Kernel  |  3.18

下载     查看原文件
C++程序  |  746行  |  21.79 KB
/******************************************************************************
 *
 * Copyright(c) 2007 - 2010 Realtek Corporation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
 *
 * Modifications for inclusion into the Linux staging tree are
 * Copyright(c) 2010 Larry Finger. All rights reserved.
 *
 * Contact information:
 * WLAN FAE <wlanfae@realtek.com>
 * Larry Finger <Larry.Finger@lwfinger.net>
 *
 ******************************************************************************/
#define _RTL871X_MP_C_

#include "osdep_service.h"
#include "drv_types.h"
#include "rtl871x_mp_phy_regdef.h"
#include "rtl8712_cmd.h"

static void _init_mp_priv_(struct mp_priv *pmp_priv)
{
	pmp_priv->mode = _LOOPBOOK_MODE_;
	pmp_priv->curr_ch = 1;
	pmp_priv->curr_modem = MIXED_PHY;
	pmp_priv->curr_rateidx = 0;
	pmp_priv->curr_txpoweridx = 0x14;
	pmp_priv->antenna_tx = ANTENNA_A;
	pmp_priv->antenna_rx = ANTENNA_AB;
	pmp_priv->check_mp_pkt = 0;
	pmp_priv->tx_pktcount = 0;
	pmp_priv->rx_pktcount = 0;
	pmp_priv->rx_crcerrpktcount = 0;
}

static int init_mp_priv(struct mp_priv *pmp_priv)
{
	int i, res;
	struct mp_xmit_frame *pmp_xmitframe;

	_init_mp_priv_(pmp_priv);
	_init_queue(&pmp_priv->free_mp_xmitqueue);
	pmp_priv->pallocated_mp_xmitframe_buf = NULL;
	pmp_priv->pallocated_mp_xmitframe_buf = kmalloc(NR_MP_XMITFRAME *
				sizeof(struct mp_xmit_frame) + 4,
				GFP_ATOMIC);
	if (pmp_priv->pallocated_mp_xmitframe_buf == NULL) {
		res = _FAIL;
		goto _exit_init_mp_priv;
	}
	pmp_priv->pmp_xmtframe_buf = pmp_priv->pallocated_mp_xmitframe_buf +
			 4 -
			 ((addr_t)(pmp_priv->pallocated_mp_xmitframe_buf) & 3);
	pmp_xmitframe = (struct mp_xmit_frame *)pmp_priv->pmp_xmtframe_buf;
	for (i = 0; i < NR_MP_XMITFRAME; i++) {
		INIT_LIST_HEAD(&(pmp_xmitframe->list));
		list_add_tail(&(pmp_xmitframe->list),
				 &(pmp_priv->free_mp_xmitqueue.queue));
		pmp_xmitframe->pkt = NULL;
		pmp_xmitframe->frame_tag = MP_FRAMETAG;
		pmp_xmitframe->padapter = pmp_priv->papdater;
		pmp_xmitframe++;
	}
	pmp_priv->free_mp_xmitframe_cnt = NR_MP_XMITFRAME;
	res = _SUCCESS;
_exit_init_mp_priv:
	return res;
}

static int free_mp_priv(struct mp_priv *pmp_priv)
{
	kfree(pmp_priv->pallocated_mp_xmitframe_buf);
	return 0;
}

void mp871xinit(struct _adapter *padapter)
{
	struct mp_priv *pmppriv = &padapter->mppriv;

	pmppriv->papdater = padapter;
	init_mp_priv(pmppriv);
}

void mp871xdeinit(struct _adapter *padapter)
{
	struct mp_priv *pmppriv = &padapter->mppriv;

	free_mp_priv(pmppriv);
}

/*
 * Special for bb and rf reg read/write
 */
static u32 fw_iocmd_read(struct _adapter *pAdapter, struct IOCMD_STRUCT iocmd)
{
	u32 cmd32 = 0, val32 = 0;
	u8 iocmd_class	= iocmd.cmdclass;
	u16 iocmd_value	= iocmd.value;
	u8 iocmd_idx	= iocmd.index;

