/* * soc-core.c -- ALSA SoC Audio Layer * * Copyright 2005 Wolfson Microelectronics PLC. * Copyright 2005 Openedhand Ltd. * Copyright (C) 2010 Slimlogic Ltd. * Copyright (C) 2010 Texas Instruments Inc. * * Author: Liam Girdwood <lrg@slimlogic.co.uk> * with code, comments and ideas from :- * Richard Purdie <richard@openedhand.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * TODO: * o Add hw rules to enforce rates, etc. * o More testing with other codecs/machines. * o Add more codecs and platforms to ensure good API coverage. * o Support TDM on PCM and I2S */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/pm.h> #include <linux/bitops.h> #include <linux/debugfs.h> #include <linux/platform_device.h> #include <linux/pinctrl/consumer.h> #include <linux/ctype.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/gpio.h> #include <linux/of_gpio.h> #include <sound/ac97_codec.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-dpcm.h> #include <sound/initval.h> #define CREATE_TRACE_POINTS #include <trace/events/asoc.h> #define NAME_SIZE 32 #ifdef CONFIG_DEBUG_FS struct dentry *snd_soc_debugfs_root; EXPORT_SYMBOL_GPL(snd_soc_debugfs_root); #endif static DEFINE_MUTEX(client_mutex); static LIST_HEAD(platform_list); static LIST_HEAD(codec_list); static LIST_HEAD(component_list); /* * This is a timeout to do a DAPM powerdown after a stream is closed(). * It can be used to eliminate pops between different playback streams, e.g. * between two audio tracks. */ static int pmdown_time = 5000; module_param(pmdown_time, int, 0); MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)"); struct snd_ac97_reset_cfg { struct pinctrl *pctl; struct pinctrl_state *pstate_reset; struct pinctrl_state *pstate_warm_reset; struct pinctrl_state *pstate_run; int gpio_sdata; int gpio_sync; int gpio_reset; }; /* returns the minimum number of bytes needed to represent * a particular given value */ static int min_bytes_needed(unsigned long val) { int c = 0; int i; for (i = (sizeof val * 8) - 1; i >= 0; --i, ++c) if (val & (1UL << i)) break; c = (sizeof val * 8) - c; if (!c || (c % 8)) c = (c + 8) / 8; else c /= 8; return c; } /* fill buf which is 'len' bytes with a formatted * string of the form 'reg: value\n' */ static int format_register_str(struct snd_soc_codec *codec, unsigned int reg, char *buf, size_t len) { int wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2; int regsize = codec->driver->reg_word_size * 2; int ret; char tmpbuf[len + 1]; char regbuf[regsize + 1]; /* since tmpbuf is allocated on the stack, warn the callers if they * try to abuse this function */ WARN_ON(len > 63); /* +2 for ': ' and + 1 for '\n' */ if (wordsize + regsize + 2 + 1 != len) return -EINVAL; ret = snd_soc_read(codec, reg); if (ret < 0) { memset(regbuf, 'X', regsize); regbuf[regsize] = '\0'; } else { snprintf(regbuf, regsize + 1, "%.*x", regsize, ret); } /* prepare the buffer */ snprintf(tmpbuf, len + 1, "%.*x: %s\n", wordsize, reg, regbuf); /* copy it back to the caller without the '\0' */ memcpy(buf, tmpbuf, len); return 0; } /* codec register dump */ static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf, size_t count, loff_t pos) { int i, step = 1; int wordsize, regsize; int len; size_t total = 0; loff_t p = 0; wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2; regsize = codec->driver->reg_word_size * 2; len = wordsize + regsize + 2 + 1; if (!codec->driver->reg_cache_size) return 0; if (codec->driver->reg_cache_step) step = codec->driver->reg_cache_step; for (i = 0; i < codec->driver->reg_cache_size; i += step) { /* only support larger than PAGE_SIZE bytes debugfs * entries for the default case */ if (p >= pos) { if (total + len >= count - 1) break; format_register_str(codec, i, buf + total, len); total += len; } p += len; } total = min(total, count - 1); return total; } static ssize_t codec_reg_show(struct device *dev, struct device_attribute *attr, char *buf) { struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev); return soc_codec_reg_show(rtd->codec, buf, PAGE_SIZE, 0); } static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL); static ssize_t pmdown_time_show(struct device *dev, struct device_attribute *attr, char *buf) { struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev); return sprintf(buf, "%ld\n", rtd->pmdown_time); } static ssize_t pmdown_time_set(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev); int ret; ret = kstrtol(buf, 10, &rtd->pmdown_time); if (ret) return ret; return count; } static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set); #ifdef CONFIG_DEBUG_FS static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { ssize_t ret; struct snd_soc_codec *codec = file->private_data; char *buf; if (*ppos < 0 || !count) return -EINVAL; buf = kmalloc(count, GFP_KERNEL); if (!buf) return -ENOMEM; ret = soc_codec_reg_show(codec, buf, count, *ppos); if (ret >= 0) { if (copy_to_user(user_buf, buf, ret)) { kfree(buf); return -EFAULT; } *ppos += ret; } kfree(buf); return ret; } static ssize_t codec_reg_write_file(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { char buf[32]; size_t buf_size; char *start = buf; unsigned long reg, value; struct snd_soc_codec *codec = file->private_data; int ret; buf_size = min(count, (sizeof(buf)-1)); if (copy_from_user(buf, user_buf, buf_size)) return -EFAULT; buf[buf_size] = 0; while (*start == ' ') start++; reg = simple_strtoul(start, &start, 16); while (*start == ' ') start++; ret = kstrtoul(start, 16, &value); if (ret) return ret; /* Userspace has been fiddling around behind the kernel's back */ add_taint(TAINT_USER, LOCKDEP_NOW_UNRELIABLE); snd_soc_write(codec, reg, value); return buf_size; } static const struct file_operations codec_reg_fops = { .open = simple_open, .read = codec_reg_read_file, .write = codec_reg_write_file, .llseek = default_llseek, }; static void soc_init_component_debugfs(struct snd_soc_component *component) { if (component->debugfs_prefix) { char *name; name = kasprintf(GFP_KERNEL, "%s:%s", component->debugfs_prefix, component->name); if (name) { component->debugfs_root = debugfs_create_dir(name, component->card->debugfs_card_root); kfree(name); } } else { component->debugfs_root = debugfs_create_dir(component->name, component->card->debugfs_card_root); } if (!component->debugfs_root) { dev_warn(component->dev, "ASoC: Failed to create component debugfs directory\n"); return; } snd_soc_dapm_debugfs_init(snd_soc_component_get_dapm(component), component->debugfs_root); if (component->init_debugfs) component->init_debugfs(component); } static void soc_cleanup_component_debugfs(struct snd_soc_component *component) { debugfs_remove_recursive(component->debugfs_root); } static void soc_init_codec_debugfs(struct snd_soc_component *component) { struct snd_soc_codec *codec = snd_soc_component_to_codec(component); debugfs_create_bool("cache_sync", 0444, codec->component.debugfs_root, &codec->cache_sync); codec->debugfs_reg = debugfs_create_file("codec_reg", 0644, codec->component.debugfs_root, codec, &codec_reg_fops); if (!codec->debugfs_reg) dev_warn(codec->dev, "ASoC: Failed to create codec register debugfs file\n"); } static ssize_t codec_list_read_file(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); ssize_t len, ret = 0; struct snd_soc_codec *codec; if (!buf) return -ENOMEM; list_for_each_entry(codec, &codec_list, list) { len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", codec->component.name); if (len >= 0) ret += len; if (ret > PAGE_SIZE) { ret = PAGE_SIZE; break; } } if (ret >= 0) ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); kfree(buf); return ret; } static const struct file_operations codec_list_fops = { .read = codec_list_read_file, .llseek = default_llseek,/* read accesses f_pos */ }; static ssize_t dai_list_read_file(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); ssize_t len, ret = 0; struct snd_soc_component *component; struct snd_soc_dai *dai; if (!buf) return -ENOMEM; list_for_each_entry(component, &component_list, list) { list_for_each_entry(dai, &component->dai_list, list) { len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name); if (len >= 0) ret += len; if (ret > PAGE_SIZE) { ret = PAGE_SIZE; break; } } } ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); kfree(buf); return ret; } static const struct file_operations dai_list_fops = { .read = dai_list_read_file, .llseek = default_llseek,/* read accesses f_pos */ }; static ssize_t platform_list_read_file(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); ssize_t len, ret = 0; struct snd_soc_platform *platform; if (!buf) return -ENOMEM; list_for_each_entry(platform, &platform_list, list) { len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", platform->component.name); if (len >= 0) ret += len; if (ret > PAGE_SIZE) { ret = PAGE_SIZE; break; } } ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); kfree(buf); return ret; } static const struct file_operations platform_list_fops = { .read = platform_list_read_file, .llseek = default_llseek,/* read accesses f_pos */ }; static void soc_init_card_debugfs(struct snd_soc_card *card) { card->debugfs_card_root = debugfs_create_dir(card->name, snd_soc_debugfs_root); if (!card->debugfs_card_root) { dev_warn(card->dev, "ASoC: Failed to create card debugfs directory\n"); return; } card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644, card->debugfs_card_root, &card->pop_time); if (!card->debugfs_pop_time) dev_warn(card->dev, "ASoC: Failed to create pop time debugfs file\n"); } static void soc_cleanup_card_debugfs(struct snd_soc_card *card) { debugfs_remove_recursive(card->debugfs_card_root); } #else #define soc_init_codec_debugfs NULL static inline void soc_init_component_debugfs( struct snd_soc_component *component) { } static inline void soc_cleanup_component_debugfs( struct snd_soc_component *component) { } static inline void soc_init_card_debugfs(struct snd_soc_card *card) { } static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card) { } #endif struct snd_pcm_substream *snd_soc_get_dai_substream(struct snd_soc_card *card, const char *dai_link, int stream) { int i; for (i = 0; i < card->num_links; i++) { if (card->rtd[i].dai_link->no_pcm && !strcmp(card->rtd[i].dai_link->name, dai_link)) return card->rtd[i].pcm->streams[stream].substream; } dev_dbg(card->dev, "ASoC: failed to find dai link %s\n", dai_link); return NULL; } EXPORT_SYMBOL_GPL(snd_soc_get_dai_substream); struct snd_soc_pcm_runtime *snd_soc_get_pcm_runtime(struct snd_soc_card *card, const char *dai_link) { int i; for (i = 0; i < card->num_links; i++) { if (!strcmp(card->rtd[i].dai_link->name, dai_link)) return &card->rtd[i]; } dev_dbg(card->dev, "ASoC: failed to find rtd %s\n", dai_link); return NULL; } EXPORT_SYMBOL_GPL(snd_soc_get_pcm_runtime); #ifdef CONFIG_SND_SOC_AC97_BUS /* unregister ac97 codec */ static int soc_ac97_dev_unregister(struct snd_soc_codec *codec) { if (codec->ac97->dev.bus) device_unregister(&codec->ac97->dev); return 0; } /* stop no dev release warning */ static void soc_ac97_device_release(struct device *dev){} /* register ac97 codec to bus */ static int soc_ac97_dev_register(struct snd_soc_codec *codec) { int err; codec->ac97->dev.bus = &ac97_bus_type; codec->ac97->dev.parent = codec->component.card->dev; codec->ac97->dev.release = soc_ac97_device_release; dev_set_name(&codec->ac97->dev, "%d-%d:%s", codec->component.card->snd_card->number, 0, codec->component.name); err = device_register(&codec->ac97->dev); if (err < 0) { dev_err(codec->dev, "ASoC: Can't register ac97 bus\n"); codec->ac97->dev.bus = NULL; return err; } return 0; } #endif static void codec2codec_close_delayed_work(struct work_struct *work) { /* Currently nothing to do for c2c links * Since c2c links are internal nodes in the DAPM graph and * don't interface with the outside world or application layer * we don't have to do any special handling on close. */ } #ifdef CONFIG_PM_SLEEP /* powers down audio subsystem for suspend */ int snd_soc_suspend(struct device *dev) { struct snd_soc_card *card = dev_get_drvdata(dev); struct snd_soc_codec *codec; int i, j; /* If the card is not initialized yet there is nothing to do */ if (!card->instantiated) return 0; /* Due to the resume being scheduled into a workqueue we could * suspend before that's finished - wait for it to complete. */ snd_power_lock(card->snd_card); snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0); snd_power_unlock(card->snd_card); /* we're going to block userspace touching us until resume completes */ snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot); /* mute any active DACs */ for (i = 0; i < card->num_rtd; i++) { if (card->rtd[i].dai_link->ignore_suspend) continue; for (j = 0; j < card->rtd[i].num_codecs; j++) { struct snd_soc_dai *dai = card->rtd[i].codec_dais[j]; struct snd_soc_dai_driver *drv = dai->driver; if (drv->ops->digital_mute && dai->playback_active) drv->ops->digital_mute(dai, 1); } } /* suspend all pcms */ for (i = 0; i < card->num_rtd; i++) { if (card->rtd[i].dai_link->ignore_suspend) continue; snd_pcm_suspend_all(card->rtd[i].pcm); } if (card->suspend_pre) card->suspend_pre(card); for (i = 0; i < card->num_rtd; i++) { struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; struct snd_soc_platform *platform = card->rtd[i].platform; if (card->rtd[i].dai_link->ignore_suspend) continue; if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control) cpu_dai->driver->suspend(cpu_dai); if (platform->driver->suspend && !platform->suspended) { platform->driver->suspend(cpu_dai); platform->suspended = 1; } } /* close any waiting streams and save state */ for (i = 0; i < card->num_rtd; i++) { struct snd_soc_dai **codec_dais = card->rtd[i].codec_dais; flush_delayed_work(&card->rtd[i].delayed_work); for (j = 0; j < card->rtd[i].num_codecs; j++) { codec_dais[j]->codec->dapm.suspend_bias_level = codec_dais[j]->codec->dapm.bias_level; } } for (i = 0; i < card->num_rtd; i++) { if (card->rtd[i].dai_link->ignore_suspend) continue; snd_soc_dapm_stream_event(&card->rtd[i], SNDRV_PCM_STREAM_PLAYBACK, SND_SOC_DAPM_STREAM_SUSPEND); snd_soc_dapm_stream_event(&card->rtd[i], SNDRV_PCM_STREAM_CAPTURE, SND_SOC_DAPM_STREAM_SUSPEND); } /* Recheck all analogue paths too */ dapm_mark_io_dirty(&card->dapm); snd_soc_dapm_sync(&card->dapm); /* suspend all CODECs */ list_for_each_entry(codec, &card->codec_dev_list, card_list) { /* If there are paths active then the CODEC will be held with * bias _ON and should not be suspended. */ if (!codec->suspended) { switch (codec->dapm.bias_level) { case SND_SOC_BIAS_STANDBY: /* * If the CODEC is capable of idle * bias off then being in STANDBY * means it's doing something, * otherwise fall through. */ if (codec->dapm.idle_bias_off) { dev_dbg(codec->dev, "ASoC: idle_bias_off CODEC on over suspend\n"); break; } case SND_SOC_BIAS_OFF: if (codec->driver->suspend) codec->driver->suspend(codec); codec->suspended = 1; codec->cache_sync = 1; if (codec->component.regmap) regcache_mark_dirty(codec->component.regmap); /* deactivate pins to sleep state */ pinctrl_pm_select_sleep_state(codec->dev); break; default: dev_dbg(codec->dev, "ASoC: CODEC is on over suspend\n"); break; } } } for (i = 0; i < card->num_rtd; i++) { struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; if (card->rtd[i].dai_link->ignore_suspend) continue; if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control) cpu_dai->driver->suspend(cpu_dai); /* deactivate pins to sleep state */ pinctrl_pm_select_sleep_state(cpu_dai->dev); } if (card->suspend_post) card->suspend_post(card); return 0; } EXPORT_SYMBOL_GPL(snd_soc_suspend); /* deferred resume work, so resume can complete before we finished * setting our codec back up, which can be very slow on I2C */ static void soc_resume_deferred(struct work_struct *work) { struct snd_soc_card *card = container_of(work, struct snd_soc_card, deferred_resume_work); struct snd_soc_codec *codec; int i, j; /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time, * so userspace apps are blocked from touching us */ dev_dbg(card->dev, "ASoC: starting resume work\n"); /* Bring us up into D2 so that DAPM starts enabling things */ snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2); if (card->resume_pre) card->resume_pre(card); /* resume AC97 DAIs */ for (i = 0; i < card->num_rtd; i++) { struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; if (card->rtd[i].dai_link->ignore_suspend) continue; if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control) cpu_dai->driver->resume(cpu_dai); } list_for_each_entry(codec, &card->codec_dev_list, card_list) { /* If the CODEC was idle over suspend then it will have been * left with bias OFF or STANDBY and suspended so we must now * resume. Otherwise the suspend was suppressed. */ if (codec->suspended) { switch (codec->dapm.bias_level) { case SND_SOC_BIAS_STANDBY: case SND_SOC_BIAS_OFF: if (codec->driver->resume) codec->driver->resume(codec); codec->suspended = 0; break; default: dev_dbg(codec->dev, "ASoC: CODEC was on over suspend\n"); break; } } } for (i = 0; i < card->num_rtd; i++) { if (card->rtd[i].dai_link->ignore_suspend) continue; snd_soc_dapm_stream_event(&card->rtd[i], SNDRV_PCM_STREAM_PLAYBACK, SND_SOC_DAPM_STREAM_RESUME); snd_soc_dapm_stream_event(&card->rtd[i], SNDRV_PCM_STREAM_CAPTURE, SND_SOC_DAPM_STREAM_RESUME); } /* unmute any active DACs */ for (i = 0; i < card->num_rtd; i++) { if (card->rtd[i].dai_link->ignore_suspend) continue; for (j = 0; j < card->rtd[i].num_codecs; j++) { struct snd_soc_dai *dai = card->rtd[i].codec_dais[j]; struct snd_soc_dai_driver *drv = dai->driver; if (drv->ops->digital_mute && dai->playback_active) drv->ops->digital_mute(dai, 0); } } for (i = 0; i < card->num_rtd; i++) { struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; struct snd_soc_platform *platform = card->rtd[i].platform; if (card->rtd[i].dai_link->ignore_suspend) continue; if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control) cpu_dai->driver->resume(cpu_dai); if (platform->driver->resume && platform->suspended) { platform->driver->resume(cpu_dai); platform->suspended = 0; } } if (card->resume_post) card->resume_post(card); dev_dbg(card->dev, "ASoC: resume work completed\n"); /* userspace can access us now we are back as we were before */ snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0); /* Recheck all analogue paths too */ dapm_mark_io_dirty(&card->dapm); snd_soc_dapm_sync(&card->dapm); } /* powers up audio subsystem after a suspend */ int snd_soc_resume(struct device *dev) { struct snd_soc_card *card = dev_get_drvdata(dev); int i, ac97_control = 0; /* If the card is not initialized yet there is nothing to do */ if (!card->instantiated) return 0; /* activate pins from sleep state */ for (i = 0; i < card->num_rtd; i++) { struct snd_soc_pcm_runtime *rtd = &card->rtd[i]; struct snd_soc_dai **codec_dais = rtd->codec_dais; struct snd_soc_dai *cpu_dai = rtd->cpu_dai; int j; if (cpu_dai->active) pinctrl_pm_select_default_state(cpu_dai->dev); for (j = 0; j < rtd->num_codecs; j++) { struct snd_soc_dai *codec_dai = codec_dais[j]; if (codec_dai->active) pinctrl_pm_select_default_state(codec_dai->dev); } } /* AC97 devices might have other drivers hanging off them so * need to resume immediately. Other drivers don't have that * problem and may take a substantial amount of time to resume * due to I/O costs and anti-pop so handle them out of line. */ for (i = 0; i < card->num_rtd; i++) { struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; ac97_control |= cpu_dai->driver->ac97_control; } if (ac97_control) { dev_dbg(dev, "ASoC: Resuming AC97 immediately\n"); soc_resume_deferred(&card->deferred_resume_work); } else { dev_dbg(dev, "ASoC: Scheduling resume work\n"); if (!schedule_work(&card->deferred_resume_work)) dev_err(dev, "ASoC: resume work item may be lost\n"); } return 0; } EXPORT_SYMBOL_GPL(snd_soc_resume); #else #define snd_soc_suspend NULL #define snd_soc_resume NULL #endif static const struct snd_soc_dai_ops null_dai_ops = { }; static struct snd_soc_component *soc_find_component( const struct device_node *of_node, const char *name) { struct snd_soc_component *component; list_for_each_entry(component, &component_list, list) { if (of_node) { if (component->dev->of_node == of_node) return component; } else if (strcmp(component->name, name) == 0) { return component; } } return NULL; } static struct snd_soc_dai *snd_soc_find_dai( const struct snd_soc_dai_link_component *dlc) { struct snd_soc_component *component; struct snd_soc_dai *dai; /* Find CPU DAI from registered DAIs*/ list_for_each_entry(component, &component_list, list) { if (dlc->of_node && component->dev->of_node != dlc->of_node) continue; if (dlc->name && strcmp(component->name, dlc->name)) continue; list_for_each_entry(dai, &component->dai_list, list) { if (dlc->dai_name && strcmp(dai->name, dlc->dai_name)) continue; return dai; } } return NULL; } static int soc_bind_dai_link(struct snd_soc_card *card, int num) { struct snd_soc_dai_link *dai_link = &card->dai_link[num]; struct snd_soc_pcm_runtime *rtd = &card->rtd[num]; struct snd_soc_dai_link_component *codecs = dai_link->codecs; struct snd_soc_dai_link_component cpu_dai_component; struct snd_soc_dai **codec_dais = rtd->codec_dais; struct snd_soc_platform *platform; const char *platform_name; int i; dev_dbg(card->dev, "ASoC: binding %s at idx %d\n", dai_link->name, num); cpu_dai_component.name = dai_link->cpu_name; cpu_dai_component.of_node = dai_link->cpu_of_node; cpu_dai_component.dai_name = dai_link->cpu_dai_name; rtd->cpu_dai = snd_soc_find_dai(&cpu_dai_component); if (!rtd->cpu_dai) { dev_err(card->dev, "ASoC: CPU DAI %s not registered\n", dai_link->cpu_dai_name); return -EPROBE_DEFER; } rtd->num_codecs = dai_link->num_codecs; /* Find CODEC from registered CODECs */ for (i = 0; i < rtd->num_codecs; i++) { codec_dais[i] = snd_soc_find_dai(&codecs[i]); if (!codec_dais[i]) { dev_err(card->dev, "ASoC: CODEC DAI %s not registered\n", codecs[i].dai_name); return -EPROBE_DEFER; } } /* Single codec links expect codec and codec_dai in runtime data */ rtd->codec_dai = codec_dais[0]; rtd->codec = rtd->codec_dai->codec; /* if there's no platform we match on the empty platform */ platform_name = dai_link->platform_name; if (!platform_name && !dai_link->platform_of_node) platform_name = "snd-soc-dummy"; /* find one from the set of registered platforms */ list_for_each_entry(platform, &platform_list, list) { if (dai_link->platform_of_node) { if (platform->dev->of_node != dai_link->platform_of_node) continue; } else { if (strcmp(platform->component.name, platform_name)) continue; } rtd->platform = platform; } if (!rtd->platform) { dev_err(card->dev, "ASoC: platform %s not registered\n", dai_link->platform_name); return -EPROBE_DEFER; } card->num_rtd++; return 0; } static void soc_remove_component(struct snd_soc_component *component) { if (!component->probed) return; /* This is a HACK and will be removed soon */ if (component->codec) list_del(&component->codec->card_list); if (component->remove) component->remove(component); snd_soc_dapm_free(snd_soc_component_get_dapm(component)); soc_cleanup_component_debugfs(component); component->probed = 0; module_put(component->dev->driver->owner); } static void soc_remove_dai(struct snd_soc_dai *dai, int order) { int err; if (dai && dai->probed && dai->driver->remove_order == order) { if (dai->driver->remove) { err = dai->driver->remove(dai); if (err < 0) dev_err(dai->dev, "ASoC: failed to remove %s: %d\n", dai->name, err); } dai->probed = 0; } } static void soc_remove_link_dais(struct snd_soc_card *card, int num, int order) { struct snd_soc_pcm_runtime *rtd = &card->rtd[num]; int i; /* unregister the rtd device */ if (rtd->dev_registered) { device_remove_file(rtd->dev, &dev_attr_pmdown_time); device_remove_file(rtd->dev, &dev_attr_codec_reg); device_unregister(rtd->dev); rtd->dev_registered = 0; } /* remove the CODEC DAI */ for (i = 0; i < rtd->num_codecs; i++) soc_remove_dai(rtd->codec_dais[i], order); soc_remove_dai(rtd->cpu_dai, order); } static void soc_remove_link_components(struct snd_soc_card *card, int num, int order) { struct snd_soc_pcm_runtime *rtd = &card->rtd[num]; struct snd_soc_dai *cpu_dai = rtd->cpu_dai; struct snd_soc_platform *platform = rtd->platform; struct snd_soc_component *component; int i; /* remove the platform */ if (platform && platform->component.driver->remove_order == order) soc_remove_component(&platform->component); /* remove the CODEC-side CODEC */ for (i = 0; i < rtd->num_codecs; i++) { component = rtd->codec_dais[i]->component; if (component->driver->remove_order == order) soc_remove_component(component); } /* remove any CPU-side CODEC */ if (cpu_dai) { if (cpu_dai->component->driver->remove_order == order) soc_remove_component(cpu_dai->component); } } static void soc_remove_dai_links(struct snd_soc_card *card) { int dai, order; for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST; order++) { for (dai = 0; dai < card->num_rtd; dai++) soc_remove_link_dais(card, dai, order); } for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST; order++) { for (dai = 0; dai < card->num_rtd; dai++) soc_remove_link_components(card, dai, order); } card->num_rtd = 0; } static void soc_set_name_prefix(struct snd_soc_card *card, struct snd_soc_component *component) { int i; if (card->codec_conf == NULL) return; for (i = 0; i < card->num_configs; i++) { struct snd_soc_codec_conf *map = &card->codec_conf[i]; if (map->of_node && component->dev->of_node != map->of_node) continue; if (map->dev_name && strcmp(component->name, map->dev_name)) continue; component->name_prefix = map->name_prefix; break; } } static int soc_probe_component(struct snd_soc_card *card, struct snd_soc_component *component) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); struct snd_soc_dai *dai; int ret; if (component->probed) return 0; component->card = card; dapm->card = card; soc_set_name_prefix(card, component); if (!try_module_get(component->dev->driver->owner)) return -ENODEV; soc_init_component_debugfs(component); if (component->dapm_widgets) { ret = snd_soc_dapm_new_controls(dapm, component->dapm_widgets, component->num_dapm_widgets); if (ret != 0) { dev_err(component->dev, "Failed to create new controls %d\n", ret); goto err_probe; } } list_for_each_entry(dai, &component->dai_list, list) { ret = snd_soc_dapm_new_dai_widgets(dapm, dai); if (ret != 0) { dev_err(component->dev, "Failed to create DAI widgets %d\n", ret); goto err_probe; } } if (component->probe) { ret = component->probe(component); if (ret < 0) { dev_err(component->dev, "ASoC: failed to probe component %d\n", ret); goto err_probe; } WARN(dapm->idle_bias_off && dapm->bias_level != SND_SOC_BIAS_OFF, "codec %s can not start from non-off bias with idle_bias_off==1\n", component->name); } if (component->controls) snd_soc_add_component_controls(component, component->controls, component->num_controls); if (component->dapm_routes) snd_soc_dapm_add_routes(dapm, component->dapm_routes, component->num_dapm_routes); component->probed = 1; list_add(&dapm->list, &card->dapm_list); /* This is a HACK and will be removed soon */ if (component->codec) list_add(&component->codec->card_list, &card->codec_dev_list); return 0; err_probe: soc_cleanup_component_debugfs(component); module_put(component->dev->driver->owner); return ret; } static void rtd_release(struct device *dev) { kfree(dev); } static int soc_post_component_init(struct snd_soc_pcm_runtime *rtd, const char *name) { int ret = 0; /* register the rtd device */ rtd->dev = kzalloc(sizeof(struct device), GFP_KERNEL); if (!rtd->dev) return -ENOMEM; device_initialize(rtd->dev); rtd->dev->parent = rtd->card->dev; rtd->dev->release = rtd_release; dev_set_name(rtd->dev, "%s", name); dev_set_drvdata(rtd->dev, rtd); mutex_init(&rtd->pcm_mutex); INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_PLAYBACK].be_clients); INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_CAPTURE].be_clients); INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_PLAYBACK].fe_clients); INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_CAPTURE].fe_clients); ret = device_add(rtd->dev); if (ret < 0) { /* calling put_device() here to free the rtd->dev */ put_device(rtd->dev); dev_err(rtd->card->dev, "ASoC: failed to register runtime device: %d\n", ret); return ret; } rtd->dev_registered = 1; if (rtd->codec) { /* add DAPM sysfs entries for this codec */ ret = snd_soc_dapm_sys_add(rtd->dev); if (ret < 0) dev_err(rtd->dev, "ASoC: failed to add codec dapm sysfs entries: %d\n", ret); /* add codec sysfs entries */ ret = device_create_file(rtd->dev, &dev_attr_codec_reg); if (ret < 0) dev_err(rtd->dev, "ASoC: failed to add codec sysfs files: %d\n", ret); } return 0; } static int soc_probe_link_components(struct snd_soc_card *card, int num, int order) { struct snd_soc_pcm_runtime *rtd = &card->rtd[num]; struct snd_soc_platform *platform = rtd->platform; struct snd_soc_component *component; int i, ret; /* probe the CPU-side component, if it is a CODEC */ component = rtd->cpu_dai->component; if (component->driver->probe_order == order) { ret = soc_probe_component(card, component); if (ret < 0) return ret; } /* probe the CODEC-side components */ for (i = 0; i < rtd->num_codecs; i++) { component = rtd->codec_dais[i]->component; if (component->driver->probe_order == order) { ret = soc_probe_component(card, component); if (ret < 0) return ret; } } /* probe the platform */ if (platform->component.driver->probe_order == order) { ret = soc_probe_component(card, &platform->component); if (ret < 0) return ret; } return 0; } static int soc_probe_codec_dai(struct snd_soc_card *card, struct snd_soc_dai *codec_dai, int order) { int ret; if (!codec_dai->probed && codec_dai->driver->probe_order == order) { if (codec_dai->driver->probe) { ret = codec_dai->driver->probe(codec_dai); if (ret < 0) { dev_err(codec_dai->dev, "ASoC: failed to probe CODEC DAI %s: %d\n", codec_dai->name, ret); return ret; } } /* mark codec_dai as probed and add to card dai list */ codec_dai->probed = 1; } return 0; } static int soc_link_dai_widgets(struct snd_soc_card *card, struct snd_soc_dai_link *dai_link, struct snd_soc_pcm_runtime *rtd) { struct snd_soc_dai *cpu_dai = rtd->cpu_dai; struct snd_soc_dai *codec_dai = rtd->codec_dai; struct snd_soc_dapm_widget *play_w, *capture_w; int ret; if (rtd->num_codecs > 1) dev_warn(card->dev, "ASoC: Multiple codecs not supported yet\n"); /* link the DAI widgets */ play_w = codec_dai->playback_widget; capture_w = cpu_dai->capture_widget; if (play_w && capture_w) { ret = snd_soc_dapm_new_pcm(card, dai_link->params, capture_w, play_w); if (ret != 0) { dev_err(card->dev, "ASoC: Can't link %s to %s: %d\n", play_w->name, capture_w->name, ret); return ret; } } play_w = cpu_dai->playback_widget; capture_w = codec_dai->capture_widget; if (play_w && capture_w) { ret = snd_soc_dapm_new_pcm(card, dai_link->params, capture_w, play_w); if (ret != 0) { dev_err(card->dev, "ASoC: Can't link %s to %s: %d\n", play_w->name, capture_w->name, ret); return ret; } } return 0; } static int soc_probe_link_dais(struct snd_soc_card *card, int num, int order) { struct snd_soc_dai_link *dai_link = &card->dai_link[num]; struct snd_soc_pcm_runtime *rtd = &card->rtd[num]; struct snd_soc_platform *platform = rtd->platform; struct snd_soc_dai *cpu_dai = rtd->cpu_dai; int i, ret; dev_dbg(card->dev, "ASoC: probe %s dai link %d late %d\n", card->name, num, order); /* config components */ cpu_dai->platform = platform; cpu_dai->card = card; for (i = 0; i < rtd->num_codecs; i++) rtd->codec_dais[i]->card = card; /* set default power off timeout */ rtd->pmdown_time = pmdown_time; /* probe the cpu_dai */ if (!cpu_dai->probed && cpu_dai->driver->probe_order == order) { if (cpu_dai->driver->probe) { ret = cpu_dai->driver->probe(cpu_dai); if (ret < 0) { dev_err(cpu_dai->dev, "ASoC: failed to probe CPU DAI %s: %d\n", cpu_dai->name, ret); return ret; } } cpu_dai->probed = 1; } /* probe the CODEC DAI */ for (i = 0; i < rtd->num_codecs; i++) { ret = soc_probe_codec_dai(card, rtd->codec_dais[i], order); if (ret) return ret; } /* complete DAI probe during last probe */ if (order != SND_SOC_COMP_ORDER_LAST) return 0; /* do machine specific initialization */ if (dai_link->init) { ret = dai_link->init(rtd); if (ret < 0) { dev_err(card->dev, "ASoC: failed to init %s: %d\n", dai_link->name, ret); return ret; } } ret = soc_post_component_init(rtd, dai_link->name); if (ret) return ret; #ifdef CONFIG_DEBUG_FS /* add DPCM sysfs entries */ if (dai_link->dynamic) { ret = soc_dpcm_debugfs_add(rtd); if (ret < 0) { dev_err(rtd->dev, "ASoC: failed to add dpcm sysfs entries: %d\n", ret); return ret; } } #endif ret = device_create_file(rtd->dev, &dev_attr_pmdown_time); if (ret < 0) dev_warn(rtd->dev, "ASoC: failed to add pmdown_time sysfs: %d\n", ret); if (cpu_dai->driver->compress_dai) { /*create compress_device"*/ ret = soc_new_compress(rtd, num); if (ret < 0) { dev_err(card->dev, "ASoC: can't create compress %s\n", dai_link->stream_name); return ret; } } else { if (!dai_link->params) { /* create the pcm */ ret = soc_new_pcm(rtd, num); if (ret < 0) { dev_err(card->dev, "ASoC: can't create pcm %s :%d\n", dai_link->stream_name, ret); return ret; } } else { INIT_DELAYED_WORK(&rtd->delayed_work, codec2codec_close_delayed_work); /* link the DAI widgets */ ret = soc_link_dai_widgets(card, dai_link, rtd); if (ret) return ret; } } /* add platform data for AC97 devices */ for (i = 0; i < rtd->num_codecs; i++) { if (rtd->codec_dais[i]->driver->ac97_control) snd_ac97_dev_add_pdata(rtd->codec_dais[i]->codec->ac97, rtd->cpu_dai->ac97_pdata); } return 0; } #ifdef CONFIG_SND_SOC_AC97_BUS static int soc_register_ac97_codec(struct snd_soc_codec *codec, struct snd_soc_dai *codec_dai) { int ret; /* Only instantiate AC97 if not already done by the adaptor * for the generic AC97 subsystem. */ if (codec_dai->driver->ac97_control && !codec->ac97_registered) { /* * It is possible that the AC97 device is already registered to * the device subsystem. This happens when the device is created * via snd_ac97_mixer(). Currently only SoC codec that does so * is the generic AC97 glue but others migh emerge. * * In those cases we don't try to register the device again. */ if (!codec->ac97_created) return 0; ret = soc_ac97_dev_register(codec); if (ret < 0) { dev_err(codec->dev, "ASoC: AC97 device register failed: %d\n", ret); return ret; } codec->ac97_registered = 1; } return 0; } static void soc_unregister_ac97_codec(struct snd_soc_codec *codec) { if (codec->ac97_registered) { soc_ac97_dev_unregister(codec); codec->ac97_registered = 0; } } static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd) { int i, ret; for (i = 0; i < rtd->num_codecs; i++) { struct snd_soc_dai *codec_dai = rtd->codec_dais[i]; ret = soc_register_ac97_codec(codec_dai->codec, codec_dai); if (ret) { while (--i >= 0) soc_unregister_ac97_codec(codec_dai->codec); return ret; } } return 0; } static void soc_unregister_ac97_dai_link(struct snd_soc_pcm_runtime *rtd) { int i; for (i = 0; i < rtd->num_codecs; i++) soc_unregister_ac97_codec(rtd->codec_dais[i]->codec); } #endif static int soc_bind_aux_dev(struct snd_soc_card *card, int num) { struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num]; struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num]; const char *name = aux_dev->codec_name; rtd->component = soc_find_component(aux_dev->codec_of_node, name); if (!rtd->component) { if (aux_dev->codec_of_node) name = of_node_full_name(aux_dev->codec_of_node); dev_err(card->dev, "ASoC: %s not registered\n", name); return -EPROBE_DEFER; } /* * Some places still reference rtd->codec, so we have to keep that * initialized if the component is a CODEC. Once all those references * have been removed, this code can be removed as well. */ rtd->codec = rtd->component->codec; return 0; } static int soc_probe_aux_dev(struct snd_soc_card *card, int num) { struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num]; struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num]; int ret; ret = soc_probe_component(card, rtd->component); if (ret < 0) return ret; /* do machine specific initialization */ if (aux_dev->init) { ret = aux_dev->init(rtd->component); if (ret < 0) { dev_err(card->dev, "ASoC: failed to init %s: %d\n", aux_dev->name, ret); return ret; } } return soc_post_component_init(rtd, aux_dev->name); } static void soc_remove_aux_dev(struct snd_soc_card *card, int num) { struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num]; struct snd_soc_component *component = rtd->component; /* unregister the rtd device */ if (rtd->dev_registered) { device_remove_file(rtd->dev, &dev_attr_codec_reg); device_unregister(rtd->dev); rtd->dev_registered = 0; } if (component && component->probed) soc_remove_component(component); } static int snd_soc_init_codec_cache(struct snd_soc_codec *codec) { int ret; if (codec->cache_init) return 0; ret = snd_soc_cache_init(codec); if (ret < 0) { dev_err(codec->dev, "ASoC: Failed to set cache compression type: %d\n", ret); return ret; } codec->cache_init = 1; return 0; } static int snd_soc_instantiate_card(struct snd_soc_card *card) { struct snd_soc_codec *codec; struct snd_soc_dai_link *dai_link; int ret, i, order, dai_fmt; mutex_lock_nested(&card->mutex, SND_SOC_CARD_CLASS_INIT); /* bind DAIs */ for (i = 0; i < card->num_links; i++) { ret = soc_bind_dai_link(card, i); if (ret != 0) goto base_error; } /* bind aux_devs too */ for (i = 0; i < card->num_aux_devs; i++) { ret = soc_bind_aux_dev(card, i); if (ret != 0) goto base_error; } /* initialize the register cache for each available codec */ list_for_each_entry(codec, &codec_list, list) { if (codec->cache_init) continue; ret = snd_soc_init_codec_cache(codec); if (ret < 0) goto base_error; } /* card bind complete so register a sound card */ ret = snd_card_new(card->dev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1, card->owner, 0, &card->snd_card); if (ret < 0) { dev_err(card->dev, "ASoC: can't create sound card for card %s: %d\n", card->name, ret); goto base_error; } card->dapm.bias_level = SND_SOC_BIAS_OFF; card->dapm.dev = card->dev; card->dapm.card = card; list_add(&card->dapm.list, &card->dapm_list); #ifdef CONFIG_DEBUG_FS snd_soc_dapm_debugfs_init(&card->dapm, card->debugfs_card_root); #endif #ifdef CONFIG_PM_SLEEP /* deferred resume work */ INIT_WORK(&card->deferred_resume_work, soc_resume_deferred); #endif if (card->dapm_widgets) snd_soc_dapm_new_controls(&card->dapm, card->dapm_widgets, card->num_dapm_widgets); /* initialise the sound card only once */ if (card->probe) { ret = card->probe(card); if (ret < 0) goto card_probe_error; } /* probe all components used by DAI links on this card */ for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST; order++) { for (i = 0; i < card->num_links; i++) { ret = soc_probe_link_components(card, i, order); if (ret < 0) { dev_err(card->dev, "ASoC: failed to instantiate card %d\n", ret); goto probe_dai_err; } } } /* probe all DAI links on this card */ for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST; order++) { for (i = 0; i < card->num_links; i++) { ret = soc_probe_link_dais(card, i, order); if (ret < 0) { dev_err(card->dev, "ASoC: failed to instantiate card %d\n", ret); goto probe_dai_err; } } } for (i = 0; i < card->num_aux_devs; i++) { ret = soc_probe_aux_dev(card, i); if (ret < 0) { dev_err(card->dev, "ASoC: failed to add auxiliary devices %d\n", ret); goto probe_aux_dev_err; } } snd_soc_dapm_link_dai_widgets(card); snd_soc_dapm_connect_dai_link_widgets(card); if (card->controls) snd_soc_add_card_controls(card, card->controls, card->num_controls); if (card->dapm_routes) snd_soc_dapm_add_routes(&card->dapm, card->dapm_routes, card->num_dapm_routes); for (i = 0; i < card->num_links; i++) { struct snd_soc_pcm_runtime *rtd = &card->rtd[i]; dai_link = &card->dai_link[i]; dai_fmt = dai_link->dai_fmt; if (dai_fmt) { struct snd_soc_dai **codec_dais = rtd->codec_dais; int j; for (j = 0; j < rtd->num_codecs; j++) { struct snd_soc_dai *codec_dai = codec_dais[j]; ret = snd_soc_dai_set_fmt(codec_dai, dai_fmt); if (ret != 0 && ret != -ENOTSUPP) dev_warn(codec_dai->dev, "ASoC: Failed to set DAI format: %d\n", ret); } } /* If this is a regular CPU link there will be a platform */ if (dai_fmt && (dai_link->platform_name || dai_link->platform_of_node)) { ret = snd_soc_dai_set_fmt(card->rtd[i].cpu_dai, dai_fmt); if (ret != 0 && ret != -ENOTSUPP) dev_warn(card->rtd[i].cpu_dai->dev, "ASoC: Failed to set DAI format: %d\n", ret); } else if (dai_fmt) { /* Flip the polarity for the "CPU" end */ dai_fmt &= ~SND_SOC_DAIFMT_MASTER_MASK; switch (dai_link->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: dai_fmt |= SND_SOC_DAIFMT_CBS_CFS; break; case SND_SOC_DAIFMT_CBM_CFS: dai_fmt |= SND_SOC_DAIFMT_CBS_CFM; break; case SND_SOC_DAIFMT_CBS_CFM: dai_fmt |= SND_SOC_DAIFMT_CBM_CFS; break; case SND_SOC_DAIFMT_CBS_CFS: dai_fmt |= SND_SOC_DAIFMT_CBM_CFM; break; } ret = snd_soc_dai_set_fmt(card->rtd[i].cpu_dai, dai_fmt); if (ret != 0 && ret != -ENOTSUPP) dev_warn(card->rtd[i].cpu_dai->dev, "ASoC: Failed to set DAI format: %d\n", ret); } } snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname), "%s", card->name); snprintf(card->snd_card->longname, sizeof(card->snd_card->longname), "%s", card->long_name ? card->long_name : card->name); snprintf(card->snd_card->driver, sizeof(card->snd_card->driver), "%s", card->driver_name ? card->driver_name : card->name); for (i = 0; i < ARRAY_SIZE(card->snd_card->driver); i++) { switch (card->snd_card->driver[i]) { case '_': case '-': case '\0': break; default: if (!isalnum(card->snd_card->driver[i])) card->snd_card->driver[i] = '_'; break; } } if (card->late_probe) { ret = card->late_probe(card); if (ret < 0) { dev_err(card->dev, "ASoC: %s late_probe() failed: %d\n", card->name, ret); goto probe_aux_dev_err; } } if (card->fully_routed) snd_soc_dapm_auto_nc_pins(card); snd_soc_dapm_new_widgets(card); ret = snd_card_register(card->snd_card); if (ret < 0) { dev_err(card->dev, "ASoC: failed to register soundcard %d\n", ret); goto probe_aux_dev_err; } #ifdef CONFIG_SND_SOC_AC97_BUS /* register any AC97 codecs */ for (i = 0; i < card->num_rtd; i++) { ret = soc_register_ac97_dai_link(&card->rtd[i]); if (ret < 0) { dev_err(card->dev, "ASoC: failed to register AC97: %d\n", ret); while (--i >= 0) soc_unregister_ac97_dai_link(&card->rtd[i]); goto probe_aux_dev_err; } } #endif card->instantiated = 1; snd_soc_dapm_sync(&card->dapm); mutex_unlock(&card->mutex); return 0; probe_aux_dev_err: for (i = 0; i < card->num_aux_devs; i++) soc_remove_aux_dev(card, i); probe_dai_err: soc_remove_dai_links(card); card_probe_error: if (card->remove) card->remove(card); snd_card_free(card->snd_card); base_error: mutex_unlock(&card->mutex); return ret; } /* probes a new socdev */ static int soc_probe(struct platform_device *pdev) { struct snd_soc_card *card = platform_get_drvdata(pdev); /* * no card, so machine driver should be registering card * we should not be here in that case so ret error */ if (!card) return -EINVAL; dev_warn(&pdev->dev, "ASoC: machine %s should use snd_soc_register_card()\n", card->name); /* Bodge while we unpick instantiation */ card->dev = &pdev->dev; return snd_soc_register_card(card); } static int soc_cleanup_card_resources(struct snd_soc_card *card) { int i; /* make sure any delayed work runs */ for (i = 0; i < card->num_rtd; i++) { struct snd_soc_pcm_runtime *rtd = &card->rtd[i]; flush_delayed_work(&rtd->delayed_work); } /* remove auxiliary devices */ for (i = 0; i < card->num_aux_devs; i++) soc_remove_aux_dev(card, i); /* remove and free each DAI */ soc_remove_dai_links(card); soc_cleanup_card_debugfs(card); /* remove the card */ if (card->remove) card->remove(card); snd_soc_dapm_free(&card->dapm); snd_card_free(card->snd_card); return 0; } /* removes a socdev */ static int soc_remove(struct platform_device *pdev) { struct snd_soc_card *card = platform_get_drvdata(pdev); snd_soc_unregister_card(card); return 0; } int snd_soc_poweroff(struct device *dev) { struct snd_soc_card *card = dev_get_drvdata(dev); int i; if (!card->instantiated) return 0; /* Flush out pmdown_time work - we actually do want to run it * now, we're shutting down so no imminent restart. */ for (i = 0; i < card->num_rtd; i++) { struct snd_soc_pcm_runtime *rtd = &card->rtd[i]; flush_delayed_work(&rtd->delayed_work); } snd_soc_dapm_shutdown(card); /* deactivate pins to sleep state */ for (i = 0; i < card->num_rtd; i++) { struct snd_soc_pcm_runtime *rtd = &card->rtd[i]; struct snd_soc_dai *cpu_dai = rtd->cpu_dai; int j; pinctrl_pm_select_sleep_state(cpu_dai->dev); for (j = 0; j < rtd->num_codecs; j++) { struct snd_soc_dai *codec_dai = rtd->codec_dais[j]; pinctrl_pm_select_sleep_state(codec_dai->dev); } } return 0; } EXPORT_SYMBOL_GPL(snd_soc_poweroff); const struct dev_pm_ops snd_soc_pm_ops = { .suspend = snd_soc_suspend, .resume = snd_soc_resume, .freeze = snd_soc_suspend, .thaw = snd_soc_resume, .poweroff = snd_soc_poweroff, .restore = snd_soc_resume, }; EXPORT_SYMBOL_GPL(snd_soc_pm_ops); /* ASoC platform driver */ static struct platform_driver soc_driver = { .driver = { .name = "soc-audio", .owner = THIS_MODULE, .pm = &snd_soc_pm_ops, }, .probe = soc_probe, .remove = soc_remove, }; /** * snd_soc_new_ac97_codec - initailise AC97 device * @codec: audio codec * @ops: AC97 bus operations * @num: AC97 codec number * * Initialises AC97 codec resources for use by ad-hoc devices only. */ int snd_soc_new_ac97_codec(struct snd_soc_codec *codec, struct snd_ac97_bus_ops *ops, int num) { codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL); if (codec->ac97 == NULL) return -ENOMEM; codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL); if (codec->ac97->bus == NULL) { kfree(codec->ac97); codec->ac97 = NULL; return -ENOMEM; } codec->ac97->bus->ops = ops; codec->ac97->num = num; /* * Mark the AC97 device to be created by us. This way we ensure that the * device will be registered with the device subsystem later on. */ codec->ac97_created = 1; return 0; } EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec); static struct snd_ac97_reset_cfg snd_ac97_rst_cfg; static void snd_soc_ac97_warm_reset(struct snd_ac97 *ac97) { struct pinctrl *pctl = snd_ac97_rst_cfg.pctl; pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_warm_reset); gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 1); udelay(10); gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 0); pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_run); msleep(2); } static void snd_soc_ac97_reset(struct snd_ac97 *ac97) { struct pinctrl *pctl = snd_ac97_rst_cfg.pctl; pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_reset); gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 0); gpio_direction_output(snd_ac97_rst_cfg.gpio_sdata, 0); gpio_direction_output(snd_ac97_rst_cfg.gpio_reset, 0); udelay(10); gpio_direction_output(snd_ac97_rst_cfg.gpio_reset, 1); pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_run); msleep(2); } static int snd_soc_ac97_parse_pinctl(struct device *dev, struct snd_ac97_reset_cfg *cfg) { struct pinctrl *p; struct pinctrl_state *state; int gpio; int ret; p = devm_pinctrl_get(dev); if (IS_ERR(p)) { dev_err(dev, "Failed to get pinctrl\n"); return PTR_ERR(p); } cfg->pctl = p; state = pinctrl_lookup_state(p, "ac97-reset"); if (IS_ERR(state)) { dev_err(dev, "Can't find pinctrl state ac97-reset\n"); return PTR_ERR(state); } cfg->pstate_reset = state; state = pinctrl_lookup_state(p, "ac97-warm-reset"); if (IS_ERR(state)) { dev_err(dev, "Can't find pinctrl state ac97-warm-reset\n"); return PTR_ERR(state); } cfg->pstate_warm_reset = state; state = pinctrl_lookup_state(p, "ac97-running"); if (IS_ERR(state)) { dev_err(dev, "Can't find pinctrl state ac97-running\n"); return PTR_ERR(state); } cfg->pstate_run = state; gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 0); if (gpio < 0) { dev_err(dev, "Can't find ac97-sync gpio\n"); return gpio; } ret = devm_gpio_request(dev, gpio, "AC97 link sync"); if (ret) { dev_err(dev, "Failed requesting ac97-sync gpio\n"); return ret; } cfg->gpio_sync = gpio; gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 1); if (gpio < 0) { dev_err(dev, "Can't find ac97-sdata gpio %d\n", gpio); return gpio; } ret = devm_gpio_request(dev, gpio, "AC97 link sdata"); if (ret) { dev_err(dev, "Failed requesting ac97-sdata gpio\n"); return ret; } cfg->gpio_sdata = gpio; gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 2); if (gpio < 0) { dev_err(dev, "Can't find ac97-reset gpio\n"); return gpio; } ret = devm_gpio_request(dev, gpio, "AC97 link reset"); if (ret) { dev_err(dev, "Failed requesting ac97-reset gpio\n"); return ret; } cfg->gpio_reset = gpio; return 0; } struct snd_ac97_bus_ops *soc_ac97_ops; EXPORT_SYMBOL_GPL(soc_ac97_ops); int snd_soc_set_ac97_ops(struct snd_ac97_bus_ops *ops) { if (ops == soc_ac97_ops) return 0; if (soc_ac97_ops && ops) return -EBUSY; soc_ac97_ops = ops; return 0; } EXPORT_SYMBOL_GPL(snd_soc_set_ac97_ops); /** * snd_soc_set_ac97_ops_of_reset - Set ac97 ops with generic ac97 reset functions * * This function sets the reset and warm_reset properties of ops and parses * the device node of pdev to get pinctrl states and gpio numbers to use. */ int snd_soc_set_ac97_ops_of_reset(struct snd_ac97_bus_ops *ops, struct platform_device *pdev) { struct device *dev = &pdev->dev; struct snd_ac97_reset_cfg cfg; int ret; ret = snd_soc_ac97_parse_pinctl(dev, &cfg); if (ret) return ret; ret = snd_soc_set_ac97_ops(ops); if (ret) return ret; ops->warm_reset = snd_soc_ac97_warm_reset; ops->reset = snd_soc_ac97_reset; snd_ac97_rst_cfg = cfg; return 0; } EXPORT_SYMBOL_GPL(snd_soc_set_ac97_ops_of_reset); /** * snd_soc_free_ac97_codec - free AC97 codec device * @codec: audio codec * * Frees AC97 codec device resources. */ void snd_soc_free_ac97_codec(struct snd_soc_codec *codec) { #ifdef CONFIG_SND_SOC_AC97_BUS soc_unregister_ac97_codec(codec); #endif kfree(codec->ac97->bus); kfree(codec->ac97); codec->ac97 = NULL; codec->ac97_created = 0; } EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec); /** * snd_soc_cnew - create new control * @_template: control template * @data: control private data * @long_name: control long name * @prefix: control name prefix * * Create a new mixer control from a template control. * * Returns 0 for success, else error. */ struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template, void *data, const char *long_name, const char *prefix) { struct snd_kcontrol_new template; struct snd_kcontrol *kcontrol; char *name = NULL; memcpy(&template, _template, sizeof(template)); template.index = 0; if (!long_name) long_name = template.name; if (prefix) { name = kasprintf(GFP_KERNEL, "%s %s", prefix, long_name); if (!name) return NULL; template.name = name; } else { template.name = long_name; } kcontrol = snd_ctl_new1(&template, data); kfree(name); return kcontrol; } EXPORT_SYMBOL_GPL(snd_soc_cnew); static int snd_soc_add_controls(struct snd_card *card, struct device *dev, const struct snd_kcontrol_new *controls, int num_controls, const char *prefix, void *data) { int err, i; for (i = 0; i < num_controls; i++) { const struct snd_kcontrol_new *control = &controls[i]; err = snd_ctl_add(card, snd_soc_cnew(control, data, control->name, prefix)); if (err < 0) { dev_err(dev, "ASoC: Failed to add %s: %d\n", control->name, err); return err; } } return 0; } struct snd_kcontrol *snd_soc_card_get_kcontrol(struct snd_soc_card *soc_card, const char *name) { struct snd_card *card = soc_card->snd_card; struct snd_kcontrol *kctl; if (unlikely(!name)) return NULL; list_for_each_entry(kctl, &card->controls, list) if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) return kctl; return NULL; } EXPORT_SYMBOL_GPL(snd_soc_card_get_kcontrol); /** * snd_soc_add_component_controls - Add an array of controls to a component. * * @component: Component to add controls to * @controls: Array of controls to add * @num_controls: Number of elements in the array * * Return: 0 for success, else error. */ int snd_soc_add_component_controls(struct snd_soc_component *component, const struct snd_kcontrol_new *controls, unsigned int num_controls) { struct snd_card *card = component->card->snd_card; return snd_soc_add_controls(card, component->dev, controls, num_controls, component->name_prefix, component); } EXPORT_SYMBOL_GPL(snd_soc_add_component_controls); /** * snd_soc_add_codec_controls - add an array of controls to a codec. * Convenience function to add a list of controls. Many codecs were * duplicating this code. * * @codec: codec to add controls to * @controls: array of controls to add * @num_controls: number of elements in the array * * Return 0 for success, else error. */ int snd_soc_add_codec_controls(struct snd_soc_codec *codec, const struct snd_kcontrol_new *controls, unsigned int num_controls) { return snd_soc_add_component_controls(&codec->component, controls, num_controls); } EXPORT_SYMBOL_GPL(snd_soc_add_codec_controls); /** * snd_soc_add_platform_controls - add an array of controls to a platform. * Convenience function to add a list of controls. * * @platform: platform to add controls to * @controls: array of controls to add * @num_controls: number of elements in the array * * Return 0 for success, else error. */ int snd_soc_add_platform_controls(struct snd_soc_platform *platform, const struct snd_kcontrol_new *controls, unsigned int num_controls) { return snd_soc_add_component_controls(&platform->component, controls, num_controls); } EXPORT_SYMBOL_GPL(snd_soc_add_platform_controls); /** * snd_soc_add_card_controls - add an array of controls to a SoC card. * Convenience function to add a list of controls. * * @soc_card: SoC card to add controls to * @controls: array of controls to add * @num_controls: number of elements in the array * * Return 0 for success, else error. */ int snd_soc_add_card_controls(struct snd_soc_card *soc_card, const struct snd_kcontrol_new *controls, int num_controls) { struct snd_card *card = soc_card->snd_card; return snd_soc_add_controls(card, soc_card->dev, controls, num_controls, NULL, soc_card); } EXPORT_SYMBOL_GPL(snd_soc_add_card_controls); /** * snd_soc_add_dai_controls - add an array of controls to a DAI. * Convienience function to add a list of controls. * * @dai: DAI to add controls to * @controls: array of controls to add * @num_controls: number of elements in the array * * Return 0 for success, else error. */ int snd_soc_add_dai_controls(struct snd_soc_dai *dai, const struct snd_kcontrol_new *controls, int num_controls) { struct snd_card *card = dai->card->snd_card; return snd_soc_add_controls(card, dai->dev, controls, num_controls, NULL, dai); } EXPORT_SYMBOL_GPL(snd_soc_add_dai_controls); /** * snd_soc_info_enum_double - enumerated double mixer info callback * @kcontrol: mixer control * @uinfo: control element information * * Callback to provide information about a double enumerated * mixer control. * * Returns 0 for success. */ int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = e->shift_l == e->shift_r ? 1 : 2; uinfo->value.enumerated.items = e->items; if (uinfo->value.enumerated.item >= e->items) uinfo->value.enumerated.item = e->items - 1; strlcpy(uinfo->value.enumerated.name, e->texts[uinfo->value.enumerated.item], sizeof(uinfo->value.enumerated.name)); return 0; } EXPORT_SYMBOL_GPL(snd_soc_info_enum_double); /** * snd_soc_get_enum_double - enumerated double mixer get callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback to get the value of a double enumerated mixer. * * Returns 0 for success. */ int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; unsigned int val, item; unsigned int reg_val; int ret; ret = snd_soc_component_read(component, e->reg, ®_val); if (ret) return ret; val = (reg_val >> e->shift_l) & e->mask; item = snd_soc_enum_val_to_item(e, val); ucontrol->value.enumerated.item[0] = item; if (e->shift_l != e->shift_r) { val = (reg_val >> e->shift_l) & e->mask; item = snd_soc_enum_val_to_item(e, val); ucontrol->value.enumerated.item[1] = item; } return 0; } EXPORT_SYMBOL_GPL(snd_soc_get_enum_double); /** * snd_soc_put_enum_double - enumerated double mixer put callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback to set the value of a double enumerated mixer. * * Returns 0 for success. */ int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; unsigned int *item = ucontrol->value.enumerated.item; unsigned int val; unsigned int mask; if (item[0] >= e->items) return -EINVAL; val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l; mask = e->mask << e->shift_l; if (e->shift_l != e->shift_r) { if (item[1] >= e->items) return -EINVAL; val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r; mask |= e->mask << e->shift_r; } return snd_soc_component_update_bits(component, e->reg, mask, val); } EXPORT_SYMBOL_GPL(snd_soc_put_enum_double); /** * snd_soc_read_signed - Read a codec register and interprete as signed value * @component: component * @reg: Register to read * @mask: Mask to use after shifting the register value * @shift: Right shift of register value * @sign_bit: Bit that describes if a number is negative or not. * @signed_val: Pointer to where the read value should be stored * * This functions reads a codec register. The register value is shifted right * by 'shift' bits and masked with the given 'mask'. Afterwards it translates * the given registervalue into a signed integer if sign_bit is non-zero. * * Returns 0 on sucess, otherwise an error value */ static int snd_soc_read_signed(struct snd_soc_component *component, unsigned int reg, unsigned int mask, unsigned int shift, unsigned int sign_bit, int *signed_val) { int ret; unsigned int val; ret = snd_soc_component_read(component, reg, &val); if (ret < 0) return ret; val = (val >> shift) & mask; if (!sign_bit) { *signed_val = val; return 0; } /* non-negative number */ if (!