- 根目录:
- drivers
- mtd
- onenand
- omap2.c
/*
* linux/drivers/mtd/onenand/omap2.c
*
* OneNAND driver for OMAP2 / OMAP3
*
* Copyright © 2005-2006 Nokia Corporation
*
* Author: Jarkko Lavinen <jarkko.lavinen@nokia.com> and Juha Yrjölä
* IRQ and DMA support written by Timo Teras
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; see the file COPYING. If not, write to the Free Software
* Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*/
#include <linux/device.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/onenand.h>
#include <linux/mtd/partitions.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/regulator/consumer.h>
#include <asm/mach/flash.h>
#include <linux/platform_data/mtd-onenand-omap2.h>
#include <asm/gpio.h>
#include <linux/omap-dma.h>
#define DRIVER_NAME "omap2-onenand"
#define ONENAND_BUFRAM_SIZE (1024 * 5)
struct omap2_onenand {
struct platform_device *pdev;
int gpmc_cs;
unsigned long phys_base;
unsigned int mem_size;
int gpio_irq;
struct mtd_info mtd;
struct onenand_chip onenand;
struct completion irq_done;
struct completion dma_done;
int dma_channel;
int freq;
int (*setup)(void __iomem *base, int *freq_ptr);
struct regulator *regulator;
u8 flags;
};
static void omap2_onenand_dma_cb(int lch, u16 ch_status, void *data)
{
struct omap2_onenand *c = data;
complete(&c->dma_done);
}
static irqreturn_t omap2_onenand_interrupt(int irq, void *dev_id)
{
struct omap2_onenand *c = dev_id;
complete(&c->irq_done);
return IRQ_HANDLED;
}
static inline unsigned short read_reg(struct omap2_onenand *c, int reg)
{
return readw(c->onenand.base + reg);
}
static inline void write_reg(struct omap2_onenand *c, unsigned short value,
int reg)
{
writew(value, c->onenand.base + reg);
}
static void wait_err(char *msg, int state, unsigned int ctrl, unsigned int intr)
{
printk(KERN_ERR "onenand_wait: %s! state %d ctrl 0x%04x intr 0x%04x\n",
msg, state, ctrl, intr);
}
static void wait_warn(char *msg, int state, unsigned int ctrl,
unsigned int intr)
{
printk(KERN_WARNING "onenand_wait: %s! state %d ctrl 0x%04x "
"intr 0x%04x\n", msg, state, ctrl, intr);
}
static int omap2_onenand_wait(struct mtd_info *mtd, int state)
{
struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
struct onenand_chip *this = mtd->priv;
unsigned int intr = 0;
unsigned int ctrl, ctrl_mask;
unsigned long timeout;
u32 syscfg;
if (state == FL_RESETING || state == FL_PREPARING_ERASE ||
state == FL_VERIFYING_ERASE) {
int i = 21;
unsigned int intr_flags = ONENAND_INT_MASTER;
switch (state) {
case FL_RESETING:
intr_flags |= ONENAND_INT_RESET;
break;
case FL_PREPARING_ERASE:
intr_flags |= ONENAND_INT_ERASE;
break;
case FL_VERIFYING_ERASE:
i = 101;
break;
}
while (--i) {
udelay(1);
intr = read_reg(c, ONENAND_REG_INTERRUPT);
if (intr & ONENAND_INT_MASTER)
break;
}
ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
if (ctrl & ONENAND_CTRL_ERROR) {
wait_err("controller error", state, ctrl, intr);
return -EIO;
}
if ((intr & intr_flags) == intr_flags)
return 0;
/* Continue in wait for interrupt branch */
}
if (state != FL_READING) {
int result;
/* Turn interrupts on */
syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
if (!(syscfg & ONENAND_SYS_CFG1_IOBE)) {
syscfg |= ONENAND_SYS_CFG1_IOBE;
write_reg(c, syscfg, ONENAND_REG_SYS_CFG1);
if (c->flags & ONENAND_IN_OMAP34XX)
/* Add a delay to let GPIO settle */
syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
}
reinit_completion(&c->irq_done);
if (c->gpio_irq) {
result = gpio_get_value(c->gpio_irq);
if (result == -1) {
ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
intr = read_reg(c, ONENAND_REG_INTERRUPT);
wait_err("gpio error", state, ctrl, intr);
return -EIO;
}
} else
result = 0;
if (result == 0) {
int retry_cnt = 0;
retry:
result = wait_for_completion_timeout(&c->irq_done,
msecs_to_jiffies(20));
if (result == 0) {
/* Timeout after 20ms */
ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
if (ctrl & ONENAND_CTRL_ONGO &&
!this->ongoing) {
/*
* The operation seems to be still going
* so give it some more time.
