- 根目录:
- drivers
- video
- fbdev
- omap2
- dss
- rfbi.c
/*
* linux/drivers/video/omap2/dss/rfbi.c
*
* Copyright (C) 2009 Nokia Corporation
* Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
*
* Some code and ideas taken from drivers/video/omap/ driver
* by Imre Deak.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define DSS_SUBSYS_NAME "RFBI"
#include <linux/kernel.h>
#include <linux/dma-mapping.h>
#include <linux/export.h>
#include <linux/vmalloc.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/kfifo.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/seq_file.h>
#include <linux/semaphore.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <video/omapdss.h>
#include "dss.h"
struct rfbi_reg { u16 idx; };
#define RFBI_REG(idx) ((const struct rfbi_reg) { idx })
#define RFBI_REVISION RFBI_REG(0x0000)
#define RFBI_SYSCONFIG RFBI_REG(0x0010)
#define RFBI_SYSSTATUS RFBI_REG(0x0014)
#define RFBI_CONTROL RFBI_REG(0x0040)
#define RFBI_PIXEL_CNT RFBI_REG(0x0044)
#define RFBI_LINE_NUMBER RFBI_REG(0x0048)
#define RFBI_CMD RFBI_REG(0x004c)
#define RFBI_PARAM RFBI_REG(0x0050)
#define RFBI_DATA RFBI_REG(0x0054)
#define RFBI_READ RFBI_REG(0x0058)
#define RFBI_STATUS RFBI_REG(0x005c)
#define RFBI_CONFIG(n) RFBI_REG(0x0060 + (n)*0x18)
#define RFBI_ONOFF_TIME(n) RFBI_REG(0x0064 + (n)*0x18)
#define RFBI_CYCLE_TIME(n) RFBI_REG(0x0068 + (n)*0x18)
#define RFBI_DATA_CYCLE1(n) RFBI_REG(0x006c + (n)*0x18)
#define RFBI_DATA_CYCLE2(n) RFBI_REG(0x0070 + (n)*0x18)
#define RFBI_DATA_CYCLE3(n) RFBI_REG(0x0074 + (n)*0x18)
#define RFBI_VSYNC_WIDTH RFBI_REG(0x0090)
#define RFBI_HSYNC_WIDTH RFBI_REG(0x0094)
#define REG_FLD_MOD(idx, val, start, end) \
rfbi_write_reg(idx, FLD_MOD(rfbi_read_reg(idx), val, start, end))
enum omap_rfbi_cycleformat {
OMAP_DSS_RFBI_CYCLEFORMAT_1_1 = 0,
OMAP_DSS_RFBI_CYCLEFORMAT_2_1 = 1,
OMAP_DSS_RFBI_CYCLEFORMAT_3_1 = 2,
OMAP_DSS_RFBI_CYCLEFORMAT_3_2 = 3,
};
enum omap_rfbi_datatype {
OMAP_DSS_RFBI_DATATYPE_12 = 0,
OMAP_DSS_RFBI_DATATYPE_16 = 1,
OMAP_DSS_RFBI_DATATYPE_18 = 2,
OMAP_DSS_RFBI_DATATYPE_24 = 3,
};
enum omap_rfbi_parallelmode {
OMAP_DSS_RFBI_PARALLELMODE_8 = 0,
OMAP_DSS_RFBI_PARALLELMODE_9 = 1,
OMAP_DSS_RFBI_PARALLELMODE_12 = 2,
OMAP_DSS_RFBI_PARALLELMODE_16 = 3,
};
static int rfbi_convert_timings(struct rfbi_timings *t);
static void rfbi_get_clk_info(u32 *clk_period, u32 *max_clk_div);
static struct {
struct platform_device *pdev;
void __iomem *base;
unsigned long l4_khz;
enum omap_rfbi_datatype datatype;
enum omap_rfbi_parallelmode parallelmode;
enum omap_rfbi_te_mode te_mode;
int te_enabled;
void (*framedone_callback)(void *data);
