/* * Resizable, Scalable, Concurrent Hash Table * * Copyright (c) 2014 Thomas Graf <tgraf@suug.ch> * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net> * * Based on the following paper: * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf * * Code partially derived from nft_hash * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/log2.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/mm.h> #include <linux/hash.h> #include <linux/random.h> #include <linux/rhashtable.h> #define HASH_DEFAULT_SIZE 64UL #define HASH_MIN_SIZE 4UL #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT)) #ifdef CONFIG_PROVE_LOCKING int lockdep_rht_mutex_is_held(const struct rhashtable *ht) { return ht->p.mutex_is_held(); } EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held); #endif static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he) { return (void *) he - ht->p.head_offset; } static u32 __hashfn(const struct rhashtable *ht, const void *key, u32 len, u32 hsize) { u32 h; h = ht->p.hashfn(key, len, ht->p.hash_rnd); return h & (hsize - 1); } /** * rhashtable_hashfn - compute hash for key of given length * @ht: hash table to compute for * @key: pointer to key * @len: length of key * * Computes the hash value using the hash function provided in the 'hashfn' * of struct rhashtable_params. The returned value is guaranteed to be * smaller than the number of buckets in the hash table. */ u32 rhashtable_hashfn(const struct rhashtable *ht, const void *key, u32 len) { struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht); return __hashfn(ht, key, len, tbl->size); } EXPORT_SYMBOL_GPL(rhashtable_hashfn); static u32 obj_hashfn(const struct rhashtable *ht, const void *ptr, u32 hsize) { if (unlikely(!ht->p.key_len)) { u32 h; h = ht->p.obj_hashfn(ptr, ht->p.hash_rnd); return h & (hsize - 1); } return __hashfn(ht, ptr + ht->p.key_offset, ht->p.key_len, hsize); } /** * rhashtable_obj_hashfn - compute hash for hashed object * @ht: hash table to compute for * @ptr: pointer to hashed object * * Computes the hash value using the hash function `hashfn` respectively * 'obj_hashfn' depending on whether the hash table is set up to work with * a fixed length key. The returned value is guaranteed to be smaller than * the number of buckets in the hash table. */ u32 rhashtable_obj_hashfn(const struct rhashtable *ht, void *ptr) { struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht); return obj_hashfn(ht, ptr, tbl->size); } EXPORT_SYMBOL_GPL(rhashtable_obj_hashfn); static u32 head_hashfn(const struct rhashtable *ht, const struct rhash_head *he, u32 hsize) { return obj_hashfn(ht, rht_obj(ht, he), hsize); } static struct bucket_table *bucket_table_alloc(size_t nbuckets, gfp_t flags) { struct bucket_table *tbl; size_t size; size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]); tbl = kzalloc(size, flags); if (tbl == NULL) tbl = vzalloc(size); if (tbl == NULL) return NULL; tbl->size = nbuckets; return tbl; } static void bucket_table_free(const struct bucket_table *tbl) { kvfree(tbl); } /** * rht_grow_above_75 - returns true if nelems > 0.75 * table-size * @ht: hash table * @new_size: new table size */ bool rht_grow_above_75(const struct rhashtable *ht, size_t new_size) { /* Expand table when exceeding 75% load */ return ht->nelems > (new_size / 4 * 3); } EXPORT_SYMBOL_GPL(rht_grow_above_75); /** * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size * @ht: hash table * @new_size: new table size */ bool rht_shrink_below_30(const struct rhashtable *ht, size_t new_size) { /* Shrink table beneath 30% load */ return ht->nelems < (new_size * 3 / 10); } EXPORT_SYMBOL_GPL(rht_shrink_below_30); static void hashtable_chain_unzip(const struct rhashtable *ht, const struct bucket_table *new_tbl, struct bucket_table *old_tbl, size_t n) { struct rhash_head *he, *p, *next; unsigned int h; /* Old bucket empty, no work needed. */ p = rht_dereference(old_tbl->buckets[n], ht); if (!p) return; /* Advance the old bucket pointer one or more times until it * reaches a node that doesn't hash to the same bucket as the * previous node p. Call the previous node p; */ h = head_hashfn(ht, p, new_tbl->size); rht_for_each(he, p->next, ht) { if (head_hashfn(ht, he, new_tbl->size) != h) break; p = he; } RCU_INIT_POINTER(old_tbl->buckets[n], p->next); /* Find the subsequent node which does hash to the same * bucket as node P, or NULL if no such node exists. */ next = NULL; if (he) { rht_for_each(he, he->next, ht) { if (head_hashfn(ht, he, new_tbl->size) == h) { next = he; break; } } } /* Set p's next pointer to that subsequent node pointer, * bypassing the nodes which do not hash to p's bucket */ RCU_INIT_POINTER(p->next, next); } /** * rhashtable_expand - Expand hash table while allowing concurrent lookups * @ht: the hash table to expand * @flags: allocation flags * * A secondary bucket array is allocated and the hash entries are migrated * while keeping them on both lists until the end of the RCU grace period. * * This function may only be called in a context where it is safe to call * synchronize_rcu(), e.g. not within a rcu_read_lock() section. * * The caller must ensure that no concurrent table mutations take place. * It is however valid to have concurrent lookups if they are RCU protected. */ int rhashtable_expand(struct rhashtable *ht, gfp_t flags) { struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht); struct rhash_head *he; unsigned int i, h; bool complete; ASSERT_RHT_MUTEX(ht); if (ht->p.max_shift && ht->shift >= ht->p.max_shift) return 0; new_tbl = bucket_table_alloc(old_tbl->size * 2, flags); if (new_tbl == NULL) return -ENOMEM; ht->shift++; /* For each new bucket, search the corresponding old bucket * for the first entry that hashes to the new bucket, and * link the new bucket to that entry. Since all the entries * which will end up in the new bucket appear in the same * old bucket, this constructs an entirely valid new hash * table, but with multiple buckets "zipped" together into a * single imprecise chain. */ for (i = 0; i < new_tbl->size; i++) { h = i & (old_tbl->size - 1); rht_for_each(he, old_tbl->buckets[h], ht) { if (head_hashfn(ht, he, new_tbl->size) == i) { RCU_INIT_POINTER(new_tbl->buckets[i], he); break; } } } /* Publish the new table pointer. Lookups may now traverse * the new table, but they will not benefit from any * additional efficiency until later steps unzip the buckets. */ rcu_assign_pointer(ht->tbl, new_tbl); /* Unzip interleaved hash chains */ do { /* Wait for readers. All new readers will see the new * table, and thus no references to the old table will * remain. */ synchronize_rcu(); /* For each bucket in the old table (each of which * contains items from multiple buckets of the new * table): ... */ complete = true; for (i = 0; i < old_tbl->size; i++) { hashtable_chain_unzip(ht, new_tbl, old_tbl, i); if (old_tbl->buckets[i] != NULL) complete = false; } } while (!complete); bucket_table_free(old_tbl); return 0; } EXPORT_SYMBOL_GPL(rhashtable_expand); /** * rhashtable_shrink - Shrink hash table while allowing concurrent lookups * @ht: the hash table to shrink * @flags: allocation flags * * This function may only be called in a context where it is safe to call * synchronize_rcu(), e.g. not within a rcu_read_lock() section. * * The caller must ensure that no concurrent table mutations take place. * It is however valid to have concurrent lookups if they are RCU protected. */ int rhashtable_shrink(struct rhashtable *ht, gfp_t flags) { struct bucket_table *ntbl, *tbl = rht_dereference(ht->tbl, ht); struct rhash_head __rcu **pprev; unsigned int i; ASSERT_RHT_MUTEX(ht); if (ht->shift <= ht->p.min_shift) return 0; ntbl = bucket_table_alloc(tbl->size / 2, flags); if (ntbl == NULL) return -ENOMEM; ht->shift--; /* Link each bucket in the new table to the first