(val & BIT(sign_bit))) { *signed_val = val; return 0; } ret = val; /* * The register most probably does not contain a full-sized int. * Instead we have an arbitrary number of bits in a signed * representation which has to be translated into a full-sized int. * This is done by filling up all bits above the sign-bit. */ ret |= ~((int)(BIT(sign_bit) - 1)); *signed_val = ret; return 0; } /** * snd_soc_info_volsw - single mixer info callback * @kcontrol: mixer control * @uinfo: control element information * * Callback to provide information about a single mixer control, or a double * mixer control that spans 2 registers. * * Returns 0 for success. */ int snd_soc_info_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; int platform_max; if (!mc->platform_max) mc->platform_max = mc->max; platform_max = mc->platform_max; if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume")) uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; else uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = platform_max - mc->min; return 0; } EXPORT_SYMBOL_GPL(snd_soc_info_volsw); /** * snd_soc_get_volsw - single mixer get callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback to get the value of a single mixer control, or a double mixer * control that spans 2 registers. * * Returns 0 for success. */ int snd_soc_get_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int reg = mc->reg; unsigned int reg2 = mc->rreg; unsigned int shift = mc->shift; unsigned int rshift = mc->rshift; int max = mc->max; int min = mc->min; int sign_bit = mc->sign_bit; unsigned int mask = (1 << fls(max)) - 1; unsigned int invert = mc->invert; int val; int ret; if (sign_bit) mask = BIT(sign_bit + 1) - 1; ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val); if (ret) return ret; ucontrol->value.integer.value[0] = val - min; if (invert) ucontrol->value.integer.value[0] = max - ucontrol->value.integer.value[0]; if (snd_soc_volsw_is_stereo(mc)) { if (reg == reg2) ret = snd_soc_read_signed(component, reg, mask, rshift, sign_bit, &val); else ret = snd_soc_read_signed(component, reg2, mask, shift, sign_bit, &val); if (ret) return ret; ucontrol->value.integer.value[1] = val - min; if (invert) ucontrol->value.integer.value[1] = max - ucontrol->value.integer.value[1]; } return 0; } EXPORT_SYMBOL_GPL(snd_soc_get_volsw); /** * snd_soc_put_volsw - single mixer put callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback to set the value of a single mixer control, or a double mixer * control that spans 2 registers. * * Returns 0 for success. */ int snd_soc_put_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int reg = mc->reg; unsigned int reg2 = mc->rreg; unsigned int shift = mc->shift; unsigned int rshift = mc->rshift; int max = mc->max; int min = mc->min; unsigned int sign_bit = mc->sign_bit; unsigned int mask = (1 << fls(max)) - 1; unsigned int invert = mc->invert; int err; bool type_2r = false; unsigned int val2 = 0; unsigned int val, val_mask; if (sign_bit) mask = BIT(sign_bit + 1) - 1; val = ((ucontrol->value.integer.value[0] + min) & mask); if (invert) val = max - val; val_mask = mask << shift; val = val << shift; if (snd_soc_volsw_is_stereo(mc)) { val2 = ((ucontrol->value.integer.value[1] + min) & mask); if (invert) val2 = max - val2; if (reg == reg2) { val_mask |= mask << rshift; val |= val2 << rshift; } else { val2 = val2 << shift; type_2r = true; } } err = snd_soc_component_update_bits(component, reg, val_mask, val); if (err < 0) return err; if (type_2r) err = snd_soc_component_update_bits(component, reg2, val_mask, val2); return err; } EXPORT_SYMBOL_GPL(snd_soc_put_volsw); /** * snd_soc_get_volsw_sx - single mixer get callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback to get the value of a single mixer control, or a double mixer * control that spans 2 registers. * * Returns 0 for success. */ int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int reg = mc->reg; unsigned int reg2 = mc->rreg; unsigned int shift = mc->shift; unsigned int rshift = mc->rshift; int max = mc->max; int min = mc->min; int mask = (1 << (fls(min + max) - 1)) - 1; unsigned int val; int ret; ret = snd_soc_component_read(component, reg, &val); if (ret < 0) return ret; ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask; if (snd_soc_volsw_is_stereo(mc)) { ret = snd_soc_component_read(component, reg2, &val); if (ret < 0) return ret; val = ((val >> rshift) - min) & mask; ucontrol->value.integer.value[1] = val; } return 0; } EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx); /** * snd_soc_put_volsw_sx - double mixer set callback * @kcontrol: mixer control * @uinfo: control element information * * Callback to set the value of a double mixer control that spans 2 registers. * * Returns 0 for success. */ int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int reg = mc->reg; unsigned int reg2 = mc->rreg; unsigned int shift = mc->shift; unsigned int rshift = mc->rshift; int max = mc->max; int min = mc->min; int mask = (1 << (fls(min + max) - 1)) - 1; int err = 0; unsigned int val, val_mask, val2 = 0; val_mask = mask << shift; val = (ucontrol->value.integer.value[0] + min) & mask; val = val << shift; err = snd_soc_component_update_bits(component, reg, val_mask, val); if (err < 0) return err; if (snd_soc_volsw_is_stereo(mc)) { val_mask = mask << rshift; val2 = (ucontrol->value.integer.value[1] + min) & mask; val2 = val2 << rshift; err = snd_soc_component_update_bits(component, reg2, val_mask, val2); } return err; } EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx); /** * snd_soc_info_volsw_s8 - signed mixer info callback * @kcontrol: mixer control * @uinfo: control element information * * Callback to provide information about a signed mixer control. * * Returns 0 for success. */ int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; int platform_max; int min = mc->min; if (!mc->platform_max) mc->platform_max = mc->max; platform_max = mc->platform_max; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = platform_max - min; return 0; } EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8); /** * snd_soc_get_volsw_s8 - signed mixer get callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback to get the value of a signed mixer control. * * Returns 0 for success. */ int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); unsigned int reg = mc->reg; unsigned int val; int min = mc->min; int ret; ret = snd_soc_component_read(component, reg, &val); if (ret) return ret; ucontrol->value.integer.value[0] = ((signed char)(val & 0xff))-min; ucontrol->value.integer.value[1] = ((signed char)((val >> 8) & 0xff))-min; return 0; } EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8); /** * snd_soc_put_volsw_sgn - signed mixer put callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback to set the value of a signed mixer control. * * Returns 0 for success. */ int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); unsigned int reg = mc->reg; int min = mc->min; unsigned int val; val = (ucontrol->value.integer.value[0]+min) & 0xff; val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8; return snd_soc_component_update_bits(component, reg, 0xffff, val); } EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8); /** * snd_soc_info_volsw_range - single mixer info callback with range. * @kcontrol: mixer control * @uinfo: control element information * * Callback to provide information, within a range, about a single * mixer control. * * returns 0 for success. */ int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; int platform_max; int min = mc->min; if (!mc->platform_max) mc->platform_max = mc->max; platform_max = mc->platform_max; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = platform_max - min; return 0; } EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range); /** * snd_soc_put_volsw_range - single mixer put value callback with range. * @kcontrol: mixer control * @ucontrol: control element information * * Callback to set the value, within a range, for a single mixer control. * * Returns 0 for success. */ int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); unsigned int reg = mc->reg; unsigned int rreg = mc->rreg; unsigned int shift = mc->shift; int min = mc->min; int max = mc->max; unsigned int mask = (1 << fls(max)) - 1; unsigned int invert = mc->invert; unsigned int val, val_mask; int ret; if (invert) val = (max - ucontrol->value.integer.value[0]) & mask; else val = ((ucontrol->value.integer.value[0] + min) & mask); val_mask = mask << shift; val = val << shift; ret = snd_soc_component_update_bits(component, reg, val_mask, val); if (ret < 0) return ret; if (snd_soc_volsw_is_stereo(mc)) { if (invert) val = (max - ucontrol->value.integer.value[1]) & mask; else val = ((ucontrol->value.integer.value[1] + min) & mask); val_mask = mask << shift; val = val << shift; ret = snd_soc_component_update_bits(component, rreg, val_mask, val); } return ret; } EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range); /** * snd_soc_get_volsw_range - single mixer get callback with range * @kcontrol: mixer control * @ucontrol: control element information * * Callback to get the value, within a range, of a single mixer control. * * Returns 0 for success. */ int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int reg = mc->reg; unsigned int rreg = mc->rreg; unsigned int shift = mc->shift; int min = mc->min; int max = mc->max; unsigned int mask = (1 << fls(max)) - 1; unsigned int invert = mc->invert; unsigned int val; int ret; ret = snd_soc_component_read(component, reg, &val); if (ret) return ret; ucontrol->value.integer.value[0] = (val >> shift) & mask; if (invert) ucontrol->value.integer.value[0] = max - ucontrol->value.integer.value[0]; else ucontrol->value.integer.value[0] = ucontrol->value.integer.value[0] - min; if (snd_soc_volsw_is_stereo(mc)) { ret = snd_soc_component_read(component, rreg, &val); if (ret) return ret; ucontrol->value.integer.value[1] = (val >> shift) & mask; if (invert) ucontrol->value.integer.value[1] = max - ucontrol->value.integer.value[1]; else ucontrol->value.integer.value[1] = ucontrol->value.integer.value[1] - min; } return 0; } EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range); /** * snd_soc_limit_volume - Set new limit to an existing volume control. * * @codec: where to look for the control * @name: Name of the control * @max: new maximum limit * * Return 0 for success, else error. */ int snd_soc_limit_volume(struct snd_soc_codec *codec, const char *name, int max) { struct snd_card *card = codec->component.card->snd_card; struct snd_kcontrol *kctl; struct soc_mixer_control *mc; int found = 0; int ret = -EINVAL; /* Sanity check for name and max */ if (unlikely(!name || max <= 0)) return -EINVAL; list_for_each_entry(kctl, &card->controls, list) { if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) { found = 1; break; } } if (found) { mc = (struct soc_mixer_control *)kctl->private_value; if (max <= mc->max) { mc->platform_max = max; ret = 0; } } return ret; } EXPORT_SYMBOL_GPL(snd_soc_limit_volume); int snd_soc_bytes_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_bytes *params = (void *)kcontrol->private_value; uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; uinfo->count = params->num_regs * component->val_bytes; return 0; } EXPORT_SYMBOL_GPL(snd_soc_bytes_info); int snd_soc_bytes_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_bytes *params = (void *)kcontrol->private_value; int ret; if (component->regmap) ret = regmap_raw_read(component->regmap, params->base, ucontrol->value.bytes.data, params->num_regs * component->val_bytes); else ret = -EINVAL; /* Hide any masked bytes to ensure consistent data reporting */ if (ret == 0 && params->mask) { switch (component->val_bytes) { case 1: ucontrol->value.bytes.data[0] &= ~params->mask; break; case 2: ((u16 *)(&ucontrol->value.bytes.data))[0] &= cpu_to_be16(~params->mask); break; case 4: ((u32 *)(&ucontrol->value.bytes.data))[0] &= cpu_to_be32(~params->mask); break; default: return -EINVAL; } } return ret; } EXPORT_SYMBOL_GPL(snd_soc_bytes_get); int snd_soc_bytes_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_bytes *params = (void *)kcontrol->private_value; int ret, len; unsigned int val, mask; void *data; if (!component->regmap || !params->num_regs) return -EINVAL; len = params->num_regs * component->val_bytes; data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA); if (!data) return -ENOMEM; /* * If we've got a mask then we need to preserve the register * bits. We shouldn't modify the incoming data so take a * copy. */ if (params->mask) { ret = regmap_read(component->regmap, params->base, &val); if (ret != 0) goto out; val &= params->mask; switch (component->val_bytes) { case 1: ((u8 *)data)[0] &= ~params->mask; ((u8 *)data)[0] |= val; break; case 2: mask = ~params->mask; ret = regmap_parse_val(component->regmap, &mask, &mask); if (ret != 0) goto out; ((u16 *)data)[0] &= mask; ret = regmap_parse_val(component->regmap, &val, &val); if (ret != 0) goto out; ((u16 *)data)[0] |= val; break; case 4: mask = ~params->mask; ret = regmap_parse_val(component->regmap, &mask, &mask); if (ret != 0) goto out; ((u32 *)data)[0] &= mask; ret = regmap_parse_val(component->regmap, &val, &val); if (ret != 0) goto out; ((u32 *)data)[0] |= val; break; default: ret = -EINVAL; goto out; } } ret = regmap_raw_write(component->regmap, params->base, data, len); out: kfree(data); return ret; } EXPORT_SYMBOL_GPL(snd_soc_bytes_put); int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *ucontrol) { struct soc_bytes_ext *params = (void *)kcontrol->private_value; ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES; ucontrol->count = params->max; return 0; } EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext); int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag, unsigned int size, unsigned int __user *tlv) { struct soc_bytes_ext *params = (void *)kcontrol->private_value; unsigned int count = size < params->max ? size : params->max; int ret = -ENXIO; switch (op_flag) { case SNDRV_CTL_TLV_OP_READ: if (params->get) ret = params->get(tlv, count); break; case SNDRV_CTL_TLV_OP_WRITE: if (params->put) ret = params->put(tlv, count); break; } return ret; } EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback); /** * snd_soc_info_xr_sx - signed multi register info callback * @kcontrol: mreg control * @uinfo: control element information * * Callback to provide information of a control that can * span multiple codec registers which together * forms a single signed value in a MSB/LSB manner. * * Returns 0 for success. */ int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct soc_mreg_control *mc = (struct soc_mreg_control *)kcontrol->private_value; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = mc->min; uinfo->value.integer.max = mc->max; return 0; } EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx); /** * snd_soc_get_xr_sx - signed multi register get callback * @kcontrol: mreg control * @ucontrol: control element information * * Callback to get the value of a control that can span * multiple codec registers which together forms a single * signed value in a MSB/LSB manner. The control supports * specifying total no of bits used to allow for bitfields * across the multiple codec registers. * * Returns 0 for success. */ int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mreg_control *mc = (struct soc_mreg_control *)kcontrol->private_value; unsigned int regbase = mc->regbase; unsigned int regcount = mc->regcount; unsigned int regwshift = component->val_bytes * BITS_PER_BYTE; unsigned int regwmask = (1<<regwshift)-1; unsigned int invert = mc->invert; unsigned long mask = (1UL<<mc->nbits)-1; long min = mc->min; long max = mc->max; long val = 0; unsigned int regval; unsigned int i; int ret; for (i = 0; i < regcount; i++) { ret = snd_soc_component_read(component, regbase+i, ®val); if (ret) return ret; val |= (regval & regwmask) << (regwshift*(regcount-i-1)); } val &= mask; if (min < 0 && val > max) val |= ~mask; if (invert) val = max - val; ucontrol->value.integer.value[0] = val; return 0; } EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx); /** * snd_soc_put_xr_sx - signed multi register get callback * @kcontrol: mreg control * @ucontrol: control element information * * Callback to set the value of a control that can span * multiple codec registers which together forms a single * signed value in a MSB/LSB manner. The control supports * specifying total no of bits used to allow for bitfields * across the multiple codec registers. * * Returns 0 for success. */ int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mreg_control *mc = (struct soc_mreg_control *)kcontrol->private_value; unsigned int regbase = mc->regbase; unsigned int regcount = mc->regcount; unsigned int regwshift = component->val_bytes * BITS_PER_BYTE; unsigned int regwmask = (1<<regwshift)-1; unsigned int invert = mc->invert; unsigned long mask = (1UL<<mc->nbits)-1; long max = mc->max; long val = ucontrol->value.integer.value[0]; unsigned int i, regval, regmask; int err; if (invert) val = max - val; val &= mask; for (i = 0; i < regcount; i++) { regval = (val >> (regwshift*(regcount-i-1))) & regwmask; regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask; err = snd_soc_component_update_bits(component, regbase+i, regmask, regval); if (err < 0) return err; } return 0; } EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx); /** * snd_soc_get_strobe - strobe get callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback get the value of a strobe mixer control. * * Returns 0 for success. */ int snd_soc_get_strobe(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int reg = mc->reg; unsigned int shift = mc->shift; unsigned int mask = 1 << shift; unsigned int invert = mc->invert != 0; unsigned int val; int ret; ret = snd_soc_component_read(component, reg, &val); if (ret) return ret; val &= mask; if (shift != 0 && val != 0) val = val >> shift; ucontrol->value.enumerated.item[0] = val ^ invert; return 0; } EXPORT_SYMBOL_GPL(snd_soc_get_strobe); /** * snd_soc_put_strobe - strobe put callback * @kcontrol: mixer control * @ucontrol: control element information * * Callback strobe a register bit to high then low (or the inverse) * in one pass of a single mixer enum control. * * Returns 1 for success. */ int snd_soc_put_strobe(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int reg = mc->reg; unsigned int shift = mc->shift; unsigned int mask = 1 << shift; unsigned int invert = mc->invert != 0; unsigned int strobe = ucontrol->value.enumerated.item[0] != 0; unsigned int val1 = (strobe ^ invert) ? mask : 0; unsigned int val2 = (strobe ^ invert) ? 0 : mask; int err; err = snd_soc_component_update_bits(component, reg, mask, val1); if (err < 0) return err; return snd_soc_component_update_bits(component, reg, mask, val2); } EXPORT_SYMBOL_GPL(snd_soc_put_strobe); /** * snd_soc_dai_set_sysclk - configure DAI system or master clock. * @dai: DAI * @clk_id: DAI specific clock ID * @freq: new clock frequency in Hz * @dir: new clock direction - input/output. * * Configures the DAI master (MCLK) or system (SYSCLK) clocking. */ int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { if (dai->driver && dai->driver->ops->set_sysclk) return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir); else if (dai->codec && dai->codec->driver->set_sysclk) return dai->codec->driver->set_sysclk(dai->codec, clk_id, 0, freq, dir); else return -ENOTSUPP; } EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk); /** * snd_soc_codec_set_sysclk - configure CODEC system or master clock. * @codec: CODEC * @clk_id: DAI specific clock ID * @source: Source for the clock * @freq: new clock frequency in Hz * @dir: new clock direction - input/output. * * Configures the CODEC master (MCLK) or system (SYSCLK) clocking. */ int snd_soc_codec_set_sysclk(struct snd_soc_codec *codec, int clk_id, int source, unsigned int freq, int dir) { if (codec->driver->set_sysclk) return codec->driver->set_sysclk(codec, clk_id, source, freq, dir); else return -ENOTSUPP; } EXPORT_SYMBOL_GPL(snd_soc_codec_set_sysclk); /** * snd_soc_dai_set_clkdiv - configure DAI clock dividers. * @dai: DAI * @div_id: DAI specific clock divider ID * @div: new clock divisor. * * Configures the clock dividers. This is used to derive the best DAI bit and * frame clocks from the system or master clock. It's best to set the DAI bit * and frame clocks as low as possible to save system power. */ int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai, int div_id, int div) { if (dai->driver && dai->driver->ops->set_clkdiv) return dai->driver->ops->set_clkdiv(dai, div_id, div); else return -EINVAL; } EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv); /** * snd_soc_dai_set_pll - configure DAI PLL. * @dai: DAI * @pll_id: DAI specific PLL ID * @source: DAI specific source for the PLL * @freq_in: PLL input clock frequency in Hz * @freq_out: requested PLL output clock frequency in Hz * * Configures and enables PLL to generate output clock based on input clock. */ int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source, unsigned int freq_in, unsigned int freq_out) { if (dai->driver && dai->driver->ops->set_pll) return dai->driver->ops->set_pll(dai, pll_id, source, freq_in, freq_out); else if (dai->codec && dai->codec->driver->set_pll) return dai->codec->driver->set_pll(dai->codec, pll_id, source, freq_in, freq_out); else return -EINVAL; } EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll); /* * snd_soc_codec_set_pll - configure codec PLL. * @codec: CODEC * @pll_id: DAI specific PLL ID * @source: DAI specific source for the PLL * @freq_in: PLL input clock frequency in Hz * @freq_out: requested PLL output clock frequency in Hz * * Configures and enables PLL to generate output clock based on input clock. */ int snd_soc_codec_set_pll(struct snd_soc_codec *codec, int pll_id, int source, unsigned int freq_in, unsigned int freq_out) { if (codec->driver->set_pll) return codec->driver->set_pll(codec, pll_id, source, freq_in, freq_out); else return -EINVAL; } EXPORT_SYMBOL_GPL(snd_soc_codec_set_pll); /** * snd_soc_dai_set_bclk_ratio - configure BCLK to sample rate ratio. * @dai: DAI * @ratio Ratio of BCLK to Sample rate. * * Configures the DAI for a preset BCLK to sample rate ratio. */ int snd_soc_dai_set_bclk_ratio(struct snd_soc_dai *dai, unsigned int ratio) { if (dai->driver && dai->driver->ops->set_bclk_ratio) return dai->driver->ops->set_bclk_ratio(dai, ratio); else return -EINVAL; } EXPORT_SYMBOL_GPL(snd_soc_dai_set_bclk_ratio); /** * snd_soc_dai_set_fmt - configure DAI hardware audio format. * @dai: DAI * @fmt: SND_SOC_DAIFMT_ format value. * * Configures the DAI hardware format and clocking. */ int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) { if (dai->driver == NULL) return -EINVAL; if (dai->driver->ops->set_fmt == NULL) return -ENOTSUPP; return dai->driver->ops->set_fmt(dai, fmt); } EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt); /** * snd_soc_xlate_tdm_slot - generate tx/rx slot mask. * @slots: Number of slots in use. * @tx_mask: bitmask representing active TX slots. * @rx_mask: bitmask representing active RX slots. * * Generates the TDM tx and rx slot default masks for DAI. */ static int snd_soc_xlate_tdm_slot_mask(unsigned int slots, unsigned int *tx_mask, unsigned int *rx_mask) { if (*tx_mask || *rx_mask) return 0; if (!slots) return -EINVAL; *tx_mask = (1 << slots) - 1; *rx_mask = (1 << slots) - 1; return 0; } /** * snd_soc_dai_set_tdm_slot - configure DAI TDM. * @dai: DAI * @tx_mask: bitmask representing active TX slots. * @rx_mask: bitmask representing active RX slots. * @slots: Number of slots in use. * @slot_width: Width in bits for each slot. * * Configures a DAI for TDM operation. Both mask and slots are codec and DAI * specific. */ int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { if (dai->driver && dai->driver->ops->xlate_tdm_slot_mask) dai->driver->ops->xlate_tdm_slot_mask(slots, &tx_mask, &rx_mask); else snd_soc_xlate_tdm_slot_mask(slots, &tx_mask, &rx_mask); dai->tx_mask = tx_mask; dai->rx_mask = rx_mask; if (dai->driver && dai->driver->ops->set_tdm_slot) return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask, slots, slot_width); else return -ENOTSUPP; } EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot); /** * snd_soc_dai_set_channel_map - configure DAI audio channel map * @dai: DAI * @tx_num: how many TX channels * @tx_slot: pointer to an array which imply the TX slot number channel * 0~num-1 uses * @rx_num: how many RX channels * @rx_slot: pointer to an array which imply the RX slot number channel * 0~num-1 uses * * configure the relationship between channel number and TDM slot number. */ int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai, unsigned int tx_num, unsigned int *tx_slot, unsigned int rx_num, unsigned int *rx_slot) { if (dai->driver && dai->driver->ops->set_channel_map) return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot, rx_num, rx_slot); else return -EINVAL; } EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map); /** * snd_soc_dai_set_tristate - configure DAI system or master clock. * @dai: DAI * @tristate: tristate enable * * Tristates the DAI so that others can use it. */ int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate) { if (dai->driver && dai->driver->ops->set_tristate) return dai->driver->ops->set_tristate(dai, tristate); else return -EINVAL; } EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate); /** * snd_soc_dai_digital_mute - configure DAI system or master clock. * @dai: DAI * @mute: mute enable * @direction: stream to mute * * Mutes the DAI DAC. */ int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute, int direction) { if (!dai->driver) return -ENOTSUPP; if (dai->driver->ops->mute_stream) return dai->driver->ops->mute_stream(dai, mute, direction); else if (direction == SNDRV_PCM_STREAM_PLAYBACK && dai->driver->ops->digital_mute) return dai->driver->ops->digital_mute(dai, mute); else return -ENOTSUPP; } EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute); static int snd_soc_init_multicodec(struct snd_soc_card *card, struct snd_soc_dai_link *dai_link) { /* Legacy codec/codec_dai link is a single entry in multicodec */ if (dai_link->codec_name || dai_link->codec_of_node || dai_link->codec_dai_name) { dai_link->num_codecs = 1; dai_link->codecs = devm_kzalloc(card->dev, sizeof(struct snd_soc_dai_link_component), GFP_KERNEL); if (!dai_link->codecs) return -ENOMEM; dai_link->codecs[0].name = dai_link->codec_name; dai_link->codecs[0].of_node = dai_link->codec_of_node; dai_link->codecs[0].dai_name = dai_link->codec_dai_name; } if (!dai_link->codecs) { dev_err(card->dev, "ASoC: DAI link has no CODECs\n"); return -EINVAL; } return 0; } /** * snd_soc_register_card - Register a card with the ASoC core * * @card: Card to register * */ int snd_soc_register_card(struct snd_soc_card *card) { int i, j, ret; if (!card->name || !card->dev) return -EINVAL; for (i = 0; i < card->num_links; i++) { struct snd_soc_dai_link *link = &card->dai_link[i]; ret = snd_soc_init_multicodec(card, link); if (ret) { dev_err(card->dev, "ASoC: failed to init multicodec\n"); return ret; } for (j = 0; j < link->num_codecs; j++) { /* * Codec must be specified by 1 of name or OF node, * not both or neither. */ if (!!link->codecs[j].name == !!link->codecs[j].of_node) { dev_err(card->dev, "ASoC: Neither/both codec name/of_node are set for %s\n", link->name); return -EINVAL; } /* Codec DAI name must be specified */ if (!link->codecs[j].dai_name) { dev_err(card->dev, "ASoC: codec_dai_name not set for %s\n", link->name); return -EINVAL; } } /* * Platform may be specified by either name or OF node, but * can be left unspecified, and a dummy platform will be used. */ if (link->platform_name && link->platform_of_node) { dev_err(card->dev, "ASoC: Both platform name/of_node are set for %s\n", link->name); return -EINVAL; } /* * CPU device may be specified by either name or OF node, but * can be left unspecified, and will be matched based on DAI * name alone.. */ if (link->cpu_name && link->cpu_of_node) { dev_err(card->dev, "ASoC: Neither/both cpu name/of_node are set for %s\n", link->name); return -EINVAL; } /* * At least one of CPU DAI name or CPU device name/node must be * specified */ if (!link->cpu_dai_name && !