void *framedone_callback_data;
struct omap_dss_device *dssdev[2];
struct semaphore bus_lock;
struct omap_video_timings timings;
int pixel_size;
int data_lines;
struct rfbi_timings intf_timings;
struct omap_dss_device output;
} rfbi;
static inline void rfbi_write_reg(const struct rfbi_reg idx, u32 val)
{
__raw_writel(val, rfbi.base + idx.idx);
}
static inline u32 rfbi_read_reg(const struct rfbi_reg idx)
{
return __raw_readl(rfbi.base + idx.idx);
}
static int rfbi_runtime_get(void)
{
int r;
DSSDBG("rfbi_runtime_get\n");
r = pm_runtime_get_sync(&rfbi.pdev->dev);
WARN_ON(r < 0);
return r < 0 ? r : 0;
}
static void rfbi_runtime_put(void)
{
int r;
DSSDBG("rfbi_runtime_put\n");
r = pm_runtime_put_sync(&rfbi.pdev->dev);
WARN_ON(r < 0 && r != -ENOSYS);
}
static void rfbi_bus_lock(void)
{
down(&rfbi.bus_lock);
}
static void rfbi_bus_unlock(void)
{
up(&rfbi.bus_lock);
}
static void rfbi_write_command(const void *buf, u32 len)
{
switch (rfbi.parallelmode) {
case OMAP_DSS_RFBI_PARALLELMODE_8:
{
const u8 *b = buf;
for (; len; len--)
rfbi_write_reg(RFBI_CMD, *b++);
break;
}
case OMAP_DSS_RFBI_PARALLELMODE_16:
{
const u16 *w = buf;
BUG_ON(len & 1);
for (; len; len -= 2)
rfbi_write_reg(RFBI_CMD, *w++);
break;
}
case OMAP_DSS_RFBI_PARALLELMODE_9:
case OMAP_DSS_RFBI_PARALLELMODE_12:
default:
BUG();
}
}
static void rfbi_read_data(void *buf, u32 len)
{
switch (rfbi.parallelmode) {
case OMAP_DSS_RFBI_PARALLELMODE_8:
{
u8 *b = buf;
for (; len; len--) {
rfbi_write_reg(RFBI_READ, 0);
*b++ = rfbi_read_reg(RFBI_READ);
}
break;
}
case OMAP_DSS_RFBI_PARALLELMODE_16:
{
u16 *w = buf;
BUG_ON(len & ~1);
for (; len; len -= 2) {
rfbi_write_reg(RFBI_READ, 0);
*w++ = rfbi_read_reg(RFBI_READ);
}
break;
}
case OMAP_DSS_RFBI_PARALLELMODE_9:
case OMAP_DSS_RFBI_PARALLELMODE_12:
default:
BUG();
}
}
static void rfbi_write_data(const void *buf, u32 len)
{
switch (rfbi.parallelmode) {
case OMAP_DSS_RFBI_PARALLELMODE_8:
{
const u8 *b = buf;
for (; len; len--)
rfbi_write_reg(RFBI_PARAM, *b++);
break;
}
case OMAP_DSS_RFBI_PARALLELMODE_16:
{
const u16 *w = buf;
BUG_ON(len & 1);
for (; len; len -= 2)
rfbi_write_reg(RFBI_PARAM, *w++);
break;
}
case OMAP_DSS_RFBI_PARALLELMODE_9:
case OMAP_DSS_RFBI_PARALLELMODE_12:
default:
BUG();
}
}
static void rfbi_write_pixels(const void __iomem *buf, int scr_width,
u16 x, u16 y,
u16 w, u16 h)
{
int start_offset = scr_width * y + x;
int horiz_offset = scr_width - w;
int i;
if (rfbi.datatype == OMAP_DSS_RFBI_DATATYPE_16 &&
rfbi.parallelmode == OMAP_DSS_RFBI_PARALLELMODE_8) {
const u16 __iomem *pd = buf;
pd += start_offset;
for (; h; --h) {
for (i = 0; i < w; ++i) {
const u8 __iomem *b = (const u8 __iomem *)pd;