*/
retry_cnt += 1;
if (retry_cnt < 3)
goto retry;
intr = read_reg(c,
ONENAND_REG_INTERRUPT);
wait_err("timeout", state, ctrl, intr);
return -EIO;
}
intr = read_reg(c, ONENAND_REG_INTERRUPT);
if ((intr & ONENAND_INT_MASTER) == 0)
wait_warn("timeout", state, ctrl, intr);
}
}
} else {
int retry_cnt = 0;
/* Turn interrupts off */
syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
syscfg &= ~ONENAND_SYS_CFG1_IOBE;
write_reg(c, syscfg, ONENAND_REG_SYS_CFG1);
timeout = jiffies + msecs_to_jiffies(20);
while (1) {
if (time_before(jiffies, timeout)) {
intr = read_reg(c, ONENAND_REG_INTERRUPT);
if (intr & ONENAND_INT_MASTER)
break;
} else {
/* Timeout after 20ms */
ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
if (ctrl & ONENAND_CTRL_ONGO) {
/*
* The operation seems to be still going
* so give it some more time.
*/
retry_cnt += 1;
if (retry_cnt < 3) {
timeout = jiffies +
msecs_to_jiffies(20);
continue;
}
}
break;
}
}
}
intr = read_reg(c, ONENAND_REG_INTERRUPT);
ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
if (intr & ONENAND_INT_READ) {
int ecc = read_reg(c, ONENAND_REG_ECC_STATUS);
if (ecc) {
unsigned int addr1, addr8;
addr1 = read_reg(c, ONENAND_REG_START_ADDRESS1);
addr8 = read_reg(c, ONENAND_REG_START_ADDRESS8);
if (ecc & ONENAND_ECC_2BIT_ALL) {
printk(KERN_ERR "onenand_wait: ECC error = "
"0x%04x, addr1 %#x, addr8 %#x\n",
ecc, addr1, addr8);
mtd->ecc_stats.failed++;
return -EBADMSG;
} else if (ecc & ONENAND_ECC_1BIT_ALL) {
printk(KERN_NOTICE "onenand_wait: correctable "
"ECC error = 0x%04x, addr1 %#x, "
"addr8 %#x\n", ecc, addr1, addr8);
mtd->ecc_stats.corrected++;
}
}
} else if (state == FL_READING) {
wait_err("timeout", state, ctrl, intr);
return -EIO;
}
if (ctrl & ONENAND_CTRL_ERROR) {
wait_err("controller error", state, ctrl, intr);
if (ctrl & ONENAND_CTRL_LOCK)
printk(KERN_ERR "onenand_wait: "
"Device is write protected!!!\n");
return -EIO;
}
ctrl_mask = 0xFE9F;
if (this->ongoing)
ctrl_mask &= ~0x8000;
if (ctrl & ctrl_mask)
wait_warn("unexpected controller status", state, ctrl, intr);
return 0;
}
static inline int omap2_onenand_bufferram_offset(struct mtd_info *mtd, int area)
{
struct onenand_chip *this = mtd->priv;
if (ONENAND_CURRENT_BUFFERRAM(this)) {
if (area == ONENAND_DATARAM)
return this->writesize;
if (area == ONENAND_SPARERAM)
return mtd->oobsize;
}
return 0;
}
#if defined(CONFIG_ARCH_OMAP3) || defined(MULTI_OMAP2)
static int omap3_onenand_read_bufferram(struct mtd_info *mtd, int area,
unsigned char *buffer, int offset,
size_t count)
{
struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
struct onenand_chip *this = mtd->priv;
dma_addr_t dma_src, dma_dst;
int bram_offset;
unsigned long timeout;
void *buf = (void *)buffer;
size_t xtra;
volatile unsigned *done;
bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
if (bram_offset & 3 || (size_t)buf & 3 || count < 384)
goto out_copy;
/* panic_write() may be in an interrupt context */
if (in_interrupt() || oops_in_progress)
goto out_copy;
if (buf >= high_memory) {
struct page *p1;
if (((size_t)buf & PAGE_MASK) !=
((size_t)(buf + count - 1) & PAGE_MASK))
goto out_copy;
p1 = vmalloc_to_page(buf);
if (!p1)
goto out_copy;
buf = page_address(p1) + ((size_t)buf & ~PAGE_MASK);
}
xtra = count & 3;
if (xtra) {
count -= xtra;
memcpy(buf + count, this->base + bram_offset + count, xtra);
}
dma_src = c->phys_base + bram_offset;
dma_dst = dma_map_single(&c->pdev->dev, buf, count, DMA_FROM_DEVICE);
if (dma_mapping_error(&c->pdev->dev, dma_dst)) {
dev_err(&c->pdev->dev,
"Couldn't DMA map a %d byte buffer\n",
count);
goto out_copy;
}
omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S32,
count >> 2, 1, 0, 0, 0);
omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
dma_src, 0, 0);
omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
dma_dst, 0, 0);
reinit_completion(&c->dma_done);
omap_start_dma(c->dma_channel);
timeout = jiffies + msecs_to_jiffies(20);
done = &c->dma_done.done;
while (time_before(jiffies, timeout))
if (*done)
break;
dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_FROM_DEVICE);
if (!*done) {
dev_err(&c->pdev->dev, "timeout waiting for DMA\n");
goto out_copy;
}
return 0;
out_copy:
memcpy(buf, this->base + bram_offset, count);
return 0;
}
static int omap3_onenand_write_bufferram(struct mtd_info *mtd, int area,
const unsigned char *buffer,
int offset, size_t count)
{
struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
struct onenand_chip *this = mtd->priv;
dma_addr_t dma_src, dma_dst;
int bram_offset;
unsigned long timeout;
void *buf = (void *)buffer;
volatile unsigned *done;
bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
if (bram_offset & 3 || (size_t)buf & 3 || count < 384)
goto out_copy;
/* panic_write() may be in an interrupt context */
if (in_interrupt() || oops_in_progress)
goto out_copy;
if (buf >= high_memory) {
struct page *p1;
if (((size_t)buf & PAGE_MASK) !=
((size_t)(buf + count - 1) & PAGE_MASK))
goto out_copy;
p1 = vmalloc_to_page(buf);
if (!p1)
goto out_copy;
buf = page_address(p1) + ((size_t)buf & ~PAGE_MASK);
}
dma_src = dma_map_single(&c->pdev->dev, buf, count, DMA_TO_DEVICE);
dma_dst = c->phys_base + bram_offset;
if (dma_mapping_error(&c->pdev->dev, dma_src)) {
dev_err(&c->pdev->dev,
"Couldn't DMA map a %d byte buffer\n",
count);
return -1;
}
omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S32,
count >> 2, 1, 0, 0, 0);
omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
dma_src, 0, 0);
omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
dma_dst, 0, 0);
reinit_completion(&c->dma_done);
omap_start_dma(c->dma_channel);
timeout = jiffies + msecs_to_jiffies(20);
done = &c->dma_done.done;
while (time_before(jiffies, timeout))
if (*done)
break;
dma_unmap_single(&c->pdev->dev, dma_src, count, DMA_TO_DEVICE);
if (!*done) {
dev_err(&c->pdev->dev, "timeout waiting for DMA\n");
goto out_copy;
}
return 0;
out_copy:
memcpy(this->base + bram_offset, buf, count);
return 0;
}
#else
static int omap3_onenand_read_bufferram(struct mtd_info *mtd, int area,
unsigned char *buffer, int offset,
size_t count)
{
return -ENOSYS;
}
static int omap3_onenand_write_bufferram(struct mtd_info *mtd, int area,
const unsigned char *buffer,
int offset, size_t count)
{
return -ENOSYS;
}
#endif
#if defined(CONFIG_ARCH_OMAP2) || defined(MULTI_OMAP2)
static int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area,
unsigned char *buffer, int offset,
size_t count)
{
struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
struct onenand_chip *this = mtd->priv;
dma_addr_t dma_src, dma_dst;
int bram_offset;
bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
/* DMA is not used. Revisit PM requirements before enabling it. */
if (1 || (c->dma_channel < 0) ||
((void *) buffer >= (void *) high_memory) || (bram_offset & 3) ||
(((unsigned int) buffer) & 3) || (count < 1024) || (count & 3)) {
memcpy(buffer, (__force void *)(this->base + bram_offset),
count);
return 0;
}
dma_src = c->phys_base + bram_offset;
dma_dst = dma_map_single(&c->pdev->dev, buffer, count,
DMA_FROM_DEVICE);
if (dma_mapping_error(&c->pdev->dev, dma_dst)) {
dev_err(&c->pdev->dev,
"Couldn't DMA map a %d byte buffer\n",
count);
return -1;
}
omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S32,
count / 4, 1, 0, 0, 0);
omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
dma_src, 0, 0);
omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
dma_dst, 0, 0);
reinit_completion(&c->dma_done);
omap_start_dma(c->dma_channel);
wait_for_completion(&c->dma_done);
dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_FROM_DEVICE);
return 0;
}
static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area,
const unsigned char *buffer,
int offset, size_t count)
{
struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
struct onenand_chip *this = mtd->priv;
dma_addr_t dma_src, dma_dst;
int bram_offset;
bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
/* DMA is not used. Revisit PM requirements before enabling it. */
if (1 || (c->dma_channel < 0) ||
((void *) buffer >= (void *) high_memory) || (bram_offset & 3) ||
(((unsigned int) buffer) & 3) || (count < 1024) || (count & 3)) {
memcpy((__force void *)(this->base + bram_offset), buffer,
count);
return 0;
}
dma_src = dma_map_single(&c->pdev->dev, (void *) buffer, count,
DMA_TO_DEVICE);
dma_dst = c->phys_base + bram_offset;
if (dma_mapping_error(&c->pdev->dev, dma_src)) {
dev_err(&c->pdev->dev,
"Couldn't DMA map a %d byte buffer\n",
count);
return -1;
}
omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S16,
count / 2, 1, 0, 0, 0);
omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
dma_src, 0, 0);
omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
dma_dst, 0, 0);
reinit_completion(&c->dma_done);
omap_start_dma(c->dma_channel);
wait_for_completion(&c->dma_done);
dma_unmap_single(&c->pdev->dev, dma_src, count, DMA_TO_DEVICE);
return 0;
}
#else
static int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area,
unsigned char *buffer, int offset,
size_t count)
{
return -ENOSYS;
}
static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area,
const unsigned char *buffer,
int offset, size_t count)
{
return -ENOSYS;
}
#endif
static struct platform_driver omap2_onenand_driver;
static void omap2_onenand_shutdown(struct platform_device *pdev)
{
struct omap2_onenand *c = dev_get_drvdata(&pdev->dev);
/* With certain content in the buffer RAM, the OMAP boot ROM code
* can recognize the flash chip incorrectly. Zero it out before
* soft reset.
*/
memset((__force void *)c->onenand.base, 0, ONENAND_BUFRAM_SIZE);
}
static int omap2_onenand_enable(struct mtd_info *mtd)
{
int ret;
struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
ret = regulator_enable(c->regulator);
if (ret != 0)
dev_err(&c->pdev->dev, "can't enable regulator\n");
return ret;
}
static int omap2_onenand_disable(struct mtd_info *mtd)
{
int ret;
struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
ret = regulator_disable(c->regulator);
if (ret != 0)
dev_err(&c->pdev->dev, "can't disable regulator\n");
return ret;
}
static int omap2_onenand_probe(struct platform_device *pdev)
{
struct omap_onenand_platform_data *pdata;
struct omap2_onenand *c;
struct onenand_chip *this;
int r;
struct resource *res;
struct mtd_part_parser_data ppdata = {};
pdata = dev_get_platdata(&pdev->dev);
if (pdata == NULL) {
dev_err(&pdev->dev, "platform data missing\n");
return -ENODEV;
}
c = kzalloc(sizeof(struct omap2_onenand), GFP_KERNEL);
if (!c)
return -ENOMEM;
init_completion(&c->irq_done);
init_completion(&c->dma_done);
c->flags = pdata->flags;
c->gpmc_cs = pdata->cs;
c->gpio_irq = pdata->gpio_irq;
c->dma_channel = pdata->dma_channel;
if (c->dma_channel < 0) {
/* if -1, don't use DMA */
c->gpio_irq = 0;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL) {
r = -EINVAL;
dev_err(&pdev->dev, "error getting memory resource\n");
goto err_kfree;
}
c->phys_base = res->start;
c->mem_size = resource_size(res);
if (request_mem_region(c->phys_base, c->mem_size,
pdev->dev.driver->name) == NULL) {
dev_err(&pdev->dev, "Cannot reserve memory region at 0x%08lx, size: 0x%x\n",
c->phys_base, c->mem_size);
r = -EBUSY;
goto err_kfree;
}
c->onenand.base = ioremap(c->phys_base, c->mem_size);
if (c->onenand.base == NULL) {
r = -ENOMEM;
goto err_release_mem_region;
}