	cmd32 = (iocmd_class << 24) | (iocmd_value << 8) | iocmd_idx;
	if (r8712_fw_cmd(pAdapter, cmd32))
		r8712_fw_cmd_data(pAdapter, &val32, 1);
	else
		val32 = 0;
	return val32;
}

static u8 fw_iocmd_write(struct _adapter *pAdapter,
			 struct IOCMD_STRUCT iocmd, u32 value)
{
	u32 cmd32 = 0;
	u8 iocmd_class	= iocmd.cmdclass;
	u32 iocmd_value	= iocmd.value;
	u8 iocmd_idx	= iocmd.index;

	r8712_fw_cmd_data(pAdapter, &value, 0);
	msleep(100);
	cmd32 = (iocmd_class << 24) | (iocmd_value << 8) | iocmd_idx;
	return r8712_fw_cmd(pAdapter, cmd32);
}

/* offset : 0X800~0XFFF */
u32 r8712_bb_reg_read(struct _adapter *pAdapter, u16 offset)
{
	u8 shift = offset & 0x0003;	/* 4 byte access */
	u16 bb_addr = offset & 0x0FFC;	/* 4 byte access */
	u32 bb_val = 0;
	struct IOCMD_STRUCT iocmd;

	iocmd.cmdclass	= IOCMD_CLASS_BB_RF;
	iocmd.value	= bb_addr;
	iocmd.index	= IOCMD_BB_READ_IDX;
	bb_val = fw_iocmd_read(pAdapter, iocmd);
	if (shift != 0) {
		u32 bb_val2 = 0;

		bb_val >>= (shift * 8);
		iocmd.value += 4;
		bb_val2 = fw_iocmd_read(pAdapter, iocmd);
		bb_val2 <<= ((4 - shift) * 8);
		bb_val |= bb_val2;
	}
	return bb_val;
}

/* offset : 0X800~0XFFF */
u8 r8712_bb_reg_write(struct _adapter *pAdapter, u16 offset, u32 value)
{
	u8 shift = offset & 0x0003;	/* 4 byte access */
	u16 bb_addr = offset & 0x0FFC;	/* 4 byte access */
	struct IOCMD_STRUCT iocmd;

	iocmd.cmdclass	= IOCMD_CLASS_BB_RF;
	iocmd.value	= bb_addr;
	iocmd.index	= IOCMD_BB_WRITE_IDX;
	if (shift != 0) {
		u32 oldValue = 0;
		u32 newValue = value;

		oldValue = r8712_bb_reg_read(pAdapter, iocmd.value);
		oldValue &= (0xFFFFFFFF >> ((4 - shift) * 8));
		value = oldValue | (newValue << (shift * 8));
		if (fw_iocmd_write(pAdapter, iocmd, value) == false)
			return false;
		iocmd.value += 4;
		oldValue = r8712_bb_reg_read(pAdapter, iocmd.value);
		oldValue &= (0xFFFFFFFF << (shift * 8));
		value = oldValue | (newValue >> ((4 - shift) * 8));
	}
	return fw_iocmd_write(pAdapter, iocmd, value);
}

/* offset : 0x00 ~ 0xFF */
u32 r8712_rf_reg_read(struct _adapter *pAdapter, u8 path, u8 offset)
{
	u16 rf_addr = (path << 8) | offset;
	struct IOCMD_STRUCT iocmd;

	iocmd.cmdclass	= IOCMD_CLASS_BB_RF;
	iocmd.value	= rf_addr;
	iocmd.index	= IOCMD_RF_READ_IDX;
	return fw_iocmd_read(pAdapter, iocmd);
}

u8 r8712_rf_reg_write(struct _adapter *pAdapter, u8 path, u8 offset, u32 value)
{
	u16 rf_addr = (path << 8) | offset;
	struct IOCMD_STRUCT iocmd;

	iocmd.cmdclass	= IOCMD_CLASS_BB_RF;
	iocmd.value	= rf_addr;
	iocmd.index	= IOCMD_RF_WRIT_IDX;
	return fw_iocmd_write(pAdapter, iocmd, value);
}