rfbi_write_reg(RFBI_PARAM, __raw_readb(b+1));
rfbi_write_reg(RFBI_PARAM, __raw_readb(b+0));
++pd;
}
pd += horiz_offset;
}
} else if (rfbi.datatype == OMAP_DSS_RFBI_DATATYPE_24 &&
rfbi.parallelmode == OMAP_DSS_RFBI_PARALLELMODE_8) {
const u32 __iomem *pd = buf;
pd += start_offset;
for (; h; --h) {
for (i = 0; i < w; ++i) {
const u8 __iomem *b = (const u8 __iomem *)pd;
rfbi_write_reg(RFBI_PARAM, __raw_readb(b+2));
rfbi_write_reg(RFBI_PARAM, __raw_readb(b+1));
rfbi_write_reg(RFBI_PARAM, __raw_readb(b+0));
++pd;
}
pd += horiz_offset;
}
} else if (rfbi.datatype == OMAP_DSS_RFBI_DATATYPE_16 &&
rfbi.parallelmode == OMAP_DSS_RFBI_PARALLELMODE_16) {
const u16 __iomem *pd = buf;
pd += start_offset;
for (; h; --h) {
for (i = 0; i < w; ++i) {
rfbi_write_reg(RFBI_PARAM, __raw_readw(pd));
++pd;
}
pd += horiz_offset;
}
} else {
BUG();
}
}
static int rfbi_transfer_area(struct omap_dss_device *dssdev,
void (*callback)(void *data), void *data)
{
u32 l;
int r;
struct omap_overlay_manager *mgr = rfbi.output.manager;
u16 width = rfbi.timings.x_res;
u16 height = rfbi.timings.y_res;
/*BUG_ON(callback == 0);*/
BUG_ON(rfbi.framedone_callback != NULL);
DSSDBG("rfbi_transfer_area %dx%d\n", width, height);
dss_mgr_set_timings(mgr, &rfbi.timings);
r = dss_mgr_enable(mgr);
if (r)
return r;
rfbi.framedone_callback = callback;
rfbi.framedone_callback_data = data;
rfbi_write_reg(RFBI_PIXEL_CNT, width * height);
l = rfbi_read_reg(RFBI_CONTROL);
l = FLD_MOD(l, 1, 0, 0); /* enable */
if (!rfbi.te_enabled)
l = FLD_MOD(l, 1, 4, 4); /* ITE */
rfbi_write_reg(RFBI_CONTROL, l);
return 0;
}
static void framedone_callback(void *data)
{
void (*callback)(void *data);
DSSDBG("FRAMEDONE\n");
REG_FLD_MOD(RFBI_CONTROL, 0, 0, 0);
callback = rfbi.framedone_callback;
rfbi.framedone_callback = NULL;
if (callback != NULL)
callback(rfbi.framedone_callback_data);
}
#if 1 /* VERBOSE */
static void rfbi_print_timings(void)
{
u32 l;
u32 time;
l = rfbi_read_reg(RFBI_CONFIG(0));
time = 1000000000 / rfbi.l4_khz;
if (l & (1 << 4))
time *= 2;
DSSDBG("Tick time %u ps\n", time);
l = rfbi_read_reg(RFBI_ONOFF_TIME(0));
DSSDBG("CSONTIME %d, CSOFFTIME %d, WEONTIME %d, WEOFFTIME %d, "
"REONTIME %d, REOFFTIME %d\n",
l & 0x0f, (l >> 4) & 0x3f, (l >> 10) & 0x0f, (l >> 14) & 0x3f,
(l >> 20) & 0x0f, (l >> 24) & 0x3f);
l = rfbi_read_reg(RFBI_CYCLE_TIME(0));
DSSDBG("WECYCLETIME %d, RECYCLETIME %d, CSPULSEWIDTH %d, "
"ACCESSTIME %d\n",
(l & 0x3f), (l >> 6) & 0x3f, (l >> 12) & 0x3f,
(l >> 22) & 0x3f);
}
#else
static void rfbi_print_timings(void) {}
#endif
static u32 extif_clk_period;