(link->cpu_name || link->cpu_of_node)) { dev_err(card->dev, "ASoC: Neither cpu_dai_name nor cpu_name/of_node are set for %s\n", link->name); return -EINVAL; } } dev_set_drvdata(card->dev, card); snd_soc_initialize_card_lists(card); soc_init_card_debugfs(card); card->rtd = devm_kzalloc(card->dev, sizeof(struct snd_soc_pcm_runtime) * (card->num_links + card->num_aux_devs), GFP_KERNEL); if (card->rtd == NULL) return -ENOMEM; card->num_rtd = 0; card->rtd_aux = &card->rtd[card->num_links]; for (i = 0; i < card->num_links; i++) { card->rtd[i].card = card; card->rtd[i].dai_link = &card->dai_link[i]; card->rtd[i].codec_dais = devm_kzalloc(card->dev, sizeof(struct snd_soc_dai *) * (card->rtd[i].dai_link->num_codecs), GFP_KERNEL); if (card->rtd[i].codec_dais == NULL) return -ENOMEM; } for (i = 0; i < card->num_aux_devs; i++) card->rtd_aux[i].card = card; INIT_LIST_HEAD(&card->dapm_dirty); card->instantiated = 0; mutex_init(&card->mutex); mutex_init(&card->dapm_mutex); ret = snd_soc_instantiate_card(card); if (ret != 0) soc_cleanup_card_debugfs(card); /* deactivate pins to sleep state */ for (i = 0; i < card->num_rtd; i++) { struct snd_soc_pcm_runtime *rtd = &card->rtd[i]; struct snd_soc_dai *cpu_dai = rtd->cpu_dai; int j; for (j = 0; j < rtd->num_codecs; j++) { struct snd_soc_dai *codec_dai = rtd->codec_dais[j]; if (!codec_dai->active) pinctrl_pm_select_sleep_state(codec_dai->dev); } if (!cpu_dai->active) pinctrl_pm_select_sleep_state(cpu_dai->dev); } return ret; } EXPORT_SYMBOL_GPL(snd_soc_register_card); /** * snd_soc_unregister_card - Unregister a card with the ASoC core * * @card: Card to unregister * */ int snd_soc_unregister_card(struct snd_soc_card *card) { if (card->instantiated) { card->instantiated = false; snd_soc_dapm_shutdown(card); soc_cleanup_card_resources(card); } dev_dbg(card->dev, "ASoC: Unregistered card '%s'\n", card->name); return 0; } EXPORT_SYMBOL_GPL(snd_soc_unregister_card); /* * Simplify DAI link configuration by removing ".-1" from device names * and sanitizing names. */ static char *fmt_single_name(struct device *dev, int *id) { char *found, name[NAME_SIZE]; int id1, id2; if (dev_name(dev) == NULL) return NULL; strlcpy(name, dev_name(dev), NAME_SIZE); /* are we a "%s.%d" name (platform and SPI components) */ found = strstr(name, dev->driver->name); if (found) { /* get ID */ if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) { /* discard ID from name if ID == -1 */ if (*id == -1) found[strlen(dev->driver->name)] = '\0'; } } else { /* I2C component devices are named "bus-addr" */ if (sscanf(name, "%x-%x", &id1, &id2) == 2) { char tmp[NAME_SIZE]; /* create unique ID number from I2C addr and bus */ *id = ((id1 & 0xffff) << 16) + id2; /* sanitize component name for DAI link creation */ snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name); strlcpy(name, tmp, NAME_SIZE); } else *id = 0; } return kstrdup(name, GFP_KERNEL); } /* * Simplify DAI link naming for single devices with multiple DAIs by removing * any ".-1" and using the DAI name (instead of device name). */ static inline char *fmt_multiple_name(struct device *dev, struct snd_soc_dai_driver *dai_drv) { if (dai_drv->name == NULL) { dev_err(dev, "ASoC: error - multiple DAI %s registered with no name\n", dev_name(dev)); return NULL; } return kstrdup(dai_drv->name, GFP_KERNEL); } /** * snd_soc_unregister_dai - Unregister DAIs from the ASoC core * * @component: The component for which the DAIs should be unregistered */ static void snd_soc_unregister_dais(struct snd_soc_component *component) { struct snd_soc_dai *dai, *_dai; list_for_each_entry_safe(dai, _dai, &component->dai_list, list) { dev_dbg(component->dev, "ASoC: Unregistered DAI '%s'\n", dai->name); list_del(&dai->list); kfree(dai->name); kfree(dai); } } /** * snd_soc_register_dais - Register a DAI with the ASoC core * * @component: The component the DAIs are registered for * @dai_drv: DAI driver to use for the DAIs * @count: Number of DAIs * @legacy_dai_naming: Use the legacy naming scheme and let the DAI inherit the * parent's name. */ static int snd_soc_register_dais(struct snd_soc_component *component, struct snd_soc_dai_driver *dai_drv, size_t count, bool legacy_dai_naming) { struct device *dev = component->dev; struct snd_soc_dai *dai; unsigned int i; int ret; dev_dbg(dev, "ASoC: dai register %s #%Zu\n", dev_name(dev), count); component->dai_drv = dai_drv; component->num_dai = count; for (i = 0; i < count; i++) { dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL); if (dai == NULL) { ret = -ENOMEM; goto err; } /* * Back in the old days when we still had component-less DAIs, * instead of having a static name, component-less DAIs would * inherit the name of the parent device so it is possible to * register multiple instances of the DAI. We still need to keep * the same naming style even though those DAIs are not * component-less anymore. */ if (count == 1 && legacy_dai_naming) { dai->name = fmt_single_name(dev, &dai->id); } else { dai->name = fmt_multiple_name(dev, &dai_drv[i]); if (dai_drv[i].id) dai->id = dai_drv[i].id; else dai->id = i; } if (dai->name == NULL) { kfree(dai); ret = -ENOMEM; goto err; } dai->component = component; dai->dev = dev; dai->driver = &dai_drv[i]; if (!dai->driver->ops) dai->driver->ops = &null_dai_ops; list_add(&dai->list, &component->dai_list); dev_dbg(dev, "ASoC: Registered DAI '%s'\n", dai->name); } return 0; err: snd_soc_unregister_dais(component); return ret; } static void snd_soc_component_seq_notifier(struct snd_soc_dapm_context *dapm, enum snd_soc_dapm_type type, int subseq) { struct snd_soc_component *component = dapm->component; component->driver->seq_notifier(component, type, subseq); } static int snd_soc_component_stream_event(struct snd_soc_dapm_context *dapm, int event) { struct snd_soc_component *component = dapm->component; return component->driver->stream_event(component, event); } static int snd_soc_component_initialize(struct snd_soc_component *component, const struct snd_soc_component_driver *driver, struct device *dev) { struct snd_soc_dapm_context *dapm; component->name = fmt_single_name(dev, &component->id); if (!component->name) { dev_err(dev, "ASoC: Failed to allocate name\n"); return -ENOMEM; } component->dev = dev; component->driver = driver; component->probe = component->driver->probe; component->remove = component->driver->remove; if (!component->dapm_ptr) component->dapm_ptr = &component->dapm; dapm = component->dapm_ptr; dapm->dev = dev; dapm->component = component; dapm->bias_level = SND_SOC_BIAS_OFF; dapm->idle_bias_off = true; if (driver->seq_notifier) dapm->seq_notifier = snd_soc_component_seq_notifier; if (driver->stream_event) dapm->stream_event = snd_soc_component_stream_event; component->controls = driver->controls; component->num_controls = driver->num_controls; component->dapm_widgets = driver->dapm_widgets; component->num_dapm_widgets = driver->num_dapm_widgets; component->dapm_routes = driver->dapm_routes; component->num_dapm_routes = driver->num_dapm_routes; INIT_LIST_HEAD(&component->dai_list); mutex_init(&component->io_mutex); return 0; } static void snd_soc_component_init_regmap(struct snd_soc_component *component) { if (!component->regmap) component->regmap = dev_get_regmap(component->dev, NULL); if (component->regmap) { int val_bytes = regmap_get_val_bytes(component->regmap); /* Errors are legitimate for non-integer byte multiples */ if (val_bytes > 0) component->val_bytes = val_bytes; } } static void snd_soc_component_add_unlocked(struct snd_soc_component *component) { if (!component->write && !component->read) snd_soc_component_init_regmap(component); list_add(&component->list, &component_list); } static void snd_soc_component_add(struct snd_soc_component *component) { mutex_lock(&client_mutex); snd_soc_component_add_unlocked(component); mutex_unlock(&client_mutex); } static void snd_soc_component_cleanup(struct snd_soc_component *component) { snd_soc_unregister_dais(component); kfree(component->name); } static void snd_soc_component_del_unlocked(struct snd_soc_component *component) { list_del(&component->list); } static void snd_soc_component_del(struct snd_soc_component *component) { mutex_lock(&client_mutex); snd_soc_component_del_unlocked(component); mutex_unlock(&client_mutex); } int snd_soc_register_component(struct device *dev, const struct snd_soc_component_driver *cmpnt_drv, struct snd_soc_dai_driver *dai_drv, int num_dai) { struct snd_soc_component *cmpnt; int ret; cmpnt = kzalloc(sizeof(*cmpnt), GFP_KERNEL); if (!cmpnt) { dev_err(dev, "ASoC: Failed to allocate memory\n"); return -ENOMEM; } ret = snd_soc_component_initialize(cmpnt, cmpnt_drv, dev); if (ret) goto err_free; cmpnt->ignore_pmdown_time = true; cmpnt->registered_as_component = true; ret = snd_soc_register_dais(cmpnt, dai_drv, num_dai, true); if (ret < 0) { dev_err(dev, "ASoC: Failed to regster DAIs: %d\n", ret); goto err_cleanup; } snd_soc_component_add(cmpnt); return 0; err_cleanup: snd_soc_component_cleanup(cmpnt); err_free: kfree(cmpnt); return ret; } EXPORT_SYMBOL_GPL(snd_soc_register_component); /** * snd_soc_unregister_component - Unregister a component from the ASoC core * */ void snd_soc_unregister_component(struct device *dev) { struct snd_soc_component *cmpnt; list_for_each_entry(cmpnt, &component_list, list) { if (dev == cmpnt->dev && cmpnt->registered_as_component) goto found; } return; found: snd_soc_component_del(cmpnt); snd_soc_component_cleanup(cmpnt); kfree(cmpnt); } EXPORT_SYMBOL_GPL(snd_soc_unregister_component); static int snd_soc_platform_drv_probe(struct snd_soc_component *component) { struct snd_soc_platform *platform = snd_soc_component_to_platform(component); return platform->driver->probe(platform); } static void snd_soc_platform_drv_remove(struct snd_soc_component *component) { struct snd_soc_platform *platform = snd_soc_component_to_platform(component); platform->driver->remove(platform); } /** * snd_soc_add_platform - Add a platform to the ASoC core * @dev: The parent device for the platform * @platform: The platform to add * @platform_driver: The driver for the platform */ int snd_soc_add_platform(struct device *dev, struct snd_soc_platform *platform, const struct snd_soc_platform_driver *platform_drv) { int ret; ret = snd_soc_component_initialize(&platform->component, &platform_drv->component_driver, dev); if (ret) return ret; platform->dev = dev; platform->driver = platform_drv; if (platform_drv->probe) platform->component.probe = snd_soc_platform_drv_probe; if (platform_drv->remove) platform->component.remove = snd_soc_platform_drv_remove; #ifdef CONFIG_DEBUG_FS platform->component.debugfs_prefix = "platform"; #endif mutex_lock(&client_mutex); snd_soc_component_add_unlocked(&platform->component); list_add(&platform->list, &platform_list); mutex_unlock(&client_mutex); dev_dbg(dev, "ASoC: Registered platform '%s'\n", platform->component.name); return 0; } EXPORT_SYMBOL_GPL(snd_soc_add_platform); /** * snd_soc_register_platform - Register a platform with the ASoC core * * @platform: platform to register */ int snd_soc_register_platform(struct device *dev, const struct snd_soc_platform_driver *platform_drv) { struct snd_soc_platform *platform; int ret; dev_dbg(dev, "ASoC: platform register %s\n", dev_name(dev)); platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL); if (platform == NULL) return -ENOMEM; ret = snd_soc_add_platform(dev, platform, platform_drv); if (ret) kfree(platform); return ret; } EXPORT_SYMBOL_GPL(snd_soc_register_platform); /** * snd_soc_remove_platform - Remove a platform from the ASoC core * @platform: the platform to remove */ void snd_soc_remove_platform(struct snd_soc_platform *platform) { mutex_lock(&client_mutex); list_del(&platform->list); snd_soc_component_del_unlocked(&platform->component); mutex_unlock(&client_mutex); dev_dbg(platform->dev, "ASoC: Unregistered platform '%s'\n", platform->component.name); snd_soc_component_cleanup(&platform->component); } EXPORT_SYMBOL_GPL(snd_soc_remove_platform); struct snd_soc_platform *snd_soc_lookup_platform(struct device *dev) { struct snd_soc_platform *platform; list_for_each_entry(platform, &platform_list, list) { if (dev == platform->dev) return platform; } return NULL; } EXPORT_SYMBOL_GPL(snd_soc_lookup_platform); /** * snd_soc_unregister_platform - Unregister a platform from the ASoC core * * @platform: platform to unregister */ void snd_soc_unregister_platform(struct device *dev) { struct snd_soc_platform *platform; platform = snd_soc_lookup_platform(dev); if (!platform) return; snd_soc_remove_platform(platform); kfree(platform); } EXPORT_SYMBOL_GPL(snd_soc_unregister_platform); static u64 codec_format_map[] = { SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE, SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE, SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE, SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE, SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE, SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE, SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE, SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE, SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE, SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE, SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE, SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE, SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE, SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE, SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE, }; /* Fix