static u32 bitshift(u32 bitmask)
{
	u32 i;

	for (i = 0; i <= 31; i++)
		if (((bitmask>>i) &  0x1) == 1)
			break;
	return i;
}

static u32 get_bb_reg(struct _adapter *pAdapter, u16 offset, u32 bitmask)
{
	u32 org_value, bit_shift, new_value;

	org_value = r8712_bb_reg_read(pAdapter, offset);
	bit_shift = bitshift(bitmask);
	new_value = (org_value & bitmask) >> bit_shift;
	return new_value;
}

static u8 set_bb_reg(struct _adapter *pAdapter,
		     u16 offset,
		     u32 bitmask,
		     u32 value)
{
	u32 org_value, bit_shift, new_value;

	if (bitmask != bMaskDWord) {
		org_value = r8712_bb_reg_read(pAdapter, offset);
		bit_shift = bitshift(bitmask);
		new_value = ((org_value & (~bitmask)) | (value << bit_shift));
	} else
		new_value = value;
	return r8712_bb_reg_write(pAdapter, offset, new_value);
}

static u32 get_rf_reg(struct _adapter *pAdapter, u8 path, u8 offset,
		      u32 bitmask)
{
	u32 org_value, bit_shift, new_value;

	org_value = r8712_rf_reg_read(pAdapter, path, offset);
	bit_shift = bitshift(bitmask);
	new_value = (org_value & bitmask) >> bit_shift;
	return new_value;
}

static u8 set_rf_reg(struct _adapter *pAdapter, u8 path, u8 offset, u32 bitmask,
	      u32 value)
{
	u32 org_value, bit_shift, new_value;

	if (bitmask != bMaskDWord) {
		org_value = r8712_rf_reg_read(pAdapter, path, offset);
		bit_shift = bitshift(bitmask);
		new_value = ((org_value & (~bitmask)) | (value << bit_shift));
	} else
		new_value = value;
	return r8712_rf_reg_write(pAdapter, path, offset, new_value);
}

/*
 * SetChannel
 * Description
 *	Use H2C command to change channel,
 *	not only modify rf register, but also other setting need to be done.
 */
void r8712_SetChannel(struct _adapter *pAdapter)
{
	struct cmd_priv *pcmdpriv = &pAdapter->cmdpriv;
	struct cmd_obj *pcmd = NULL;
	struct SetChannel_parm *pparm = NULL;
	u16 code = GEN_CMD_CODE(_SetChannel);

	pcmd = kmalloc(sizeof(*pcmd), GFP_ATOMIC);
	if (pcmd == NULL)
		return;
	pparm = kmalloc(sizeof(*pparm), GFP_ATOMIC);
	if (pparm == NULL) {
		kfree(pcmd);
		return;
	}
	pparm->curr_ch = pAdapter->mppriv.curr_ch;
	init_h2fwcmd_w_parm_no_rsp(pcmd, pparm, code);
	r8712_enqueue_cmd(pcmdpriv, pcmd);
}

static void SetCCKTxPower(struct _adapter *pAdapter, u8 TxPower)
{
	u16 TxAGC = 0;

	TxAGC = TxPower;
	set_bb_reg(pAdapter, rTxAGC_CCK_Mcs32, bTxAGCRateCCK, TxAGC);
}

static void SetOFDMTxPower(struct _adapter *pAdapter, u8 TxPower)
{
	u32 TxAGC = 0;

	TxAGC |= ((TxPower<<24)|(TxPower<<16)|(TxPower<<8)|TxPower);
	set_bb_reg(pAdapter, rTxAGC_Rate18_06, bTxAGCRate18_06, TxAGC);
	set_bb_reg(pAdapter, rTxAGC_Rate54_24, bTxAGCRate54_24, TxAGC);
	set_bb_reg(pAdapter, rTxAGC_Mcs03_Mcs00, bTxAGCRateMCS3_MCS0, TxAGC);
	set_bb_reg(pAdapter, rTxAGC_Mcs07_Mcs04, bTxAGCRateMCS7_MCS4, TxAGC);
	set_bb_reg(pAdapter, rTxAGC_Mcs11_Mcs08, bTxAGCRateMCS11_MCS8, TxAGC);
	set_bb_reg(pAdapter, rTxAGC_Mcs15_Mcs12, bTxAGCRateMCS15_MCS12, TxAGC);
}

void r8712_SetTxPower(struct _adapter *pAdapter)
{
	u8 TxPower = pAdapter->mppriv.curr_txpoweridx;