static inline unsigned long round_to_extif_ticks(unsigned long ps, int div)
{
int bus_tick = extif_clk_period * div;
return (ps + bus_tick - 1) / bus_tick * bus_tick;
}
static int calc_reg_timing(struct rfbi_timings *t, int div)
{
t->clk_div = div;
t->cs_on_time = round_to_extif_ticks(t->cs_on_time, div);
t->we_on_time = round_to_extif_ticks(t->we_on_time, div);
t->we_off_time = round_to_extif_ticks(t->we_off_time, div);
t->we_cycle_time = round_to_extif_ticks(t->we_cycle_time, div);
t->re_on_time = round_to_extif_ticks(t->re_on_time, div);
t->re_off_time = round_to_extif_ticks(t->re_off_time, div);
t->re_cycle_time = round_to_extif_ticks(t->re_cycle_time, div);
t->access_time = round_to_extif_ticks(t->access_time, div);
t->cs_off_time = round_to_extif_ticks(t->cs_off_time, div);
t->cs_pulse_width = round_to_extif_ticks(t->cs_pulse_width, div);
DSSDBG("[reg]cson %d csoff %d reon %d reoff %d\n",
t->cs_on_time, t->cs_off_time, t->re_on_time, t->re_off_time);
DSSDBG("[reg]weon %d weoff %d recyc %d wecyc %d\n",
t->we_on_time, t->we_off_time, t->re_cycle_time,
t->we_cycle_time);
DSSDBG("[reg]rdaccess %d cspulse %d\n",
t->access_time, t->cs_pulse_width);
return rfbi_convert_timings(t);
}
static int calc_extif_timings(struct rfbi_timings *t)
{
u32 max_clk_div;
int div;
rfbi_get_clk_info(&extif_clk_period, &max_clk_div);
for (div = 1; div <= max_clk_div; div++) {
if (calc_reg_timing(t, div) == 0)
break;
}
if (div <= max_clk_div)
return 0;
DSSERR("can't setup timings\n");
return -1;
}
static void rfbi_set_timings(int rfbi_module, struct rfbi_timings *t)
{
int r;
if (!t->converted) {
r = calc_extif_timings(t);
if (r < 0)
DSSERR("Failed to calc timings\n");
}
BUG_ON(!t->converted);
rfbi_write_reg(RFBI_ONOFF_TIME(rfbi_module), t->tim[0]);
rfbi_write_reg(RFBI_CYCLE_TIME(rfbi_module), t->tim[1]);
/* TIMEGRANULARITY */
REG_FLD_MOD(RFBI_CONFIG(rfbi_module),
(t->tim[2] ? 1 : 0), 4, 4);
rfbi_print_timings();
}
static int ps_to_rfbi_ticks(int time, int div)
{
unsigned long tick_ps;
int ret;
/* Calculate in picosecs to yield more exact results */
tick_ps = 1000000000 / (rfbi.l4_khz) * div;
ret = (time + tick_ps - 1) / tick_ps;
return ret;
}
static void rfbi_get_clk_info(u32 *clk_period, u32 *max_clk_div)
{
*clk_period = 1000000000 / rfbi.l4_khz;
*max_clk_div = 2;
}
static int rfbi_convert_timings(struct rfbi_timings *t)
{
u32 l;
int reon, reoff, weon, weoff, cson, csoff, cs_pulse;
int actim, recyc, wecyc;
int div = t->clk_div;
if (div <= 0 || div > 2)
return -1;
/* Make sure that after conversion it still holds that:
* weoff > weon, reoff > reon, recyc >= reoff, wecyc >= weoff,
* csoff > cson, csoff >= max(weoff, reoff), actim > reon
