/* * VPDMA helper library * * Copyright (c) 2013 Texas Instruments Inc. * * David Griego, <dagriego@biglakesoftware.com> * Dale Farnsworth, <dale@farnsworth.org> * Archit Taneja, <archit@ti.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. */ #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/firmware.h> #include <linux/io.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/videodev2.h> #include "vpdma.h" #include "vpdma_priv.h" #define VPDMA_FIRMWARE "vpdma-1b8.bin" const struct vpdma_data_format vpdma_yuv_fmts[] = { [VPDMA_DATA_FMT_Y444] = { .type = VPDMA_DATA_FMT_TYPE_YUV, .data_type = DATA_TYPE_Y444, .depth = 8, }, [VPDMA_DATA_FMT_Y422] = { .type = VPDMA_DATA_FMT_TYPE_YUV, .data_type = DATA_TYPE_Y422, .depth = 8, }, [VPDMA_DATA_FMT_Y420] = { .type = VPDMA_DATA_FMT_TYPE_YUV, .data_type = DATA_TYPE_Y420, .depth = 8, }, [VPDMA_DATA_FMT_C444] = { .type = VPDMA_DATA_FMT_TYPE_YUV, .data_type = DATA_TYPE_C444, .depth = 8, }, [VPDMA_DATA_FMT_C422] = { .type = VPDMA_DATA_FMT_TYPE_YUV, .data_type = DATA_TYPE_C422, .depth = 8, }, [VPDMA_DATA_FMT_C420] = { .type = VPDMA_DATA_FMT_TYPE_YUV, .data_type = DATA_TYPE_C420, .depth = 4, }, [VPDMA_DATA_FMT_YC422] = { .type = VPDMA_DATA_FMT_TYPE_YUV, .data_type = DATA_TYPE_YC422, .depth = 16, }, [VPDMA_DATA_FMT_YC444] = { .type = VPDMA_DATA_FMT_TYPE_YUV, .data_type = DATA_TYPE_YC444, .depth = 24, }, [VPDMA_DATA_FMT_CY422] = { .type = VPDMA_DATA_FMT_TYPE_YUV, .data_type = DATA_TYPE_CY422, .depth = 16, }, }; const struct vpdma_data_format vpdma_rgb_fmts[] = { [VPDMA_DATA_FMT_RGB565] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_RGB16_565, .depth = 16, }, [VPDMA_DATA_FMT_ARGB16_1555] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_ARGB_1555, .depth = 16, }, [VPDMA_DATA_FMT_ARGB16] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_ARGB_4444, .depth = 16, }, [VPDMA_DATA_FMT_RGBA16_5551] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_RGBA_5551, .depth = 16, }, [VPDMA_DATA_FMT_RGBA16] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_RGBA_4444, .depth = 16, }, [VPDMA_DATA_FMT_ARGB24] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_ARGB24_6666, .depth = 24, }, [VPDMA_DATA_FMT_RGB24] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_RGB24_888, .depth = 24, }, [VPDMA_DATA_FMT_ARGB32] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_ARGB32_8888, .depth = 32, }, [VPDMA_DATA_FMT_RGBA24] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_RGBA24_6666, .depth = 24, }, [VPDMA_DATA_FMT_RGBA32] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_RGBA32_8888, .depth = 32, }, [VPDMA_DATA_FMT_BGR565] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_BGR16_565, .depth = 16, }, [VPDMA_DATA_FMT_ABGR16_1555] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_ABGR_1555, .depth = 16, }, [VPDMA_DATA_FMT_ABGR16] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_ABGR_4444, .depth = 16, }, [VPDMA_DATA_FMT_BGRA16_5551] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_BGRA_5551, .depth = 16, }, [VPDMA_DATA_FMT_BGRA16] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_BGRA_4444, .depth = 