	SetCCKTxPower(pAdapter, TxPower);
	SetOFDMTxPower(pAdapter, TxPower);
}

void r8712_SetTxAGCOffset(struct _adapter *pAdapter, u32 ulTxAGCOffset)
{
	u32 TxAGCOffset_B, TxAGCOffset_C, TxAGCOffset_D, tmpAGC;

	TxAGCOffset_B = (ulTxAGCOffset&0x000000ff);
	TxAGCOffset_C = ((ulTxAGCOffset&0x0000ff00)>>8);
	TxAGCOffset_D = ((ulTxAGCOffset&0x00ff0000)>>16);
	tmpAGC = (TxAGCOffset_D<<8 | TxAGCOffset_C<<4 | TxAGCOffset_B);
	set_bb_reg(pAdapter, rFPGA0_TxGainStage,
			(bXBTxAGC|bXCTxAGC|bXDTxAGC), tmpAGC);
}

void r8712_SetDataRate(struct _adapter *pAdapter)
{
	u8 path = RF_PATH_A;
	u8 offset = RF_SYN_G2;
	u32 value;

	value = (pAdapter->mppriv.curr_rateidx < 4) ? 0x4440 : 0xF200;
	r8712_rf_reg_write(pAdapter, path, offset, value);
}

void r8712_SwitchBandwidth(struct _adapter *pAdapter)
{
	/* 3 1.Set MAC register : BWOPMODE  bit2:1 20MhzBW */
	u8 regBwOpMode = 0;
	u8 Bandwidth = pAdapter->mppriv.curr_bandwidth;

	regBwOpMode = r8712_read8(pAdapter, 0x10250203);
	if (Bandwidth == HT_CHANNEL_WIDTH_20)
		regBwOpMode |= BIT(2);
	else
		regBwOpMode &= ~(BIT(2));
	r8712_write8(pAdapter, 0x10250203, regBwOpMode);
	/* 3 2.Set PHY related register */
	switch (Bandwidth) {
	/* 20 MHz channel*/
	case HT_CHANNEL_WIDTH_20:
		set_bb_reg(pAdapter, rFPGA0_RFMOD, bRFMOD, 0x0);
		set_bb_reg(pAdapter, rFPGA1_RFMOD, bRFMOD, 0x0);
		/* Use PHY_REG.txt default value. Do not need to change.
		 * Correct the tx power for CCK rate in 40M.
		 * It is set in Tx descriptor for 8192x series
		 */
		set_bb_reg(pAdapter, rFPGA0_AnalogParameter2, bMaskDWord, 0x58);
		break;
	/* 40 MHz channel*/
	case HT_CHANNEL_WIDTH_40:
		set_bb_reg(pAdapter, rFPGA0_RFMOD, bRFMOD, 0x1);
		set_bb_reg(pAdapter, rFPGA1_RFMOD, bRFMOD, 0x1);
		/* Use PHY_REG.txt default value. Do not need to change.
		 * Correct the tx power for CCK rate in 40M.
		 * Set Control channel to upper or lower. These settings are
		 * required only for 40MHz */
		set_bb_reg(pAdapter, rCCK0_System, bCCKSideBand,
			   (HAL_PRIME_CHNL_OFFSET_DONT_CARE>>1));
		set_bb_reg(pAdapter, rOFDM1_LSTF, 0xC00,
			   HAL_PRIME_CHNL_OFFSET_DONT_CARE);
		set_bb_reg(pAdapter, rFPGA0_AnalogParameter2, bMaskDWord, 0x18);
		break;
	default:
		break;
	}

