclude any processor mode. */ static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, unsigned int flags) { int n; u64 alt[MAX_EVENT_ALTERNATIVES]; if (event->attr.exclude_user || event->attr.exclude_kernel || event->attr.exclude_hv || event->attr.sample_period) return 0; if (ppmu->limited_pmc_event(ev)) return 1; /* * The requested event_id isn't on a limited PMC already; * see if any alternative code goes on a limited PMC. */ if (!ppmu->get_alternatives) return 0; flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; n = ppmu->get_alternatives(ev, flags, alt); return n > 0; } /* * Find an alternative event_id that goes on a normal PMC, if possible, * and return the event_id code, or 0 if there is no such alternative. * (Note: event_id code 0 is "don't count" on all machines.) */ static u64 normal_pmc_alternative(u64 ev, unsigned long flags) { u64 alt[MAX_EVENT_ALTERNATIVES]; int n; flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); n = ppmu->get_alternatives(ev, flags, alt); if (!n) return 0; return alt[0]; } /* Number of perf_events counting hardware events */ static atomic_t num_events; /* Used to avoid races in calling reserve/release_pmc_hardware */ static DEFINE_MUTEX(pmc_reserve_mutex); /* * Release the PMU if this is the last perf_event. */ static void hw_perf_event_destroy(struct perf_event *event) { if (!atomic_add_unless(&num_events, -1, 1)) { mutex_lock(&pmc_reserve_mutex); if (atomic_dec_return(&num_events) == 0) release_pmc_hardware(); mutex_unlock(&pmc_reserve_mutex); } } /* * Translate a generic cache event_id config to a raw event_id code. */ static int hw_perf_cache_event(u64 config, u64 *eventp) { unsigned long type, op, result; int ev; if (!ppmu->cache_events) return -EINVAL; /* unpack config */ type = config & 0xff; op = (config >> 8) & 0xff; result = (config >> 16) & 0xff; if (type >= PERF_COUNT_HW_CACHE_MAX || op >= PERF_COUNT_HW_CACHE_OP_MAX || result >= PERF_COUNT_HW_CACHE_RESULT_MAX) return -EINVAL; ev = (*ppmu->cache_events)[type][op][result]; if (ev == 0) return -EOPNOTSUPP; if (ev == -1) return -EINVAL; *eventp = ev; return 0; } static int power_pmu_event_init(struct perf_event *event) { u64 ev; unsigned long flags; struct perf_event *ctrs[MAX_HWEVENTS]; u64 events[MAX_HWEVENTS]; unsigned int cflags[MAX_HWEVENTS]; int n; int err; struct cpu_hw_events *cpuhw; if (!ppmu) return -ENOENT; if (has_branch_stack(event)) { /* PMU has BHRB enabled */ if (!(ppmu->flags & PPMU_ARCH_207S)) return -EOPNOTSUPP; } switch (event->attr.type) { case PERF_TYPE_HARDWARE: ev = event->attr.config; if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) return -EOPNOTSUPP; ev = ppmu->generic_events[ev]; break; case PERF_TYPE_HW_CACHE: err = hw_perf_cache_event(event->attr.config, &ev); if (err) return err; break; case PERF_TYPE_RAW: ev = event->attr.config; break; default: return -ENOENT; } event->hw.config_base = ev; event->hw.idx = 0; /* * If we are not running on a hypervisor, force the * exclude_hv bit to 0 so that we don't care what * the user set it to. */ if (!firmware_has_feature(FW_FEATURE_LPAR)) event->attr.exclude_hv = 0; /* * If this is a per-task event, then we can use * PM_RUN_* events interchangeably with their non RUN_* * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. * XXX we should check if the task is an idle task. */ flags = 0; if (event->attach_state & PERF_ATTACH_TASK) flags |= PPMU_ONLY_COUNT_RUN; /* * If this machine has limited events, check whether this * event_id could go on a limited event. */ if (ppmu->flags & PPMU_LIMITED_PMC5_6) { if (can_go_on_limited_pmc(event, ev, flags)) { flags |= PPMU_LIMITED_PMC_OK; } else if (ppmu->limited_pmc_event(ev)) { /* * The requested event_id is on a limited PMC, * but we can't use a limited PMC; see if any * alternative goes on a normal PMC. */ ev = normal_pmc_alternative(ev, flags); if (!ev) return -EINVAL; } } /* Extra checks for EBB */ err = ebb_event_check(event); if (err) return err; /* * If this is in a group, check if it can go on with all the * other hardware events in the group. We assume the event * hasn't been