up the DAI formats for endianness: codecs don't actually see * the endianness of the data but we're using the CPU format * definitions which do need to include endianness so we ensure that * codec DAIs always have both big and little endian variants set. */ static void fixup_codec_formats(struct snd_soc_pcm_stream *stream) { int i; for (i = 0; i < ARRAY_SIZE(codec_format_map); i++) if (stream->formats & codec_format_map[i]) stream->formats |= codec_format_map[i]; } static int snd_soc_codec_drv_probe(struct snd_soc_component *component) { struct snd_soc_codec *codec = snd_soc_component_to_codec(component); return codec->driver->probe(codec); } static void snd_soc_codec_drv_remove(struct snd_soc_component *component) { struct snd_soc_codec *codec = snd_soc_component_to_codec(component); codec->driver->remove(codec); } static int snd_soc_codec_drv_write(struct snd_soc_component *component, unsigned int reg, unsigned int val) { struct snd_soc_codec *codec = snd_soc_component_to_codec(component); return codec->driver->write(codec, reg, val); } static int snd_soc_codec_drv_read(struct snd_soc_component *component, unsigned int reg, unsigned int *val) { struct snd_soc_codec *codec = snd_soc_component_to_codec(component); *val = codec->driver->read(codec, reg); return 0; } static int snd_soc_codec_set_bias_level(struct snd_soc_dapm_context *dapm, enum snd_soc_bias_level level) { struct snd_soc_codec *codec = snd_soc_dapm_to_codec(dapm); return codec->driver->set_bias_level(codec, level); } /** * snd_soc_register_codec - Register a codec with the ASoC core * * @codec: codec to register */ int snd_soc_register_codec(struct device *dev, const struct snd_soc_codec_driver *codec_drv, struct snd_soc_dai_driver *dai_drv, int num_dai) { struct snd_soc_codec *codec; struct snd_soc_dai *dai; int ret, i; dev_dbg(dev, "codec register %s\n", dev_name(dev)); codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL); if (codec == NULL) return -ENOMEM; codec->component.dapm_ptr = &codec->dapm; codec->component.codec = codec; ret = snd_soc_component_initialize(&codec->component, &codec_drv->component_driver, dev); if (ret) goto err_free; if (codec_drv->controls) { codec->component.controls = codec_drv->controls; codec->component.num_controls = codec_drv->num_controls; } if (codec_drv->dapm_widgets) { codec->component.dapm_widgets = codec_drv->dapm_widgets; codec->component.num_dapm_widgets = codec_drv->num_dapm_widgets; } if (codec_drv->dapm_routes) { codec->component.dapm_routes = codec_drv->dapm_routes; codec->component.num_dapm_routes = codec_drv->num_dapm_routes; } if (codec_drv->probe) codec->component.probe = snd_soc_codec_drv_probe; if (codec_drv->remove) codec->component.remove = snd_soc_codec_drv_remove; if (codec_drv->write) codec->component.write = snd_soc_codec_drv_write; if (codec_drv->read) codec->component.read = snd_soc_codec_drv_read; codec->component.ignore_pmdown_time = codec_drv->ignore_pmdown_time; codec->dapm.idle_bias_off = codec_drv->idle_bias_off; codec->dapm.suspend_bias_off = codec_drv->suspend_bias_off; if (codec_drv->seq_notifier) codec->dapm.seq_notifier = codec_drv->seq_notifier; if (codec_drv->set_bias_level) codec->dapm.set_bias_level = snd_soc_codec_set_bias_level; codec->dev = dev; codec->driver = codec_drv; codec->component.val_bytes = codec_drv->reg_word_size; mutex_init(&codec->mutex); #ifdef CONFIG_DEBUG_FS codec->component.init_debugfs = soc_init_codec_debugfs; codec->component.debugfs_prefix = "codec"; #endif if (codec_drv->get_regmap) codec->component.regmap = codec_drv->get_regmap(dev); for (i = 0; i < num_dai; i++) { fixup_codec_formats(&dai_drv[i].playback); fixup_codec_formats(&dai_drv[i].capture); } ret = snd_soc_register_dais(&codec->component, dai_drv, num_dai, false); if (ret < 0) { dev_err(dev, "ASoC: Failed to regster DAIs: %d\n", ret); goto err_cleanup; } list_for_each_entry(dai, &codec->component.dai_list, list) dai->codec = codec; mutex_lock(&client_mutex); snd_soc_component_add_unlocked(&codec->component); list_add(&codec->list, &codec_list); mutex_unlock(&client_mutex); dev_dbg(codec->dev, "ASoC: Registered codec '%s'\n", codec->component.name); return 0; err_cleanup: snd_soc_component_cleanup(&codec->component); err_free: kfree(codec); return ret; } EXPORT_SYMBOL_GPL(snd_soc_register_codec); /** * snd_soc_unregister_codec - Unregister a codec from the ASoC core * * @codec: codec to unregister */ void snd_soc_unregister_codec(struct device *dev) { struct snd_soc_codec *codec; list_for_each_entry(codec, &codec_list, list) { if (dev == codec->dev) goto found; } return; found: mutex_lock(&client_mutex); list_del(&codec->list); snd_soc_component_del_unlocked(&codec->component); mutex_unlock(&client_mutex); dev_dbg(codec->dev, "ASoC: Unregistered codec '%s'\n", codec->component.name); snd_soc_component_cleanup(&codec->component); snd_soc_cache_exit(codec); kfree(codec); } EXPORT_SYMBOL_GPL(snd_soc_unregister_codec); /* Retrieve a card's name from device tree */ int snd_soc_of_parse_card_name(struct snd_soc_card *card, const char *propname) { struct device_node *np; int ret; if (!card->dev) { pr_err("card->dev is not set before calling %s\n", __func__); return -EINVAL; } np = card->dev->of_node; ret = of_property_read_string_index(np, propname, 0, &card->name); /* * EINVAL means the property does not exist. This is fine providing * card->name was previously set, which is checked later in * snd_soc_register_card. */ if (ret < 0 && ret != -EINVAL) { dev_err(card->dev, "ASoC: Property '%s' could not be read: %d\n", propname, ret); return ret; } return 0; } EXPORT_SYMBOL_GPL(snd_soc_of_parse_card_name); static const struct snd_soc_dapm_widget simple_widgets[] = { SND_SOC_DAPM_MIC("Microphone", NULL), SND_SOC_DAPM_LINE("Line", NULL), SND_SOC_DAPM_HP("Headphone", NULL), SND_SOC_DAPM_SPK("Speaker", NULL), }; int snd_soc_of_parse_audio_simple_widgets(struct snd_soc_card *card, const char *propname) { struct device_node *np = card->dev->of_node; struct snd_soc_dapm_widget *widgets; const char *template, *wname; int i, j, num_widgets, ret; num_widgets = of_property_count_strings(np, propname); if (num_widgets < 0) { dev_err(card->dev, "ASoC: Property '%s' does not exist\n", propname); return -EINVAL; } if (num_widgets & 1) { dev_err(card->dev, "ASoC: Property '%s' length is not even\n", propname); return -EINVAL; } num_widgets /= 2; if (!num_widgets) { dev_err(card->dev, "ASoC: Property '%s's length is zero\n", propname); return -EINVAL; } widgets = devm_kcalloc(card->dev, num_widgets, sizeof(*widgets), GFP_KERNEL); if (!widgets) { dev_err(card->dev, "ASoC: Could not allocate memory for widgets\n"); return -ENOMEM; } for (i = 0; i < num_widgets; i++) { ret = of_property_read_string_index(np, propname, 2 * i, &template); if (ret) { dev_err(card->dev, "ASoC: Property '%s' index %d read error:%d\n", propname, 2 * i, ret); return -EINVAL; } for (j = 0; j < ARRAY_SIZE(simple_widgets); j++) { if (!strncmp(template, simple_widgets[j].name, strlen(simple_widgets[j].name))) { widgets[i] = simple_widgets[j]; break; } } if (j >= ARRAY_SIZE(simple_widgets)) { dev_err(card->dev, "ASoC: DAPM widget '%s' is not supported\n", template); return -EINVAL; } ret = of_property_read_string_index(np, propname, (2 * i) + 1, &wname); if (ret) { dev_err(card->dev, "ASoC: Property '%s' index %d read error:%d\n", propname, (2 * i) + 1, ret); return -EINVAL; } widgets[i].name = wname; } card->dapm_widgets = widgets; card->num_dapm_widgets = num_widgets; return 0; } EXPORT_SYMBOL_GPL(snd_soc_of_parse_audio_simple_widgets); int snd_soc_of_parse_tdm_slot(struct device_node *np, unsigned int *slots, unsigned int *slot_width) { u32 val; int ret; if (of_property_read_bool(np, "dai-tdm-slot-num")) { ret = of_property_read_u32(np, "dai-tdm-slot-num", &val); if (ret) return ret; if (slots) *slots = val; } if (of_property_read_bool(np, "dai-tdm-slot-width")) { ret = of_property_read_u32(np, "dai-tdm-slot-width", &val); if (ret) return ret; if (slot_width) *slot_width = val; } return 0; } EXPORT_SYMBOL_GPL(snd_soc_of_parse_tdm_slot); int snd_soc_of_parse_audio_routing(struct snd_soc_card *card, const char *propname) { struct device_node *np = card->dev->of_node; int num_routes; struct snd_soc_dapm_route *routes; int i, ret; num_routes = of_property_count_strings(np, propname); if (num_routes < 0 || num_routes & 1) { dev_err(card->dev, "ASoC: Property '%s' does not exist or its length is not even\n", propname); return -EINVAL; } num_routes /= 2; if (!num_routes) { dev_err(card->dev, "ASoC: Property '%s's length is zero\n", propname); return -EINVAL; } routes = devm_kzalloc(card->dev, num_routes * sizeof(*routes), GFP_KERNEL); if (!routes) { dev_err(card->dev, "ASoC: Could not allocate DAPM route table\n"); return -EINVAL; } for (i = 0; i < num_routes; i++) { ret = of_property_read_string_index(np, propname, 2 * i, &routes[i].sink); if (ret) { dev_err(card->dev, "ASoC: Property '%s' index %d could not be read: %d\n", propname, 2 * i, ret); return -EINVAL; } ret = of_property_read_string_index(np, propname, (2 * i) + 1, &routes[i].source); if (ret) { dev_err(card->dev, "ASoC: Property '%s' index %d could not be read: %d\n", propname, (2 * i) + 1, ret); return -EINVAL; } } card->num_dapm_routes = num_routes; card->dapm_routes = routes; return 0; } EXPORT_SYMBOL_GPL(snd_soc_of_parse_audio_routing); unsigned int snd_soc_of_parse_daifmt(struct device_node *np, const char *prefix, struct device_node **bitclkmaster, struct device_node **framemaster) { int ret, i; char prop[128]; unsigned int format = 0; int bit, frame; const char *str; struct { char *name; unsigned int val; } of_fmt_table[] = { { "i2s", SND_SOC_DAIFMT_I2S }, { "right_j", SND_SOC_DAIFMT_RIGHT_J }, { "left_j", SND_SOC_DAIFMT_LEFT_J }, { "dsp_a", SND_SOC_DAIFMT_DSP_A }, { "dsp_b", SND_SOC_DAIFMT_DSP_B }, { "ac97", SND_SOC_DAIFMT_AC97 }, { "pdm", SND_SOC_DAIFMT_PDM}, { "msb", SND_SOC_DAIFMT_MSB }, { "lsb", SND_SOC_DAIFMT_LSB }, }; if (!prefix) prefix = ""; /* * check "[prefix]format = xxx" * SND_SOC_DAIFMT_FORMAT_MASK area */ snprintf(prop, sizeof(prop), "%sformat", prefix); ret = of_property_read_string(np, prop, &str); if (ret == 0) { for (i = 0; i < ARRAY_SIZE(of_fmt_table); i++) { if (strcmp(str, of_fmt_table[i].name) == 0) { format |= of_fmt_table[i].val; break; } } } /* * check "[prefix]continuous-clock" * SND_SOC_DAIFMT_CLOCK_MASK area */ snprintf(prop, sizeof(prop), "%scontinuous-clock", prefix); if (of_get_property(np, prop, NULL)) format |= SND_SOC_DAIFMT_CONT; else format |= SND_SOC_DAIFMT_GATED; /* * check "[prefix]bitclock-inversion" * check "[prefix]frame-inversion" * SND_SOC_DAIFMT_INV_MASK area */ snprintf(prop, sizeof(prop), "%sbitclock-inversion", prefix); bit = !!of_get_property(np, prop, NULL); snprintf(prop, sizeof(prop), "%sframe-inversion", prefix); frame = !!of_get_property(np, prop, NULL); switch ((bit << 4) + frame) { case 0x11: format |= SND_SOC_DAIFMT_IB_IF; break; case 0x10: format |= SND_SOC_DAIFMT_IB_NF; break; case 0x01: format |= SND_SOC_DAIFMT_NB_IF; break; default: /* SND_SOC_DAIFMT_NB_NF is default */ break; } /* * check "[prefix]bitclock-master" * check "[prefix]frame-master" * SND_SOC_DAIFMT_MASTER_MASK area */ snprintf(prop, sizeof(prop), "%sbitclock-master", prefix); bit = !!of_get_property(np, prop, NULL); if (bit && bitclkmaster) *bitclkmaster = of_parse_phandle(np, prop, 0); snprintf(prop, sizeof(prop), "%sframe-master", prefix); frame = !!of_get_property(np, prop, NULL); if (frame && framemaster) *framemaster = of_parse_phandle(np, prop, 0); switch ((bit << 4) + frame) { case 0x11: format |= SND_SOC_DAIFMT_CBM_CFM; break; case 0x10: format |= SND_SOC_DAIFMT_CBM_CFS; break; case 0x01: format |= SND_SOC_DAIFMT_CBS_CFM; break; default: format |= SND_SOC_DAIFMT_CBS_CFS; break; } return format; } EXPORT_SYMBOL_GPL(snd_soc_of_parse_daifmt); int snd_soc_of_get_dai_name(struct device_node *of_node, const char **dai_name) { struct snd_soc_component *pos; struct of_phandle_args args; int ret; ret = of_parse_phandle_with_args(of_node, "sound-dai", "#sound-dai-cells", 0, &args); if (ret) return ret; ret = -EPROBE_DEFER; mutex_lock(&client_mutex); list_for_each_entry(pos, &component_list, list) { if (pos->dev->of_node != args.np) continue; if (pos->driver->of_xlate_dai_name) { ret = pos->driver->of_xlate_dai_name(pos, &args, dai_name); } else { int id = -1; switch (args.args_count) { case 0: id = 0; /* same as dai_drv[0] */ break; case 1: id = args.args[0]; break; default: /* not supported */ break; } if (id < 0 || id >= pos->num_dai) { ret = -EINVAL; continue; } ret = 0; *dai_name = pos->dai_drv[id].name; if (!*dai_name) *dai_name = pos->name; } break; } mutex_unlock(&client_mutex); of_node_put(args.np); return ret; } EXPORT_SYMBOL_GPL(snd_soc_of_get_dai_name); static int __init snd_soc_init(void) { #ifdef CONFIG_DEBUG_FS snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL); if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) { pr_warn("ASoC: Failed to create debugfs directory\n"); snd_soc_debugfs_root = NULL; } if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL, &codec_list_fops)) pr_warn("ASoC: Failed to create CODEC list debugfs file\n"); if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL, &dai_list_fops)) pr_warn("ASoC: Failed to create DAI list debugfs file\n"); if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL, &platform_list_fops)) pr_warn("ASoC: Failed to create platform list debugfs file\n"); #endif snd_soc_util_init(); return platform_driver_register(&soc_driver); } module_init(snd_soc_init); static void __exit snd_soc_exit(void) { snd_soc_util_exit(); #ifdef CONFIG_DEBUG_FS debugfs_remove_recursive(snd_soc_debugfs_root); #endif platform_driver_unregister(&soc_driver); } module_exit(snd_soc_exit); /* Module information */ MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk"); MODULE_DESCRIPTION("ALSA SoC Core"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:soc-audio");