16, }, [VPDMA_DATA_FMT_ABGR24] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_ABGR24_6666, .depth = 24, }, [VPDMA_DATA_FMT_BGR24] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_BGR24_888, .depth = 24, }, [VPDMA_DATA_FMT_ABGR32] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_ABGR32_8888, .depth = 32, }, [VPDMA_DATA_FMT_BGRA24] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_BGRA24_6666, .depth = 24, }, [VPDMA_DATA_FMT_BGRA32] = { .type = VPDMA_DATA_FMT_TYPE_RGB, .data_type = DATA_TYPE_BGRA32_8888, .depth = 32, }, }; const struct vpdma_data_format vpdma_misc_fmts[] = { [VPDMA_DATA_FMT_MV] = { .type = VPDMA_DATA_FMT_TYPE_MISC, .data_type = DATA_TYPE_MV, .depth = 4, }, }; struct vpdma_channel_info { int num; /* VPDMA channel number */ int cstat_offset; /* client CSTAT register offset */ }; static const struct vpdma_channel_info chan_info[] = { [VPE_CHAN_LUMA1_IN] = { .num = VPE_CHAN_NUM_LUMA1_IN, .cstat_offset = VPDMA_DEI_LUMA1_CSTAT, }, [VPE_CHAN_CHROMA1_IN] = { .num = VPE_CHAN_NUM_CHROMA1_IN, .cstat_offset = VPDMA_DEI_CHROMA1_CSTAT, }, [VPE_CHAN_LUMA2_IN] = { .num = VPE_CHAN_NUM_LUMA2_IN, .cstat_offset = VPDMA_DEI_LUMA2_CSTAT, }, [VPE_CHAN_CHROMA2_IN] = { .num = VPE_CHAN_NUM_CHROMA2_IN, .cstat_offset = VPDMA_DEI_CHROMA2_CSTAT, }, [VPE_CHAN_LUMA3_IN] = { .num = VPE_CHAN_NUM_LUMA3_IN, .cstat_offset = VPDMA_DEI_LUMA3_CSTAT, }, [VPE_CHAN_CHROMA3_IN] = { .num = VPE_CHAN_NUM_CHROMA3_IN, .cstat_offset = VPDMA_DEI_CHROMA3_CSTAT, }, [VPE_CHAN_MV_IN] = { .num = VPE_CHAN_NUM_MV_IN, .cstat_offset = VPDMA_DEI_MV_IN_CSTAT, }, [VPE_CHAN_MV_OUT] = { .num = VPE_CHAN_NUM_MV_OUT, .cstat_offset = VPDMA_DEI_MV_OUT_CSTAT, }, [VPE_CHAN_LUMA_OUT] = { .num = VPE_CHAN_NUM_LUMA_OUT, .cstat_offset = VPDMA_VIP_UP_Y_CSTAT, }, [VPE_CHAN_CHROMA_OUT] = { .num = VPE_CHAN_NUM_CHROMA_OUT, .cstat_offset = VPDMA_VIP_UP_UV_CSTAT, }, [VPE_CHAN_RGB_OUT] = { .num = VPE_CHAN_NUM_RGB_OUT, .cstat_offset = VPDMA_VIP_UP_Y_CSTAT, }, }; static u32 read_reg(struct vpdma_data *vpdma, int offset) { return ioread32(vpdma->base + offset); } static void write_reg(struct vpdma_data *vpdma, int offset, u32 value) { iowrite32(value, vpdma->base + offset); } static int read_field_reg(struct vpdma_data *vpdma, int offset, u32 mask, int shift) { return (read_reg(vpdma, offset) & (mask << shift)) >> shift; } static void write_field_reg(struct vpdma_data *vpdma, int offset, u32 field, u32 mask, int shift) { u32 val = read_reg(vpdma, offset); val &= ~(mask << shift); val |= (field & mask) << shift; write_reg(vpdma, offset, val); } void vpdma_dump_regs(struct vpdma_data *vpdma) { struct device *dev = &vpdma->pdev->dev; #define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, read_reg(vpdma, VPDMA_##r)) dev_dbg(dev, "VPDMA Registers:\n"); DUMPREG(PID); DUMPREG(LIST_ADDR); DUMPREG(LIST_ATTR); DUMPREG(LIST_STAT_SYNC); DUMPREG(BG_RGB); DUMPREG(BG_YUV); DUMPREG(SETUP); DUMPREG(MAX_SIZE1); DUMPREG(MAX_SIZE2); DUMPREG(MAX_SIZE3); /* * dumping registers of only group0 and group3, because VPE channels * lie within group0 and group3 registers */ DUMPREG(INT_CHAN_STAT(0)); DUMPREG(INT_CHAN_MASK(0)); DUMPREG(INT_CHAN_STAT(3)); DUMPREG(INT_CHAN_MASK(3)); DUMPREG(INT_CLIENT0_STAT); DUMPREG(INT_CLIENT0_MASK); DUMPREG(INT_CLIENT1_STAT); DUMPREG(INT_CLIENT1_MASK); DUMPREG(INT_LIST0_STAT); DUMPREG(INT_LIST0_MASK); /* * these