linked into its leader's sibling list at this point. */ n = 0; if (event->group_leader != event) { n = collect_events(event->group_leader, ppmu->n_counter - 1, ctrs, events, cflags); if (n < 0) return -EINVAL; } events[n] = ev; ctrs[n] = event; cflags[n] = flags; if (check_excludes(ctrs, cflags, n, 1)) return -EINVAL; cpuhw = &get_cpu_var(cpu_hw_events); err = power_check_constraints(cpuhw, events, cflags, n + 1); if (has_branch_stack(event)) { cpuhw->bhrb_filter = ppmu->bhrb_filter_map( event->attr.branch_sample_type); if(cpuhw->bhrb_filter == -1) return -EOPNOTSUPP; } put_cpu_var(cpu_hw_events); if (err) return -EINVAL; event->hw.config = events[n]; event->hw.event_base = cflags[n]; event->hw.last_period = event->hw.sample_period; local64_set(&event->hw.period_left, event->hw.last_period); /* * For EBB events we just context switch the PMC value, we don't do any * of the sample_period logic. We use hw.prev_count for this. */ if (is_ebb_event(event)) local64_set(&event->hw.prev_count, 0); /* * See if we need to reserve the PMU. * If no events are currently in use, then we have to take a * mutex to ensure that we don't race with another task doing * reserve_pmc_hardware or release_pmc_hardware. */ err = 0; if (!atomic_inc_not_zero(&num_events)) { mutex_lock(&pmc_reserve_mutex); if (atomic_read(&num_events) == 0 && reserve_pmc_hardware(perf_event_interrupt)) err = -EBUSY; else atomic_inc(&num_events); mutex_unlock(&pmc_reserve_mutex); } event->destroy = hw_perf_event_destroy; return err; } static int power_pmu_event_idx(struct perf_event *event) { return event->hw.idx; } ssize_t power_events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page) { struct perf_pmu_events_attr *pmu_attr; pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); return sprintf(page, "event=0x%02llx\n", pmu_attr->id); } static struct pmu power_pmu = { .pmu_enable = power_pmu_enable, .pmu_disable = power_pmu_disable, .event_init = power_pmu_event_init, .add = power_pmu_add, .del = power_pmu_del, .start = power_pmu_start, .stop = power_pmu_stop, .read = power_pmu_read, .start_txn = power_pmu_start_txn, .cancel_txn = power_pmu_cancel_txn, .commit_txn = power_pmu_commit_txn, .event_idx = power_pmu_event_idx, .flush_branch_stack = power_pmu_flush_branch_stack, }; /* * A counter has overflowed; update its count and record * things if requested. Note that interrupts are hard-disabled * here so there is no possibility of being interrupted. */ static void record_and_restart(struct perf_event *event, unsigned long val, struct pt_regs *regs) { u64 period = event->hw.sample_period; s64 prev, delta, left; int record = 0; if (event->hw.state & PERF_HES_STOPPED) { write_pmc(event->hw.idx, 0); return; } /* we don't have to worry about interrupts here */ prev = local64_read(&event->hw.prev_count); delta = check_and_compute_delta(prev, val); local64_add(delta, &event->count); /* * See if the total period for this event has expired, * and update for the next period. */ val = 0; left = local64_read(&event->hw.period_left) - delta; if (delta == 0) left++; if (period) { if (left <= 0) { left += period; if (left <= 0) left = period; record = siar_valid(regs); event->hw.last_period = event->hw.sample_period; } if (left < 0x80000000LL) val = 0x80000000LL - left; } write_pmc(event->hw.idx, val); local64_set(&event->hw.prev_count, val); local64_set(&event->hw.period_left, left); perf_event_update_userpage(event); /* * Finally record data if requested. */ if (record) { struct perf_sample_data data; perf_sample_data_init(&data, ~0ULL, event->hw.last_period); if (event->attr.sample_type & PERF_SAMPLE_ADDR) perf_get_data_addr(regs, &data.addr); if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { struct cpu_hw_events *cpuhw; cpuhw = &__get_cpu_var(cpu_hw_events); power_pmu_bhrb_read(cpuhw); data.br_stack = &cpuhw->bhrb_stack; } if (perf_event_overflow(event, &data, regs)) power_pmu_stop(event, 0); } } /* * Called from generic code to get the misc flags (i.e. processor mode) * for an event_id. */ unsigned long perf_misc_flags(struct pt_regs *regs) { u32 flags = perf_get_misc_flags(regs); if (flags) return flags; return user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL; } /* * Called from generic code to get the instruction pointer * for an event_id. */ unsigned long perf_instruction_pointer(struct pt_regs *regs) { bool use_siar = regs_use_siar(regs); if (use_siar && siar_valid(regs)) return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); else if (use_siar) return 0; // no valid instruction pointer else return regs->nip; } static bool pmc_overflow_power7(unsigned long val) { /* * Events on POWER7 can roll back if a speculative event doesn't * eventually complete. Unfortunately in some rare cases they will * raise a performance monitor exception. We need to catch this to * ensure we reset the PMC. In all cases the PMC will be 256 or less * cycles from overflow. * * We only do this if the first pass fails to find any overflowing * PMCs because a user might set a period of less than 256 and we * don't want to mistakenly reset them. */ if ((0x80000000 - val) <= 256) return true; return false; } static bool pmc_overflow(unsigned long val) { if ((int)val < 0) return true; return false; } /* * Performance monitor interrupt stuff */ static void perf_event_interrupt(struct pt_regs *regs) { int i, j; struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); struct perf_event *event; unsigned long val[8]; int found, active; int nmi; if (cpuhw->n_limited) freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), mfspr(SPRN_PMC6)); perf_read_regs(regs); nmi = perf_intr_is_nmi(regs); if (nmi) nmi_enter(); else irq_enter(); /* Read all the PMCs since we'll need them a bunch of times */ for (i = 0; i < ppmu->n_counter; ++i) val[i] = read_pmc(i + 1); /* Try to find what caused the IRQ */ found = 0; for (i = 0; i < ppmu->n_counter; ++i) { if (!pmc_overflow(val[i])) continue; if (is_limited_pmc(i + 1)) continue; /* these won't generate IRQs */ /* * We've found one that's overflowed. For active * counters we need to log this. For inactive * counters, we need to reset it anyway */ found = 1; active = 0; for (j = 0; j < cpuhw->n_events; ++j) { event = cpuhw->event[j]; if (event->hw.idx == (i + 1)) { active = 1; record_and_restart(event, val[i], regs); break; } } if (!active) /* reset non active counters that have overflowed */ write_pmc(i + 1, 0); } if (!found && pvr_version_is(PVR_POWER7)) { /* check active counters for special buggy p7 overflow */ for (i = 0; i < cpuhw->n_events; ++i) { event = cpuhw->event[i]; if (!event->hw.idx || is_limited_pmc(event->hw.idx)) continue; if (pmc_overflow_power7(val[event->hw.idx - 1])) { /* event has overflowed in a buggy way*/ found = 1; record_and_restart(event, val[event->hw.idx - 1], regs); } } } if (!found && !nmi && printk_ratelimit()) printk(KERN_WARNING "Can't find PMC that caused IRQ\n"); /* * Reset MMCR0 to its normal value. This will set PMXE and * clear FC (freeze counters) and PMAO (perf mon alert occurred) * and thus allow interrupts to occur again. * XXX might want to use MSR.PM to keep the events frozen until * we get back out of this interrupt. */ write_mmcr0(cpuhw, cpuhw->mmcr[0]); if (nmi) nmi_exit(); else irq_exit(); } static void power_pmu_setup(int cpu) { struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); if (!ppmu) return; memset(cpuhw, 0, sizeof(*cpuhw)); cpuhw->mmcr[0] = MMCR0_FC; } static int power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu) { unsigned int cpu = (long)hcpu; switch (action & ~CPU_TASKS_FROZEN) { case CPU_UP_PREPARE: power_pmu_setup(cpu); break; default: break; } return NOTIFY_OK; } int register_power_pmu(struct power_pmu *pmu) { if (ppmu) return -EBUSY; /* something's already registered */ ppmu = pmu; pr_info("%s performance monitor hardware support registered\n", pmu->name); power_pmu.attr_groups = ppmu->attr_groups; #ifdef MSR_HV /* * Use FCHV to ignore kernel events if MSR.HV is set. */ if (mfmsr() & MSR_HV) freeze_events_kernel = MMCR0_FCHV; #endif /* CONFIG_PPC64 */ perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); perf_cpu_notifier(power_pmu_notifier); return 0; }