*/
weon = ps_to_rfbi_ticks(t->we_on_time, div);
weoff = ps_to_rfbi_ticks(t->we_off_time, div);
if (weoff <= weon)
weoff = weon + 1;
if (weon > 0x0f)
return -1;
if (weoff > 0x3f)
return -1;
reon = ps_to_rfbi_ticks(t->re_on_time, div);
reoff = ps_to_rfbi_ticks(t->re_off_time, div);
if (reoff <= reon)
reoff = reon + 1;
if (reon > 0x0f)
return -1;
if (reoff > 0x3f)
return -1;
cson = ps_to_rfbi_ticks(t->cs_on_time, div);
csoff = ps_to_rfbi_ticks(t->cs_off_time, div);
if (csoff <= cson)
csoff = cson + 1;
if (csoff < max(weoff, reoff))
csoff = max(weoff, reoff);
if (cson > 0x0f)
return -1;
if (csoff > 0x3f)
return -1;
l = cson;
l |= csoff << 4;
l |= weon << 10;
l |= weoff << 14;
l |= reon << 20;
l |= reoff << 24;
t->tim[0] = l;
actim = ps_to_rfbi_ticks(t->access_time, div);
if (actim <= reon)
actim = reon + 1;
if (actim > 0x3f)
return -1;
wecyc = ps_to_rfbi_ticks(t->we_cycle_time, div);
if (wecyc < weoff)
wecyc = weoff;
if (wecyc > 0x3f)
return -1;
recyc = ps_to_rfbi_ticks(t->re_cycle_time, div);
if (recyc < reoff)
recyc = reoff;
if (recyc > 0x3f)
return -1;
cs_pulse = ps_to_rfbi_ticks(t->cs_pulse_width, div);
if (cs_pulse > 0x3f)
return -1;
l = wecyc;
l |= recyc << 6;
l |= cs_pulse << 12;
l |= actim << 22;
t->tim[1] = l;
t->tim[2] = div - 1;
t->converted = 1;
return 0;
}
/* xxx FIX module selection missing */
static int rfbi_setup_te(enum omap_rfbi_te_mode mode,
unsigned hs_pulse_time, unsigned vs_pulse_time,
int hs_pol_inv, int vs_pol_inv, int extif_div)
{
int hs, vs;
int min;
u32 l;
hs = ps_to_rfbi_ticks(hs_pulse_time, 1);
vs = ps_to_rfbi_ticks(vs_pulse_time, 1);
if (hs < 2)
return -EDOM;
if (mode == OMAP_DSS_RFBI_TE_MODE_2)
min = 2;
else /* OMAP_DSS_RFBI_TE_MODE_1 */
min = 4;
if (vs < min)
return -EDOM;
if (vs == hs)
return -EINVAL;
rfbi.te_mode = mode;
DSSDBG("setup_te: mode %d hs %d vs %d hs_inv %d vs_inv %d\n",
mode, hs, vs, hs_pol_inv, vs_pol_inv);
rfbi_write_reg(RFBI_HSYNC_WIDTH, hs);
rfbi_write_reg(RFBI_VSYNC_WIDTH, vs);
l = rfbi_read_reg(RFBI_CONFIG(0));
if (hs_pol_inv)
l &= ~(1 << 21);
else
l |= 1 << 21;
if (vs_pol_inv)
l &= ~(1 << 20);
else
l |= 1 << 20;
return 0;
}
/* xxx FIX module selection missing */
static int rfbi_enable_te(bool enable, unsigned line)
{
u32 l;
DSSDBG("te %d line %d mode %d\n", enable, line, rfbi.te_mode);
if (line > (1 << 11) - 1)
return -EINVAL;
l = rfbi_read_reg(RFBI_CONFIG(0));
l &= ~(0x3 << 2);
if (enable) {
rfbi.te_enabled = 1;
l |= rfbi.te_mode << 2;
} else
rfbi.te_enabled = 0;
rfbi_write_reg(RFBI_CONFIG(0), l);
rfbi_write_reg(RFBI_LINE_NUMBER, line);
return 0;
}
static int rfbi_configure_bus(int rfbi_module, int bpp, int lines)