	/* 3 3.Set RF related register */
	switch (Bandwidth) {
	case HT_CHANNEL_WIDTH_20:
		set_rf_reg(pAdapter, RF_PATH_A, RF_CHNLBW,
			   BIT(10) | BIT(11), 0x01);
		break;
	case HT_CHANNEL_WIDTH_40:
		set_rf_reg(pAdapter, RF_PATH_A, RF_CHNLBW,
			   BIT(10) | BIT(11), 0x00);
		break;
	default:
		break;
	}
}
/*------------------------------Define structure----------------------------*/
struct R_ANTENNA_SELECT_OFDM {
	u32	r_tx_antenna:4;
	u32	r_ant_l:4;
	u32	r_ant_non_ht:4;
	u32	r_ant_ht1:4;
	u32	r_ant_ht2:4;
	u32	r_ant_ht_s1:4;
	u32	r_ant_non_ht_s1:4;
	u32	OFDM_TXSC:2;
	u32	Reserved:2;
};

struct R_ANTENNA_SELECT_CCK {
	u8	r_cckrx_enable_2:2;
	u8	r_cckrx_enable:2;
	u8	r_ccktx_enable:4;
};

void r8712_SwitchAntenna(struct _adapter *pAdapter)
{
	u32	ofdm_tx_en_val = 0, ofdm_tx_ant_sel_val = 0;
	u8	ofdm_rx_ant_sel_val = 0;
	u8	cck_ant_select_val = 0;
	u32	cck_ant_sel_val = 0;
	struct R_ANTENNA_SELECT_CCK *p_cck_txrx;

	p_cck_txrx = (struct R_ANTENNA_SELECT_CCK *)&cck_ant_select_val;

	switch (pAdapter->mppriv.antenna_tx) {
	case ANTENNA_A:
		/* From SD3 Willis suggestion !!! Set RF A=TX and B as standby*/
		set_bb_reg(pAdapter, rFPGA0_XA_HSSIParameter2, 0xe, 2);
		set_bb_reg(pAdapter, rFPGA0_XB_HSSIParameter2, 0xe, 1);
		ofdm_tx_en_val = 0x3;
		ofdm_tx_ant_sel_val = 0x11111111;/* Power save */
		p_cck_txrx->r_ccktx_enable = 0x8;
		break;
	case ANTENNA_B:
		set_bb_reg(pAdapter, rFPGA0_XA_HSSIParameter2, 0xe, 1);
		set_bb_reg(pAdapter, rFPGA0_XB_HSSIParameter2, 0xe, 2);
		ofdm_tx_en_val = 0x3;
		ofdm_tx_ant_sel_val = 0x22222222;/* Power save */
		p_cck_txrx->r_ccktx_enable = 0x4;
		break;
	case ANTENNA_AB:	/* For 8192S */
		set_bb_reg(pAdapter, rFPGA0_XA_HSSIParameter2, 0xe, 2);
		set_bb_reg(pAdapter, rFPGA0_XB_HSSIParameter2, 0xe, 2);
		ofdm_tx_en_val = 0x3;
		ofdm_tx_ant_sel_val = 0x3321333; /* Disable Power save */
		p_cck_txrx->r_ccktx_enable = 0xC;
		break;
	default:
		break;
	}
	/*OFDM Tx*/
	set_bb_reg(pAdapter, rFPGA1_TxInfo, 0xffffffff, ofdm_tx_ant_sel_val);
	/*OFDM Tx*/
	set_bb_reg(pAdapter, rFPGA0_TxInfo, 0x0000000f, ofdm_tx_en_val);
	switch (pAdapter->mppriv.antenna_rx) {
	case ANTENNA_A:
		ofdm_rx_ant_sel_val = 0x1;	/* A */
		p_cck_txrx->r_cckrx_enable = 0x0; /* default: A */
		p_cck_txrx->r_cckrx_enable_2 = 0x0; /* option: A */
		break;
	case ANTENNA_B:
		ofdm_rx_ant_sel_val = 0x2;	/* B */
		p_cck_txrx->r_cckrx_enable = 0x1; /* default: B */
		p_cck_txrx->r_cckrx_enable_2 = 0x1; /* option: B */
		break;
	case ANTENNA_AB:
		ofdm_rx_ant_sel_val = 0x3; /* AB */
		p_cck_txrx->r_cckrx_enable = 0x0; /* default:A */
		p_cck_txrx->r_cckrx_enable_2 = 0x1; /* option:B */
		break;
	default:
		break;
	}
	/*OFDM Rx*/
	set_bb_reg(pAdapter, rOFDM0_TRxPathEnable, 0x0000000f,
		   ofdm_rx_ant_sel_val);
	/*OFDM Rx*/
	set_bb_reg(pAdapter, rOFDM1_TRxPathEnable, 0x0000000f,
		   ofdm_rx_ant_sel_val);

