/* * Copyright 2010 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. */ #ifndef _ASM_TILE_IO_H #define _ASM_TILE_IO_H #include <linux/kernel.h> #include <linux/bug.h> #include <asm/page.h> /* Maximum PCI I/O space address supported. */ #define IO_SPACE_LIMIT 0xffffffff /* * Convert a physical pointer to a virtual kernel pointer for /dev/mem * access. */ #define xlate_dev_mem_ptr(p) __va(p) /* * Convert a virtual cached pointer to an uncached pointer. */ #define xlate_dev_kmem_ptr(p) p /* * Change "struct page" to physical address. */ #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT) /* * Some places try to pass in an loff_t for PHYSADDR (?!), so we cast it to * long before casting it to a pointer to avoid compiler warnings. */ #if CHIP_HAS_MMIO() extern void __iomem *ioremap(resource_size_t offset, unsigned long size); extern void __iomem *ioremap_prot(resource_size_t offset, unsigned long size, pgprot_t pgprot); extern void iounmap(volatile void __iomem *addr); #else #define ioremap(physaddr, size) ((void __iomem *)(unsigned long)(physaddr)) #define iounmap(addr) ((void)0) #endif #define ioremap_nocache(physaddr, size) ioremap(physaddr, size) #define ioremap_wc(physaddr, size) ioremap(physaddr, size) #define ioremap_writethrough(physaddr, size) ioremap(physaddr, size) #define ioremap_fullcache(physaddr, size) ioremap(physaddr, size) #define mmiowb() /* Conversion between virtual and physical mappings. */ #define mm_ptov(addr) ((void *)phys_to_virt(addr)) #define mm_vtop(addr) ((unsigned long)virt_to_phys(addr)) #if CHIP_HAS_MMIO() /* * We use inline assembly to guarantee that the compiler does not * split an access into multiple byte-sized accesses as it might * sometimes do if a register data structure is marked "packed". * Obviously on tile we can't tolerate such an access being * actually unaligned, but we want to avoid the case where the * compiler conservatively would generate multiple accesses even * for an aligned read or write. */ static inline u8 __raw_readb(const volatile void __iomem *addr) { return *(const volatile u8 __force *)addr; } static inline u16 __raw_readw(const volatile void __iomem *addr) { u16 ret; asm volatile("ld2u %0, %1" : "=r" (ret) : "r" (addr)); barrier(); return le16_to_cpu(ret); } static inline u32 __raw_readl(const volatile void __iomem *addr) { u32 ret; /* Sign-extend to conform to u32 ABI sign-extension convention. */ asm volatile("ld4s %0, %1" : "=r" (ret) : "r" (addr)); barrier(); return le32_to_cpu(ret); } static inline u64 __raw_readq(const volatile void __iomem *addr) { u64 ret; asm volatile("ld %0, %1" : "=r" (ret) : "r" (addr)); barrier(); return le64_to_cpu(ret); } static inline void __raw_writeb(u8 val, volatile void __iomem *addr) { *(volatile u8 __force *)addr = val; } static inline void __raw_writew(u16 val, volatile void __iomem *addr) { asm volatile("st2 %0, %1" :: "r" (addr), "r" (cpu_to_le16(val))); } static inline void __raw_writel(u32 val, volatile void __iomem *addr) { asm volatile("st4 %0, %1" :: "r" (addr), "r" (cpu_to_le32(val))); } static inline void __raw_writeq(u64 val, volatile void __iomem *addr) { asm volatile("st %0, %1" :: "r" (addr), "r" (cpu_to_le64(val))); } /* * The on-chip I/O hardware on tilegx is configured with VA=PA for the * kernel's PA range. The low-level APIs and field names use "va" and * "void *" nomenclature, to be consistent with the general notion * that the addresses in question are virtualizable, but in the kernel * context we are actually manipulating PA values. (In other contexts, * e.g. access from user space, we do in fact use real virtual addresses * in the va fields.) To allow readers of the code to understand what's * happening, we direct their attention to this comment by using the * following two functions that just duplicate __va() and __pa(). */ typedef unsigned long tile_io_addr_t; static inline tile_io_addr_t va_to_tile_io_addr(void *va) { BUILD_BUG_ON(sizeof(phys_addr_t) != sizeof(tile_io_addr_t)); return __pa(va); } static inline void *tile_io_addr_to_va(tile_io_addr_t tile_io_addr) { return __va(tile_io_addr); } #else /* CHIP_HAS_MMIO() */ #ifdef CONFIG_PCI extern u8 _tile_readb(unsigned long addr); extern u16 _tile_readw(unsigned long addr); extern u32 _tile_readl(unsigned long addr); extern u64 _tile_readq(unsigned long addr); extern void _tile_writeb(u8 val, unsigned long addr); extern void _tile_writew(u16 val, unsigned long addr); extern void _tile_writel(u32 val, unsigned long addr); extern void _tile_writeq(u64 val, unsigned long addr); #define __raw_readb(addr) _tile_readb((unsigned long)addr) #define __raw_readw(addr) _tile_readw((unsigned long)addr) #define __raw_readl(addr) _tile_readl((unsigned long)addr) #define __raw_readq(addr) _tile_readq((unsigned long)addr) #define __raw_writeb(val, addr) _tile_writeb(val, (unsigned long)addr) #define __raw_writew(val, addr) _tile_writew(val, (unsigned long)addr) #define __raw_writel(val, addr) _tile_writel(val, (unsigned long)addr) #define __raw_writeq(val, addr) _tile_writeq(val, (unsigned long)addr) #else /* CONFIG_PCI */ /* * The tilepro architecture does not support IOMEM unless PCI is enabled. * Unfortunately we can't yet simply not declare these methods, * since some generic code that compiles into the kernel, but * we never run, uses them unconditionally. */ static inline int iomem_panic(void) { panic("readb/writeb and friends do not exist on tile without PCI"); return 0; } static inline u8 readb(unsigned long addr) { return iomem_panic(); } static inline u16 _readw(unsigned long addr) { return iomem_panic(); } static inline u32 readl(unsigned long addr) { return iomem_panic(); } static inline u64 readq(unsigned long addr) { return iomem_panic(); } static inline void writeb(u8 val, unsigned long addr) { iomem_panic(); } static inline void writew(u16 val, unsigned long addr) { iomem_panic(); } static inline void writel(u32 val, unsigned long addr) { iomem_panic(); } static inline void writeq(u64 val, unsigned long addr) { iomem_panic(); } #endif /* CONFIG_PCI */ #endif /* CHIP_HAS_MMIO() */ #define readb __raw_readb #define readw __raw_readw #define readl __raw_readl #define readq __raw_readq #define writeb __raw_writeb #define writew __raw_writew #define writel __raw_writel #define writeq __raw_writeq #define readb_relaxed readb #define readw_relaxed readw #define readl_relaxed readl #define readq_relaxed readq #define ioread8 readb #define ioread16 readw #define ioread32 readl #define ioread64 readq #define iowrite8 writeb #define iowrite16 writew #define iowrite32 writel #define iowrite64 writeq #if CHIP_HAS_MMIO() || defined(CONFIG_PCI) static inline void memset_io(volatile void *dst, int val, size_t len) { size_t x; BUG_ON((unsigned long)dst & 0x3); val = (val & 0xff) * 0x01010101; for (x = 0; x < len; x += 4) writel(val, dst + x); } static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, size_t len) { size_t x; BUG_ON((unsigned long)src & 0x3); for (x = 0; x < len; x += 4) *(u32 *)(dst + x) = readl(src + x); } static inline void memcpy_toio(volatile void __iomem *dst, const void *src, size_t len) { size_t x; BUG_ON((unsigned long)dst & 0x3); for (x = 0; x < len; x += 4) writel(*(u32 *)(src + x), dst + x); } #endif #if CHIP_HAS_MMIO() && defined(CONFIG_TILE_PCI_IO) static inline u8 inb(unsigned long addr) { return readb((volatile void __iomem *) addr); } static inline u16 inw(unsigned long addr) { return readw((volatile void __iomem *) addr); } static inline u32 inl(unsigned long addr) { return readl((volatile void __iomem *) addr); } static inline void outb(u8 b, unsigned long addr) { writeb(b, (volatile void __iomem *) addr); } static inline void outw(u16 b, unsigned long addr) { writew(b, (volatile void __iomem *) addr); } static inline void outl(u32 b, unsigned long addr) { writel(b, (volatile