{
u32 l;
int cycle1 = 0, cycle2 = 0, cycle3 = 0;
enum omap_rfbi_cycleformat cycleformat;
enum omap_rfbi_datatype datatype;
enum omap_rfbi_parallelmode parallelmode;
switch (bpp) {
case 12:
datatype = OMAP_DSS_RFBI_DATATYPE_12;
break;
case 16:
datatype = OMAP_DSS_RFBI_DATATYPE_16;
break;
case 18:
datatype = OMAP_DSS_RFBI_DATATYPE_18;
break;
case 24:
datatype = OMAP_DSS_RFBI_DATATYPE_24;
break;
default:
BUG();
return 1;
}
rfbi.datatype = datatype;
switch (lines) {
case 8:
parallelmode = OMAP_DSS_RFBI_PARALLELMODE_8;
break;
case 9:
parallelmode = OMAP_DSS_RFBI_PARALLELMODE_9;
break;
case 12:
parallelmode = OMAP_DSS_RFBI_PARALLELMODE_12;
break;
case 16:
parallelmode = OMAP_DSS_RFBI_PARALLELMODE_16;
break;
default:
BUG();
return 1;
}
rfbi.parallelmode = parallelmode;
if ((bpp % lines) == 0) {
switch (bpp / lines) {
case 1:
cycleformat = OMAP_DSS_RFBI_CYCLEFORMAT_1_1;
break;
case 2:
cycleformat = OMAP_DSS_RFBI_CYCLEFORMAT_2_1;
break;
case 3:
cycleformat = OMAP_DSS_RFBI_CYCLEFORMAT_3_1;
break;
default:
BUG();
return 1;
}
} else if ((2 * bpp % lines) == 0) {
if ((2 * bpp / lines) == 3)
cycleformat = OMAP_DSS_RFBI_CYCLEFORMAT_3_2;
else {
BUG();
return 1;
}
} else {
BUG();
return 1;
}
switch (cycleformat) {
case OMAP_DSS_RFBI_CYCLEFORMAT_1_1:
cycle1 = lines;
break;
case OMAP_DSS_RFBI_CYCLEFORMAT_2_1:
cycle1 = lines;
cycle2 = lines;
break;
case OMAP_DSS_RFBI_CYCLEFORMAT_3_1:
cycle1 = lines;
cycle2 = lines;
cycle3 = lines;
break;
case OMAP_DSS_RFBI_CYCLEFORMAT_3_2:
cycle1 = lines;
cycle2 = (lines / 2) | ((lines / 2) << 16);
cycle3 = (lines << 16);
break;
}
REG_FLD_MOD(RFBI_CONTROL, 0, 3, 2); /* clear CS */
l = 0;
l |= FLD_VAL(parallelmode, 1, 0);
l |= FLD_VAL(0, 3, 2); /* TRIGGERMODE: ITE */
l |= FLD_VAL(0, 4, 4); /* TIMEGRANULARITY */
l |= FLD_VAL(datatype, 6, 5);
/* l |= FLD_VAL(2, 8, 7); */ /* L4FORMAT, 2pix/L4 */
l |= FLD_VAL(0, 8, 7); /* L4FORMAT, 1pix/L4 */
l |= FLD_VAL(cycleformat, 10, 9);
l |= FLD_VAL(0, 12, 11); /* UNUSEDBITS */
l |= FLD_VAL(0, 16, 16); /* A0POLARITY */
l |= FLD_VAL(0, 17, 17); /* REPOLARITY */
l |= FLD_VAL(0, 18, 18); /* WEPOLARITY */
l |= FLD_VAL(0, 19, 19); /* CSPOLARITY */
l |= FLD_VAL(1, 20, 20); /* TE_VSYNC_POLARITY */
l |= FLD_VAL(1, 21, 21); /* HSYNCPOLARITY */
rfbi_write_reg(RFBI_CONFIG(rfbi_module), l);
rfbi_write_reg(RFBI_DATA_CYCLE1(rfbi_module), cycle1);
rfbi_write_reg(RFBI_DATA_CYCLE2(rfbi_module), cycle2);
rfbi_write_reg(RFBI_DATA_CYCLE3(rfbi_module), cycle3);
l = rfbi_read_reg(RFBI_CONTROL);
l = FLD_MOD(l, rfbi_module+1, 3, 2); /* Select CSx */
l = FLD_MOD(l, 0, 1, 1); /* clear bypass */
rfbi_write_reg(RFBI_CONTROL, l);