	cck_ant_sel_val = cck_ant_select_val;
	/*CCK TxRx*/
	set_bb_reg(pAdapter, rCCK0_AFESetting, bMaskByte3, cck_ant_sel_val);
}

void r8712_SetCrystalCap(struct _adapter *pAdapter)
{
	set_bb_reg(pAdapter, rFPGA0_AnalogParameter1, bXtalCap,
		   pAdapter->mppriv.curr_crystalcap);
}

static void TriggerRFThermalMeter(struct _adapter *pAdapter)
{
	/* 0x24: RF Reg[6:5] */
	set_rf_reg(pAdapter, RF_PATH_A, RF_T_METER, bRFRegOffsetMask, 0x60);
}

static u32 ReadRFThermalMeter(struct _adapter *pAdapter)
{
	/* 0x24: RF Reg[4:0] */
	return get_rf_reg(pAdapter, RF_PATH_A, RF_T_METER, 0x1F);
}

void r8712_GetThermalMeter(struct _adapter *pAdapter, u32 *value)
{
	TriggerRFThermalMeter(pAdapter);
	msleep(1000);
	*value = ReadRFThermalMeter(pAdapter);
}

void r8712_SetSingleCarrierTx(struct _adapter *pAdapter, u8 bStart)
{
	if (bStart) { /* Start Single Carrier. */
		/* 1. if OFDM block on? */
		if (!get_bb_reg(pAdapter, rFPGA0_RFMOD, bOFDMEn))
			/*set OFDM block on*/
			set_bb_reg(pAdapter, rFPGA0_RFMOD, bOFDMEn, bEnable);
		/* 2. set CCK test mode off, set to CCK normal mode */
		set_bb_reg(pAdapter, rCCK0_System, bCCKBBMode, bDisable);
		/* 3. turn on scramble setting */
		set_bb_reg(pAdapter, rCCK0_System, bCCKScramble, bEnable);
		/* 4. Turn On Single Carrier Tx and off the other test modes. */
		set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable);
		set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bEnable);
		set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable);
	} else { /* Stop Single Carrier.*/
		/* Turn off all test modes.*/
		set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable);
		set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier,
			   bDisable);
		set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable);
		msleep(20);
		/*BB Reset*/
		set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x0);
		set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x1);
	}
}

void r8712_SetSingleToneTx(struct _adapter *pAdapter, u8 bStart)
{
	u8 rfPath = pAdapter->mppriv.curr_rfpath;

	switch (pAdapter->mppriv.antenna_tx) {
	case ANTENNA_B:
		rfPath = RF_PATH_B;
		break;
	case ANTENNA_A:
	default:
		rfPath = RF_PATH_A;
		break;
	}
	if (bStart) { /* Start Single Tone.*/
		set_bb_reg(pAdapter, rFPGA0_RFMOD, bCCKEn, bDisable);
		set_bb_reg(pAdapter, rFPGA0_RFMOD, bOFDMEn, bDisable);
		set_rf_reg(pAdapter, rfPath, RF_TX_G2, bRFRegOffsetMask,
			   0xd4000);
		msleep(100);
		/* PAD all on.*/
		set_rf_reg(pAdapter, rfPath, RF_AC, bRFRegOffsetMask, 0x2001f);
		msleep(100);
	} else { /* Stop Single Tone.*/
		set_bb_reg(pAdapter, rFPGA0_RFMOD, bCCKEn, bEnable);
		set_bb_reg(pAdapter, rFPGA0_RFMOD, bOFDMEn, bEnable);
		set_rf_reg(pAdapter, rfPath, RF_TX_G2, bRFRegOffsetMask,
			   0x54000);
		msleep(100);
		/* PAD all on.*/
		set_rf_reg(pAdapter, rfPath, RF_AC, bRFRegOffsetMask, 0x30000);
		msleep(100);
	}
}