if (pdata->onenand_setup != NULL) {
r = pdata->onenand_setup(c->onenand.base, &c->freq);
if (r < 0) {
dev_err(&pdev->dev, "Onenand platform setup failed: "
"%d\n", r);
goto err_iounmap;
}
c->setup = pdata->onenand_setup;
}
if (c->gpio_irq) {
if ((r = gpio_request(c->gpio_irq, "OneNAND irq")) < 0) {
dev_err(&pdev->dev, "Failed to request GPIO%d for "
"OneNAND\n", c->gpio_irq);
goto err_iounmap;
}
gpio_direction_input(c->gpio_irq);
if ((r = request_irq(gpio_to_irq(c->gpio_irq),
omap2_onenand_interrupt, IRQF_TRIGGER_RISING,
pdev->dev.driver->name, c)) < 0)
goto err_release_gpio;
}
if (c->dma_channel >= 0) {
r = omap_request_dma(0, pdev->dev.driver->name,
omap2_onenand_dma_cb, (void *) c,
&c->dma_channel);
if (r == 0) {
omap_set_dma_write_mode(c->dma_channel,
OMAP_DMA_WRITE_NON_POSTED);
omap_set_dma_src_data_pack(c->dma_channel, 1);
omap_set_dma_src_burst_mode(c->dma_channel,
OMAP_DMA_DATA_BURST_8);
omap_set_dma_dest_data_pack(c->dma_channel, 1);
omap_set_dma_dest_burst_mode(c->dma_channel,
OMAP_DMA_DATA_BURST_8);
} else {
dev_info(&pdev->dev,
"failed to allocate DMA for OneNAND, "
"using PIO instead\n");
c->dma_channel = -1;
}
}
dev_info(&pdev->dev, "initializing on CS%d, phys base 0x%08lx, virtual "
"base %p, freq %d MHz\n", c->gpmc_cs, c->phys_base,
c->onenand.base, c->freq);
c->pdev = pdev;
c->mtd.name = dev_name(&pdev->dev);
c->mtd.priv = &c->onenand;
c->mtd.owner = THIS_MODULE;
c->mtd.dev.parent = &pdev->dev;
this = &c->onenand;
if (c->dma_channel >= 0) {
this->wait = omap2_onenand_wait;
if (c->flags & ONENAND_IN_OMAP34XX) {
this->read_bufferram = omap3_onenand_read_bufferram;
this->write_bufferram = omap3_onenand_write_bufferram;
} else {
this->read_bufferram = omap2_onenand_read_bufferram;
this->write_bufferram = omap2_onenand_write_bufferram;
}
}
if (pdata->regulator_can_sleep) {
c->regulator = regulator_get(&pdev->dev, "vonenand");
if (IS_ERR(c->regulator)) {
dev_err(&pdev->dev, "Failed to get regulator\n");
r = PTR_ERR(c->regulator);
goto err_release_dma;
}
c->onenand.enable = omap2_onenand_enable;
c->onenand.disable = omap2_onenand_disable;
}
if (pdata->skip_initial_unlocking)
this->options |= ONENAND_SKIP_INITIAL_UNLOCKING;
if ((r = onenand_scan(&c->mtd, 1)) < 0)
goto err_release_regulator;
ppdata.of_node = pdata->of_node;
r = mtd_device_parse_register(&c->mtd, NULL, &ppdata,
pdata ? pdata->parts : NULL,
pdata ? pdata->nr_parts : 0);
if (r)
goto err_release_onenand;
platform_set_drvdata(pdev, c);
return 0;
err_release_onenand:
onenand_release(&c->mtd);
err_release_regulator:
regulator_put(c->regulator);
err_release_dma:
if (c->dma_channel != -1)
omap_free_dma(c->dma_channel);
if (c->gpio_irq)
free_irq(gpio_to_irq(c->gpio_irq), c);
err_release_gpio:
if (c->gpio_irq)
gpio_free(c->gpio_irq);
err_iounmap:
iounmap(c->onenand.base);
err_release_mem_region:
release_mem_region(c->phys_base, c->mem_size);
err_kfree:
kfree(c);
return r;
}
static int omap2_onenand_remove(struct platform_device *pdev)
{
struct omap2_onenand *c = dev_get_drvdata(&pdev->dev);
onenand_release(&c->mtd);
regulator_put(c->regulator);
if (c->dma_channel != -1)
omap_free_dma(c->dma_channel);
omap2_onenand_shutdown(pdev);
if (c->gpio_irq) {
free_irq(gpio_to_irq(c->gpio_irq), c);
gpio_free(c->gpio_irq);
}
iounmap(c->onenand.base);
release_mem_region(c->phys_base, c->mem_size);
kfree(c);
return 0;
}
static struct platform_driver omap2_onenand_driver = {
.probe = omap2_onenand_probe,
.remove = omap2_onenand_remove,
.shutdown = omap2_onenand_shutdown,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
},
};
module_platform_driver(omap2_onenand_driver);
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Jarkko Lavinen <jarkko.lavinen@nokia.com>");
MODULE_DESCRIPTION("Glue layer for OneNAND flash on OMAP2 / OMAP3");