bucket * in the old table that contains entries which will hash * to the new bucket. */ for (i = 0; i < ntbl->size; i++) { ntbl->buckets[i] = tbl->buckets[i]; /* Link each bucket in the new table to the first bucket * in the old table that contains entries which will hash * to the new bucket. */ for (pprev = &ntbl->buckets[i]; *pprev != NULL; pprev = &rht_dereference(*pprev, ht)->next) ; RCU_INIT_POINTER(*pprev, tbl->buckets[i + ntbl->size]); } /* Publish the new, valid hash table */ rcu_assign_pointer(ht->tbl, ntbl); /* Wait for readers. No new readers will have references to the * old hash table. */ synchronize_rcu(); bucket_table_free(tbl); return 0; } EXPORT_SYMBOL_GPL(rhashtable_shrink); /** * rhashtable_insert - insert object into hash hash table * @ht: hash table * @obj: pointer to hash head inside object * @flags: allocation flags (table expansion) * * Will automatically grow the table via rhashtable_expand() if the the * grow_decision function specified at rhashtable_init() returns true. * * The caller must ensure that no concurrent table mutations occur. It is * however valid to have concurrent lookups if they are RCU protected. */ void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj, gfp_t flags) { struct bucket_table *tbl = rht_dereference(ht->tbl, ht); u32 hash; ASSERT_RHT_MUTEX(ht); hash = head_hashfn(ht, obj, tbl->size); RCU_INIT_POINTER(obj->next, tbl->buckets[hash]); rcu_assign_pointer(tbl->buckets[hash], obj); ht->nelems++; if (ht->p.grow_decision && ht->p.grow_decision(ht, tbl->size)) rhashtable_expand(ht, flags); } EXPORT_SYMBOL_GPL(rhashtable_insert); /** * rhashtable_remove_pprev - remove object from hash table given previous element * @ht: hash table * @obj: pointer to hash head inside object * @pprev: pointer to previous element * @flags: allocation flags (table expansion) * * Identical to rhashtable_remove() but caller is alreayd aware of the element * in front of the element to be deleted. This is in particular useful for * deletion when combined with walking or lookup. */ void rhashtable_remove_pprev(struct rhashtable *ht, struct rhash_head *obj, struct rhash_head __rcu **pprev, gfp_t flags) { struct bucket_table *tbl = rht_dereference(ht->tbl, ht); ASSERT_RHT_MUTEX(ht); RCU_INIT_POINTER(*pprev, obj->next); ht->nelems--; if (ht->p.shrink_decision && ht->p.shrink_decision(ht, tbl->size)) rhashtable_shrink(ht, flags); } EXPORT_SYMBOL_GPL(rhashtable_remove_pprev); /** * rhashtable_remove - remove object from hash table * @ht: hash table * @obj: pointer to hash head inside object * @flags: allocation flags (table expansion) * * Since the hash chain is single linked, the removal operation needs to * walk the bucket chain upon removal. The removal operation is thus * considerable slow if the hash table is not correctly sized. * * Will automatically shrink the table via rhashtable_expand() if the the * shrink_decision function specified at rhashtable_init() returns true. * * The caller must ensure that no concurrent table mutations occur. It is * however valid to have concurrent lookups if they are RCU protected. */ bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj, gfp_t flags) { struct bucket_table *tbl = rht_dereference(ht->tbl, ht); struct rhash_head __rcu **pprev; struct rhash_head *he; u32 h; ASSERT_RHT_MUTEX(ht); h = head_hashfn(ht, obj, tbl->size); pprev = &tbl->buckets[h]; rht_for_each(he, tbl->buckets[h], ht) { if (he != obj) { pprev = &he->next; continue; } rhashtable_remove_pprev(ht, he, pprev, flags); return true; } return false; } EXPORT_SYMBOL_GPL(rhashtable_remove); /** * rhashtable_lookup - lookup key in hash table * @ht: hash table * @key: pointer to key * * Computes the hash value for the key and traverses the bucket chain looking * for a entry with an identical key. The first matching entry is returned. * * This lookup function may only be used for fixed key hash table (key_len * paramter set). It will BUG() if used inappropriately. * * Lookups may occur in parallel with hash mutations as long as the lookup is * guarded by rcu_read_lock(). The caller must take care of this. */ void *rhashtable_lookup(const struct rhashtable *ht, const void *key) { const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht); struct rhash_head *he; u32 h; BUG_ON(!ht->p.key_len); h = __hashfn(ht, key, ht->p.key_len, tbl->size); rht_for_each_rcu(he, tbl->buckets[h], ht) { if (memcmp(rht_obj(ht, he) + ht->p.key_offset, key, ht->p.key_len)) continue; return (void *) he - ht->p.head_offset; } return NULL; } EXPORT_SYMBOL_GPL(rhashtable_lookup); /** * rhashtable_lookup_compare - search hash table with compare function * @ht: hash table * @hash: hash value of desired entry * @compare: compare function, must return true on match * @arg: argument passed on to compare function * * Traverses the bucket chain behind the provided hash value and calls the * specified compare function for each entry. * * Lookups may occur in parallel with hash mutations as long as the lookup is * guarded by rcu_read_lock(). The caller must take care of this. * * Returns the first entry on which the compare function returned true. */ void *rhashtable_lookup_compare(const struct rhashtable *ht, u32 hash, bool (*compare)(void *, void *), void *arg) { const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht); struct rhash_head *he; if (unlikely(hash >= tbl->size)) return NULL; rht_for_each_rcu(he, tbl->buckets[hash], ht) { if (!compare(rht_obj(ht, he), arg)) continue; return (void *) he - ht->p.head_offset; } return NULL; } EXPORT_SYMBOL_GPL(rhashtable_lookup_compare); static size_t rounded_hashtable_size(struct rhashtable_params *params) { return max(roundup_pow_of_two(params->nelem_hint * 4 / 3), 1UL << params->min_shift); } /** * rhashtable_init - initialize a new hash table * @ht: hash table to be initialized * @params: configuration parameters * * Initializes a new hash table based on the provided configuration * parameters. A table can be configured either with a variable or * fixed length key: * * Configuration Example 1: Fixed length keys * struct test_obj { * int key; * void * my_member; * struct rhash_head node; * }; * * struct rhashtable_params params = { * .head_offset = offsetof(struct test_obj, node), * .key_offset = offsetof(struct test_obj, key), * .key_len = sizeof(int), * .hashfn = arch_fast_hash, * .mutex_is_held = &my_mutex_is_held, * }; * * Configuration Example 2: Variable length keys * struct test_obj { * [...] * struct rhash_head node; * }; * * u32 my_hash_fn(const void *data, u32 seed) * { * struct test_obj *obj = data; * * return [... hash ...]; * } * * struct rhashtable_params params = { * .head_offset = offsetof(struct test_obj, node), * .hashfn = arch_fast_hash, * .obj_hashfn = my_hash_fn, * .mutex_is_held = &my_mutex_is_held, * }; */ int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params) { struct bucket_table *tbl; size_t size; size = HASH_DEFAULT_SIZE; if ((params->key_len && !params->hashfn) || (!params->key_len && !params->obj_hashfn)) return -EINVAL; params->min_shift = max_t(size_t, params->min_shift, ilog2(HASH_MIN_SIZE)); if (params->nelem_hint) size = rounded_hashtable_size(params); tbl = bucket_table_alloc(size, GFP_KERNEL); if (tbl == NULL) return -ENOMEM; memset(ht, 0, sizeof(*ht)); ht->shift = ilog2(tbl->size); memcpy(&ht->p, params, sizeof(*params)); RCU_INIT_POINTER(ht->tbl, tbl); if (!ht->p.hash_rnd) get_random_bytes(&ht->p.hash_rnd, sizeof(ht->p.hash_rnd)); return 0; } EXPORT_SYMBOL_GPL(rhashtable_init); /** * rhashtable_destroy - destroy hash table * @ht: the hash table to destroy * * Frees the bucket array. This function is not rcu safe, therefore the caller * has to make sure that no resizing may happen by unpublishing the hashtable * and waiting for the quiescent cycle before releasing the bucket