void r8712_SetCarrierSuppressionTx(struct _adapter *pAdapter, u8 bStart)
{
	if (bStart) { /* Start Carrier Suppression.*/
		if (pAdapter->mppriv.curr_rateidx <= MPT_RATE_11M) {
			/* 1. if CCK block on? */
			if (!get_bb_reg(pAdapter, rFPGA0_RFMOD, bCCKEn)) {
				/*set CCK block on*/
				set_bb_reg(pAdapter, rFPGA0_RFMOD, bCCKEn,
					   bEnable);
			}
			/* Turn Off All Test Mode */
			set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx,
				   bDisable);
			set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier,
				   bDisable);
			set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone,
				   bDisable);
			/*transmit mode*/
			set_bb_reg(pAdapter, rCCK0_System, bCCKBBMode, 0x2);
			/*turn off scramble setting*/
			set_bb_reg(pAdapter, rCCK0_System, bCCKScramble,
				   bDisable);
			/*Set CCK Tx Test Rate*/
			/*Set FTxRate to 1Mbps*/
			set_bb_reg(pAdapter, rCCK0_System, bCCKTxRate, 0x0);
		}
	} else { /* Stop Carrier Suppression. */
		if (pAdapter->mppriv.curr_rateidx <= MPT_RATE_11M) {
			/*normal mode*/
			set_bb_reg(pAdapter, rCCK0_System, bCCKBBMode, 0x0);
			/*turn on scramble setting*/
			set_bb_reg(pAdapter, rCCK0_System, bCCKScramble,
				   bEnable);
			/*BB Reset*/
			set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x0);
			set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x1);
		}
	}
}

static void SetCCKContinuousTx(struct _adapter *pAdapter, u8 bStart)
{
	u32 cckrate;

	if (bStart) {
		/* 1. if CCK block on? */
		if (!get_bb_reg(pAdapter, rFPGA0_RFMOD, bCCKEn)) {
			/*set CCK block on*/
			set_bb_reg(pAdapter, rFPGA0_RFMOD, bCCKEn, bEnable);
		}
		/* Turn Off All Test Mode */
		set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable);
		set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable);
		set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable);
		/*Set CCK Tx Test Rate*/
		cckrate  = pAdapter->mppriv.curr_rateidx;
		set_bb_reg(pAdapter, rCCK0_System, bCCKTxRate, cckrate);
		/*transmit mode*/
		set_bb_reg(pAdapter, rCCK0_System, bCCKBBMode, 0x2);
		/*turn on scramble setting*/
		set_bb_reg(pAdapter, rCCK0_System, bCCKScramble, bEnable);
	} else {
		/*normal mode*/
		set_bb_reg(pAdapter, rCCK0_System, bCCKBBMode, 0x0);
		/*turn on scramble setting*/
		set_bb_reg(pAdapter, rCCK0_System, bCCKScramble, bEnable);
		/*BB Reset*/
		set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x0);
		set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x1);
	}
} /* mpt_StartCckContTx */