void __iomem *) addr); } static inline void insb(unsigned long addr, void *buffer, int count) { if (count) { u8 *buf = buffer; do { u8 x = inb(addr); *buf++ = x; } while (--count); } } static inline void insw(unsigned long addr, void *buffer, int count) { if (count) { u16 *buf = buffer; do { u16 x = inw(addr); *buf++ = x; } while (--count); } } static inline void insl(unsigned long addr, void *buffer, int count) { if (count) { u32 *buf = buffer; do { u32 x = inl(addr); *buf++ = x; } while (--count); } } static inline void outsb(unsigned long addr, const void *buffer, int count) { if (count) { const u8 *buf = buffer; do { outb(*buf++, addr); } while (--count); } } static inline void outsw(unsigned long addr, const void *buffer, int count) { if (count) { const u16 *buf = buffer; do { outw(*buf++, addr); } while (--count); } } static inline void outsl(unsigned long addr, const void *buffer, int count) { if (count) { const u32 *buf = buffer; do { outl(*buf++, addr); } while (--count); } } extern void __iomem *ioport_map(unsigned long port, unsigned int len); extern void ioport_unmap(void __iomem *addr); #else /* * The TilePro architecture does not support IOPORT, even with PCI. * Unfortunately we can't yet simply not declare these methods, * since some generic code that compiles into the kernel, but * we never run, uses them unconditionally. */ static inline long ioport_panic(void) { #ifdef __tilegx__ panic("PCI IO space support is disabled. Configure the kernel with" " CONFIG_TILE_PCI_IO to enable it"); #else panic("inb/outb and friends do not exist on tile"); #endif return 0; } static inline void __iomem *ioport_map(unsigned long port, unsigned int len) { pr_info("ioport_map: mapping IO resources is unsupported on tile.\n"); return NULL; } static inline void ioport_unmap(void __iomem *addr) { ioport_panic(); } static inline u8 inb(unsigned long addr) { return ioport_panic(); } static inline u16 inw(unsigned long addr) { return ioport_panic(); } static inline u32 inl(unsigned long addr) { return ioport_panic(); } static inline void outb(u8 b, unsigned long addr) { ioport_panic(); } static inline void outw(u16 b, unsigned long addr) { ioport_panic(); } static inline void outl(u32 b, unsigned long addr) { ioport_panic(); } static inline void insb(unsigned long addr, void *buffer, int count) { ioport_panic(); } static inline void insw(unsigned long addr, void *buffer, int count) { ioport_panic(); } static inline void insl(unsigned long addr, void *buffer, int count) { ioport_panic(); } static inline void outsb(unsigned long addr, const void *buffer, int count) { ioport_panic(); } static inline void outsw(unsigned long addr, const void *buffer, int count) { ioport_panic(); } static inline void outsl(unsigned long addr, const void *buffer, int count) { ioport_panic(); } #endif /* CHIP_HAS_MMIO() && defined(CONFIG_TILE_PCI_IO) */ #define inb_p(addr) inb(addr) #define inw_p(addr) inw(addr) #define inl_p(addr) inl(addr) #define outb_p(x, addr) outb((x), (addr)) #define outw_p(x, addr) outw((x), (addr)) #define outl_p(x, addr) outl((x), (addr)) #define ioread16be(addr) be16_to_cpu(ioread16(addr)) #define ioread32be(addr) be32_to_cpu(ioread32(addr)) #define iowrite16be(v, addr) iowrite16(be16_to_cpu(v), (addr)) #define iowrite32be(v, addr) iowrite32(be32_to_cpu(v), (addr)) #define ioread8_rep(p, dst, count) \ insb((unsigned long) (p), (dst), (count)) #define ioread16_rep(p, dst, count) \ insw((unsigned long) (p), (dst), (count)) #define ioread32_rep(p, dst, count) \ insl((unsigned long) (p), (dst), (count)) #define iowrite8_rep(p, src, count) \ outsb((unsigned long) (p), (src), (count)) #define iowrite16_rep(p, src, count) \ outsw((unsigned long) (p), (src), (count)) #define iowrite32_rep(p, src, count) \ outsl((unsigned long) (p), (src), (count)) #define virt_to_bus virt_to_phys #define bus_to_virt phys_to_virt #endif /* _ASM_TILE_IO_H */