are registers specific to VPE clients, we can make this * function dump client registers specific to VPE or VIP based on * who is using it */ DUMPREG(DEI_CHROMA1_CSTAT); DUMPREG(DEI_LUMA1_CSTAT); DUMPREG(DEI_CHROMA2_CSTAT); DUMPREG(DEI_LUMA2_CSTAT); DUMPREG(DEI_CHROMA3_CSTAT); DUMPREG(DEI_LUMA3_CSTAT); DUMPREG(DEI_MV_IN_CSTAT); DUMPREG(DEI_MV_OUT_CSTAT); DUMPREG(VIP_UP_Y_CSTAT); DUMPREG(VIP_UP_UV_CSTAT); DUMPREG(VPI_CTL_CSTAT); } /* * Allocate a DMA buffer */ int vpdma_alloc_desc_buf(struct vpdma_buf *buf, size_t size) { buf->size = size; buf->mapped = false; buf->addr = kzalloc(size, GFP_KERNEL); if (!buf->addr) return -ENOMEM; WARN_ON(((unsigned long)buf->addr & VPDMA_DESC_ALIGN) != 0); return 0; } void vpdma_free_desc_buf(struct vpdma_buf *buf) { WARN_ON(buf->mapped); kfree(buf->addr); buf->addr = NULL; buf->size = 0; } /* * map descriptor/payload DMA buffer, enabling DMA access */ int vpdma_map_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf) { struct device *dev = &vpdma->pdev->dev; WARN_ON(buf->mapped); buf->dma_addr = dma_map_single(dev, buf->addr, buf->size, DMA_TO_DEVICE); if (dma_mapping_error(dev, buf->dma_addr)) { dev_err(dev, "failed to map buffer\n"); return -EINVAL; } buf->mapped = true; return 0; } /* * unmap descriptor/payload DMA buffer, disabling DMA access and * allowing the main processor to acces the data */ void vpdma_unmap_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf) { struct device *dev = &vpdma->pdev->dev; if (buf->mapped) dma_unmap_single(dev, buf->dma_addr, buf->size, DMA_TO_DEVICE); buf->mapped = false; } /* * create a descriptor list, the user of this list will append configuration, * control and data descriptors to this list, this list will be submitted to * VPDMA. VPDMA's list parser will go through each descriptor and perform the * required DMA operations */ int vpdma_create_desc_list(struct vpdma_desc_list *list, size_t size, int type) { int r; r = vpdma_alloc_desc_buf(&list->buf, size); if (r) return r; list->next = list->buf.addr; list->type = type; return 0; } /* * once a descriptor list is parsed by VPDMA, we reset the list by emptying it, * to allow new descriptors to be added to the list. */ void vpdma_reset_desc_list(struct vpdma_desc_list *list) { list->next = list->buf.addr; } /* * free the buffer allocated fot the VPDMA descriptor list, this should be * called when the user doesn't want to use VPDMA any more. */ void vpdma_free_desc_list(struct vpdma_desc_list *list) { vpdma_free_desc_buf(&list->buf); list->next = NULL; } static bool vpdma_list_busy(struct vpdma_data *vpdma, int list_num) { return read_reg(vpdma, VPDMA_LIST_STAT_SYNC) & BIT(list_num + 16); } /* * submit a list of DMA descriptors to the VPE VPDMA, do not wait for completion */ int vpdma_submit_descs(struct vpdma_data *vpdma, struct vpdma_desc_list *list) { /* we always use the first list */ int list_num = 0; int list_size; if (vpdma_list_busy(vpdma, list_num)) return -EBUSY; /* 16-byte granularity */ list_size = (list->next - list->buf.addr) >> 4; write_reg(vpdma, VPDMA_LIST_ADDR, (u32) list->buf.dma_addr); write_reg(vpdma, VPDMA_LIST_ATTR, (list_num << VPDMA_LIST_NUM_SHFT) | (list->type << VPDMA_LIST_TYPE_SHFT) | list_size); return 0; } static void dump_cfd(struct vpdma_cfd *cfd) { int class; class = cfd_get_class(cfd); pr_debug("config descriptor of payload class: %s\n", class == CFD_CLS_BLOCK ? "simple block" : "address data block"); if (class == CFD_CLS_BLOCK) pr_debug("word0: dst_addr_offset = 0x%08x\n", cfd->dest_addr_offset); if (class == CFD_CLS_BLOCK) pr_debug("word1: num_data_wrds = %d\n", cfd->block_len); pr_debug("word2: payload_addr = 0x%08x\n", cfd->payload_addr); pr_debug("word3: pkt_type = %d, direct = %d, class = %d, dest = %d, " "payload_len = %d\n", cfd_get_pkt_type(cfd), cfd_get_direct(cfd), class, cfd_get_dest(cfd), cfd_get_payload_len(cfd)); } /* * append a configuration descriptor to the given descriptor list, where the * payload is in the form of a simple data block specified in the descriptor * header, this is used to upload scaler coefficients to the scaler module */ void vpdma_add_cfd_block(struct vpdma_desc_list *list, int client, struct vpdma_buf *blk, u32 dest_offset) { struct vpdma_cfd *cfd; int len = blk->size; WARN_ON(blk->dma_addr & VPDMA_DESC_ALIGN); cfd = list->next; WARN_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size)); cfd->dest_addr_offset = dest_offset; cfd->block_len = len; cfd->payload_addr = (u32) blk->dma_addr; cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_BLOCK, client, len >> 4); list->next = cfd + 1; dump_cfd(cfd); } /* * append a configuration descriptor to the given descriptor list, where the * payload is in the address data block format, this is used to a configure a * discontiguous set of MMRs */ void vpdma_add_cfd_adb(struct vpdma_desc_list *list, int client, struct vpdma_buf *adb) { struct vpdma_cfd *cfd; unsigned int len = adb->size; WARN_ON(len & VPDMA_ADB_SIZE_ALIGN); WARN_ON(adb->dma_addr & VPDMA_DESC_ALIGN); cfd = list->next; BUG_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size)); cfd->w0 = 0; cfd->w1 = 0; cfd->payload_addr = (u32) adb->dma_addr; cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_ADB, client, len >> 4); list->next = cfd + 1; dump_cfd(cfd); }; /* * control descriptor format change based on what type of control descriptor it * is, we only use 'sync on channel' control descriptors for now, so assume it's * that */ static void dump_ctd(struct vpdma_ctd *ctd) { pr_debug("control descriptor\n"); pr_debug("word3: pkt_type = %d, source = %d, ctl_type = %d\n", ctd_get_pkt_type(ctd), ctd_get_source(ctd), ctd_get_ctl(ctd)); } /* * append a 'sync on channel' type control descriptor to the given descriptor * list, this descriptor stalls the VPDMA list till the time DMA is completed * on the specified channel */ void vpdma_add_sync_on_channel_ctd(struct vpdma_desc_list *list, enum vpdma_channel chan) { struct vpdma_ctd *ctd; ctd = list->next; WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size)); ctd->w0 = 0; ctd->w1 = 0; ctd->w2 = 0; ctd->type_source_ctl = ctd_type_source_ctl(chan_info[chan].num, CTD_TYPE_SYNC_ON_CHANNEL); list->next = ctd + 1; dump_ctd(ctd); } static void dump_dtd(struct vpdma_dtd *dtd) { int dir, chan; dir = dtd_get_dir(dtd); chan = dtd_get_chan(dtd); pr_debug("%s data transfer descriptor for channel %d\n", dir == DTD_DIR_OUT ? "outbound" : "inbound", chan); pr_debug("word0: data_type = %d, notify = %d, field = %d, 1D = %d, " "even_ln_skp = %d, odd_ln_skp = %d, line_stride = %d\n", dtd_get_data_type(dtd), dtd_get_notify(dtd), dtd_get_field(dtd), dtd_get_1d(dtd), dtd_get_even_line_skip(dtd), dtd_get_odd_line_skip(dtd), dtd_get_line_stride(dtd)); if (dir == DTD_DIR_IN) pr_debug("word1: line_length = %d, xfer_height = %d\n", dtd_get_line_length(dtd), dtd_get_xfer_height(dtd)); pr_debug("word2: start_addr = %pad\n", &dtd->start_addr); pr_debug("word3: pkt_type = %d, mode = %d, dir = %d, chan = %d, " "pri = %d, next_chan = %d\n", dtd_get_pkt_type(dtd), dtd_get_mode(dtd), dir, chan, dtd_get_priority(dtd), dtd_get_next_chan(dtd)); if (dir == DTD_DIR_IN) pr_debug("word4: frame_width = %d, frame_height = %d\n", dtd_get_frame_width(dtd), dtd_get_frame_height(dtd)); else pr_debug("word4: desc_write_addr = 0x%08x, write_desc = %d, " "drp_data = %d, use_desc_reg = %d\n", dtd_get_desc_write_addr(dtd), dtd_get_write_desc(dtd), dtd_get_drop_data(dtd), dtd_get_use_desc(dtd)); if (dir == DTD_DIR_IN) pr_debug("word5: hor_start = %d, ver_start = %d\n", dtd_get_h_start(dtd), dtd_get_v_start(dtd)); else pr_debug("word5: max_width %d, max_height %d\n", dtd_get_max_width(dtd), dtd_get_max_height(dtd)); pr_debug("word6: client specific attr0 = 0x%08x\n", dtd->client_attr0); pr_debug("word7: client specific attr1 = 0x%08x\n", dtd->client_attr1); } /* * append an outbound data transfer descriptor to the given descriptor list, * this sets up a 'client to memory' VPDMA transfer for the given VPDMA channel * * @list: vpdma desc list to which we add this decriptor * @width: width of the image in pixels in memory * @c_rect: compose params of output image * @fmt: vpdma data format of the buffer * dma_addr: dma address as seen by VPDMA * chan: VPDMA channel * flags: VPDMA flags to configure some descriptor fileds */ void vpdma_add_out_dtd(struct vpdma_desc_list *list, int width, const struct v4l2_rect *c_rect, const struct vpdma_data_format *fmt, dma_addr_t dma_addr, enum vpdma_channel chan, u32 flags) { int priority = 0; int field = 0; int notify = 1; int channel, next_chan; struct v4l2_rect rect = *c_rect; int depth = fmt->depth; int stride; struct vpdma_dtd *dtd; channel = next_chan = chan_info[chan].num; if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV && fmt->data_type == DATA_TYPE_C420) { rect.height >>= 1; rect.top >>= 1; depth = 8; } stride = ALIGN((depth * width) >> 3, VPDMA_STRIDE_ALIGN); dma_addr += rect.top * stride + (rect.left * depth >> 3); dtd = list->next; WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size)); dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type, notify, field, !!(flags & VPDMA_DATA_FRAME_1D), !!(flags & VPDMA_DATA_EVEN_LINE_SKIP), !!