static void SetOFDMContinuousTx(struct _adapter *pAdapter, u8 bStart)
{
	if (bStart) {
		/* 1. if OFDM block on? */
		if (!get_bb_reg(pAdapter, rFPGA0_RFMOD, bOFDMEn)) {
			/*set OFDM block on*/
			set_bb_reg(pAdapter, rFPGA0_RFMOD, bOFDMEn, bEnable);
		}
		/* 2. set CCK test mode off, set to CCK normal mode*/
		set_bb_reg(pAdapter, rCCK0_System, bCCKBBMode, bDisable);
		/* 3. turn on scramble setting */
		set_bb_reg(pAdapter, rCCK0_System, bCCKScramble, bEnable);
		/* 4. Turn On Continue Tx and turn off the other test modes.*/
		set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bEnable);
		set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable);
		set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable);
	} else {
		set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable);
		set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier,
			   bDisable);
		set_bb_reg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable);
		msleep(20);
		/*BB Reset*/
		set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x0);
		set_bb_reg(pAdapter, rPMAC_Reset, bBBResetB, 0x1);
	}
} /* mpt_StartOfdmContTx */

void r8712_SetContinuousTx(struct _adapter *pAdapter, u8 bStart)
{
	/* ADC turn off [bit24-21] adc port0 ~ port1 */
	if (bStart) {
		r8712_bb_reg_write(pAdapter, rRx_Wait_CCCA,
				   r8712_bb_reg_read(pAdapter,
				   rRx_Wait_CCCA) & 0xFE1FFFFF);
		msleep(100);
	}
	if (pAdapter->mppriv.curr_rateidx <= MPT_RATE_11M)
		SetCCKContinuousTx(pAdapter, bStart);
	else if ((pAdapter->mppriv.curr_rateidx >= MPT_RATE_6M) &&
		 (pAdapter->mppriv.curr_rateidx <= MPT_RATE_MCS15))
		SetOFDMContinuousTx(pAdapter, bStart);
	/* ADC turn on [bit24-21] adc port0 ~ port1 */
	if (!bStart)
		r8712_bb_reg_write(pAdapter, rRx_Wait_CCCA,
				   r8712_bb_reg_read(pAdapter,
				   rRx_Wait_CCCA) | 0x01E00000);
}

void r8712_ResetPhyRxPktCount(struct _adapter *pAdapter)
{
	u32 i, phyrx_set = 0;

	for (i = OFDM_PPDU_BIT; i <= HT_MPDU_FAIL_BIT; i++) {
		phyrx_set = 0;
		phyrx_set |= (i << 28);		/*select*/
		phyrx_set |= 0x08000000;	/* set counter to zero*/
		r8712_write32(pAdapter, RXERR_RPT, phyrx_set);
	}
}

static u32 GetPhyRxPktCounts(struct _adapter *pAdapter, u32 selbit)
{
	/*selection*/
	u32 phyrx_set = 0, count = 0;
	u32 SelectBit;

	SelectBit = selbit << 28;
	phyrx_set |= (SelectBit & 0xF0000000);
	r8712_write32(pAdapter, RXERR_RPT, phyrx_set);
	/*Read packet count*/
	count = r8712_read32(pAdapter, RXERR_RPT) & RPTMaxCount;
	return count;
}

u32 r8712_GetPhyRxPktReceived(struct _adapter *pAdapter)
{
	u32 OFDM_cnt = 0, CCK_cnt = 0, HT_cnt = 0;

	OFDM_cnt = GetPhyRxPktCounts(pAdapter, OFDM_MPDU_OK_BIT);
	CCK_cnt = GetPhyRxPktCounts(pAdapter, CCK_MPDU_OK_BIT);
	HT_cnt = GetPhyRxPktCounts(pAdapter, HT_MPDU_OK_BIT);
	return OFDM_cnt + CCK_cnt + HT_cnt;
}

u32 r8712_GetPhyRxPktCRC32Error(struct _adapter *pAdapter)
{
	u32 OFDM_cnt = 0, CCK_cnt = 0, HT_cnt = 0;

	OFDM_cnt = GetPhyRxPktCounts(pAdapter, OFDM_MPDU_FAIL_BIT);
	CCK_cnt = GetPhyRxPktCounts(pAdapter, CCK_MPDU_FAIL_BIT);
	HT_cnt = GetPhyRxPktCounts(pAdapter, HT_MPDU_FAIL_BIT);
	return OFDM_cnt + CCK_cnt + HT_cnt;
}