array. */ void rhashtable_destroy(const struct rhashtable *ht) { bucket_table_free(ht->tbl); } EXPORT_SYMBOL_GPL(rhashtable_destroy); /************************************************************************** * Self Test **************************************************************************/ #ifdef CONFIG_TEST_RHASHTABLE #define TEST_HT_SIZE 8 #define TEST_ENTRIES 2048 #define TEST_PTR ((void *) 0xdeadbeef) #define TEST_NEXPANDS 4 static int test_mutex_is_held(void) { return 1; } struct test_obj { void *ptr; int value; struct rhash_head node; }; static int __init test_rht_lookup(struct rhashtable *ht) { unsigned int i; for (i = 0; i < TEST_ENTRIES * 2; i++) { struct test_obj *obj; bool expected = !(i % 2); u32 key = i; obj = rhashtable_lookup(ht, &key); if (expected && !obj) { pr_warn("Test failed: Could not find key %u\n", key); return -ENOENT; } else if (!expected && obj) { pr_warn("Test failed: Unexpected entry found for key %u\n", key); return -EEXIST; } else if (expected && obj) { if (obj->ptr != TEST_PTR || obj->value != i) { pr_warn("Test failed: Lookup value mismatch %p!=%p, %u!=%u\n", obj->ptr, TEST_PTR, obj->value, i); return -EINVAL; } } } return 0; } static void test_bucket_stats(struct rhashtable *ht, struct bucket_table *tbl, bool quiet) { unsigned int cnt, i, total = 0; struct test_obj *obj; for (i = 0; i < tbl->size; i++) { cnt = 0; if (!quiet) pr_info(" [%#4x/%zu]", i, tbl->size); rht_for_each_entry_rcu(obj, tbl->buckets[i], node) { cnt++; total++; if (!quiet) pr_cont(" [%p],", obj); } if (!quiet) pr_cont("\n [%#x] first element: %p, chain length: %u\n", i, tbl->buckets[i], cnt); } pr_info(" Traversal complete: counted=%u, nelems=%zu, entries=%d\n", total, ht->nelems, TEST_ENTRIES); } static int __init test_rhashtable(struct rhashtable *ht) { struct bucket_table *tbl; struct test_obj *obj, *next; int err; unsigned int i; /* * Insertion Test: * Insert TEST_ENTRIES into table with all keys even numbers */ pr_info(" Adding %d keys\n", TEST_ENTRIES); for (i = 0; i < TEST_ENTRIES; i++) { struct test_obj *obj; obj = kzalloc(sizeof(*obj), GFP_KERNEL); if (!obj) { err = -ENOMEM; goto error; } obj->ptr = TEST_PTR; obj->value = i * 2; rhashtable_insert(ht, &obj->node, GFP_KERNEL); } rcu_read_lock(); tbl = rht_dereference_rcu(ht->tbl, ht); test_bucket_stats(ht, tbl, true); test_rht_lookup(ht); rcu_read_unlock(); for (i = 0; i < TEST_NEXPANDS; i++) { pr_info(" Table expansion iteration %u...\n", i); rhashtable_expand(ht, GFP_KERNEL); rcu_read_lock(); pr_info(" Verifying lookups...\n"); test_rht_lookup(ht); rcu_read_unlock(); } for (i = 0; i < TEST_NEXPANDS; i++) { pr_info(" Table shrinkage iteration %u...\n", i); rhashtable_shrink(ht, GFP_KERNEL); rcu_read_lock(); pr_info(" Verifying lookups...\n"); test_rht_lookup(ht); rcu_read_unlock(); } pr_info(" Deleting %d keys\n", TEST_ENTRIES); for (i = 0; i < TEST_ENTRIES; i++) { u32 key = i * 2; obj = rhashtable_lookup(ht, &key); BUG_ON(!obj); rhashtable_remove(ht, &obj->node, GFP_KERNEL); kfree(obj); } return 0; error: tbl = rht_dereference_rcu(ht->tbl, ht); for (i = 0; i < tbl->size; i++) rht_for_each_entry_safe(obj, next, tbl->buckets[i], ht, node) kfree(obj); return err; } static int __init test_rht_init(void) { struct rhashtable ht; struct rhashtable_params params = { .nelem_hint = TEST_HT_SIZE, .head_offset = offsetof(struct test_obj, node), .key_offset = offsetof(struct test_obj, value), .key_len = sizeof(int), .hashfn = arch_fast_hash, .mutex_is_held = &test_mutex_is_held, .grow_decision = rht_grow_above_75, .shrink_decision = rht_shrink_below_30, }; int err; pr_info("Running resizable hashtable tests...\n"); err = rhashtable_init(&ht, ¶ms); if (err < 0) { pr_warn("Test failed: Unable to initialize hashtable: %d\n", err); return err; } err = test_rhashtable(&ht); rhashtable_destroy(&ht); return err; } subsys_initcall(test_rht_init); #endif /* CONFIG_TEST_RHASHTABLE */