(flags & VPDMA_DATA_ODD_LINE_SKIP), stride); dtd->w1 = 0; dtd->start_addr = (u32) dma_addr; dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED), DTD_DIR_OUT, channel, priority, next_chan); dtd->desc_write_addr = dtd_desc_write_addr(0, 0, 0, 0); dtd->max_width_height = dtd_max_width_height(MAX_OUT_WIDTH_1920, MAX_OUT_HEIGHT_1080); dtd->client_attr0 = 0; dtd->client_attr1 = 0; list->next = dtd + 1; dump_dtd(dtd); } /* * append an inbound data transfer descriptor to the given descriptor list, * this sets up a 'memory to client' VPDMA transfer for the given VPDMA channel * * @list: vpdma desc list to which we add this decriptor * @width: width of the image in pixels in memory(not the cropped width) * @c_rect: crop params of input image * @fmt: vpdma data format of the buffer * dma_addr: dma address as seen by VPDMA * chan: VPDMA channel * field: top or bottom field info of the input image * flags: VPDMA flags to configure some descriptor fileds * frame_width/height: the complete width/height of the image presented to the * client (this makes sense when multiple channels are * connected to the same client, forming a larger frame) * start_h, start_v: position where the given channel starts providing pixel * data to the client (makes sense when multiple channels * contribute to the client) */ void vpdma_add_in_dtd(struct vpdma_desc_list *list, int width, const struct v4l2_rect *c_rect, const struct vpdma_data_format *fmt, dma_addr_t dma_addr, enum vpdma_channel chan, int field, u32 flags, int frame_width, int frame_height, int start_h, int start_v) { int priority = 0; int notify = 1; int depth = fmt->depth; int channel, next_chan; struct v4l2_rect rect = *c_rect; int stride; struct vpdma_dtd *dtd; channel = next_chan = chan_info[chan].num; if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV && fmt->data_type == DATA_TYPE_C420) { rect.height >>= 1; rect.top >>= 1; depth = 8; } stride = ALIGN((depth * width) >> 3, VPDMA_STRIDE_ALIGN); dma_addr += rect.top * stride + (rect.left * depth >> 3); dtd = list->next; WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size)); dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type, notify, field, !!(flags & VPDMA_DATA_FRAME_1D), !!(flags & VPDMA_DATA_EVEN_LINE_SKIP), !!(flags & VPDMA_DATA_ODD_LINE_SKIP), stride); dtd->xfer_length_height = dtd_xfer_length_height(rect.width, rect.height); dtd->start_addr = (u32) dma_addr; dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED), DTD_DIR_IN, channel, priority, next_chan); dtd->frame_width_height = dtd_frame_width_height(frame_width, frame_height); dtd->start_h_v = dtd_start_h_v(start_h, start_v); dtd->client_attr0 = 0; dtd->client_attr1 = 0; list->next = dtd + 1; dump_dtd(dtd); } /* set or clear the mask for list complete interrupt */ void vpdma_enable_list_complete_irq(struct vpdma_data *vpdma, int list_num, bool enable) { u32 val; val = read_reg(vpdma, VPDMA_INT_LIST0_MASK); if (enable) val |= (1 << (list_num * 2)); else val &= ~(1 << (list_num * 2)); write_reg(vpdma, VPDMA_INT_LIST0_MASK, val); } /* clear previosuly occured list intterupts in the LIST_STAT register */ void vpdma_clear_list_stat(struct vpdma_data *vpdma) { write_reg(vpdma, VPDMA_INT_LIST0_STAT, read_reg(vpdma, VPDMA_INT_LIST0_STAT)); } /* * configures the output mode of the line buffer for the given client, the * line buffer content can either be mirrored(each line repeated twice) or * passed to the client as is */ void vpdma_set_line_mode(struct vpdma_data *vpdma, int line_mode, enum vpdma_channel chan) { int client_cstat = chan_info[chan].cstat_offset; write_field_reg(vpdma, client_cstat, line_mode, VPDMA_CSTAT_LINE_MODE_MASK, VPDMA_CSTAT_LINE_MODE_SHIFT); } /* * configures the event which should trigger VPDMA transfer for the given * client */ void vpdma_set_frame_start_event(struct vpdma_data *vpdma, enum vpdma_frame_start_event fs_event, enum vpdma_channel chan) { int client_cstat = chan_info[chan].cstat_offset; write_field_reg(vpdma, client_cstat, fs_event, VPDMA_CSTAT_FRAME_START_MASK, VPDMA_CSTAT_FRAME_START_SHIFT); } static void vpdma_firmware_cb(const struct firmware *f, void *context) { struct vpdma_data *vpdma = context; struct vpdma_buf fw_dma_buf; int i, r; dev_dbg(&vpdma->pdev->dev, "firmware callback\n"); if (!f || !f->data) { dev_err(&vpdma->pdev->dev, "couldn't get firmware\n"); return; } /* already initialized */ if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK, VPDMA_LIST_RDY_SHFT)) { vpdma->cb(vpdma->pdev); return; } r = vpdma_alloc_desc_buf(&fw_dma_buf, f->size); if (r) { dev_err(&vpdma->pdev->dev, "failed to allocate dma buffer for firmware\n"); goto rel_fw; } memcpy(fw_dma_buf.addr, f->data, f->size); vpdma_map_desc_buf(vpdma, &fw_dma_buf); write_reg(vpdma, VPDMA_LIST_ADDR, (u32) fw_dma_buf.dma_addr); for (i = 0; i < 100; i++) { /* max 1 second */ msleep_interruptible(10); if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK, VPDMA_LIST_RDY_SHFT)) break; } if (i == 100) { dev_err(&vpdma->pdev->dev, "firmware upload failed\n"); goto free_buf; } vpdma->cb(vpdma->pdev); free_buf: vpdma_unmap_desc_buf(vpdma, &fw_dma_buf); vpdma_free_desc_buf(&fw_dma_buf); rel_fw: release_firmware(f); } static int vpdma_load_firmware(struct vpdma_data *vpdma) { int r; struct device *dev = &vpdma->pdev->dev; r = request_firmware_nowait(THIS_MODULE, 1, (const char *) VPDMA_FIRMWARE, dev, GFP_KERNEL, vpdma, vpdma_firmware_cb); if (r) { dev_err(dev, "firmware not available %s\n", VPDMA_FIRMWARE); return r; } else { dev_info(dev, "loading firmware %s\n", VPDMA_FIRMWARE); } return 0; } struct vpdma_data *vpdma_create(struct platform_device *pdev, void (*cb)(struct platform_device *pdev)) { struct resource *res; struct vpdma_data *vpdma; int r; dev_dbg(&pdev->dev, "vpdma_create\n"); vpdma = devm_kzalloc(&pdev->dev, sizeof(*vpdma), GFP_KERNEL); if (!vpdma) { dev_err(&pdev->dev, "couldn't alloc vpdma_dev\n"); return ERR_PTR(-ENOMEM); } vpdma->pdev = pdev; vpdma->cb = cb; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "vpdma"); if (res == NULL) { dev_err(&pdev->dev, "missing platform resources data\n"); return ERR_PTR(-ENODEV); } vpdma->base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!vpdma->base) { dev_err(&pdev->dev, "failed to ioremap\n"); return ERR_PTR(-ENOMEM); } r = vpdma_load_firmware(vpdma); if (r) { pr_err("failed to load firmware %s\n", VPDMA_FIRMWARE); return ERR_PTR(r); } return vpdma; } MODULE_FIRMWARE(VPDMA_FIRMWARE);