DSSDBG("RFBI config: bpp %d, lines %d, cycles: 0x%x 0x%x 0x%x\n",
bpp, lines, cycle1, cycle2, cycle3);
return 0;
}
static int rfbi_configure(struct omap_dss_device *dssdev)
{
return rfbi_configure_bus(dssdev->phy.rfbi.channel, rfbi.pixel_size,
rfbi.data_lines);
}
static int rfbi_update(struct omap_dss_device *dssdev, void (*callback)(void *),
void *data)
{
return rfbi_transfer_area(dssdev, callback, data);
}
static void rfbi_set_size(struct omap_dss_device *dssdev, u16 w, u16 h)
{
rfbi.timings.x_res = w;
rfbi.timings.y_res = h;
}
static void rfbi_set_pixel_size(struct omap_dss_device *dssdev, int pixel_size)
{
rfbi.pixel_size = pixel_size;
}
static void rfbi_set_data_lines(struct omap_dss_device *dssdev, int data_lines)
{
rfbi.data_lines = data_lines;
}
static void rfbi_set_interface_timings(struct omap_dss_device *dssdev,
struct rfbi_timings *timings)
{
rfbi.intf_timings = *timings;
}
static void rfbi_dump_regs(struct seq_file *s)
{
#define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, rfbi_read_reg(r))
if (rfbi_runtime_get())
return;
DUMPREG(RFBI_REVISION);
DUMPREG(RFBI_SYSCONFIG);
DUMPREG(RFBI_SYSSTATUS);
DUMPREG(RFBI_CONTROL);
DUMPREG(RFBI_PIXEL_CNT);
DUMPREG(RFBI_LINE_NUMBER);
DUMPREG(RFBI_CMD);
DUMPREG(RFBI_PARAM);
DUMPREG(RFBI_DATA);
DUMPREG(RFBI_READ);
DUMPREG(RFBI_STATUS);
DUMPREG(RFBI_CONFIG(0));
DUMPREG(RFBI_ONOFF_TIME(0));
DUMPREG(RFBI_CYCLE_TIME(0));
DUMPREG(RFBI_DATA_CYCLE1(0));
DUMPREG(RFBI_DATA_CYCLE2(0));
DUMPREG(RFBI_DATA_CYCLE3(0));
DUMPREG(RFBI_CONFIG(1));
DUMPREG(RFBI_ONOFF_TIME(1));
DUMPREG(RFBI_CYCLE_TIME(1));
DUMPREG(RFBI_DATA_CYCLE1(1));
DUMPREG(RFBI_DATA_CYCLE2(1));
DUMPREG(RFBI_DATA_CYCLE3(1));
DUMPREG(RFBI_VSYNC_WIDTH);
DUMPREG(RFBI_HSYNC_WIDTH);
rfbi_runtime_put();
#undef DUMPREG
}
static void rfbi_config_lcd_manager(struct omap_dss_device *dssdev)
{
struct omap_overlay_manager *mgr = rfbi.output.manager;
struct dss_lcd_mgr_config mgr_config;
mgr_config.io_pad_mode = DSS_IO_PAD_MODE_RFBI;
mgr_config.stallmode = true;
/* Do we need fifohandcheck for RFBI? */
mgr_config.fifohandcheck = false;
mgr_config.video_port_width = rfbi.pixel_size;
mgr_config.lcden_sig_polarity = 0;
dss_mgr_set_lcd_config(mgr, &mgr_config);
/*
* Set rfbi.timings with default values, the x_res and y_res fields
* are expected to be already configured by the panel driver via
* omapdss_rfbi_set_size()
*/
rfbi.timings.hsw = 1;
rfbi.timings.hfp = 1;
rfbi.timings.hbp = 1;
rfbi.timings.vsw = 1;
rfbi.timings.vfp = 0;
rfbi.timings.vbp = 0;
rfbi.timings.interlace = false;
rfbi.timings.hsync_level = OMAPDSS_SIG_ACTIVE_HIGH;
rfbi.timings.vsync_level = OMAPDSS_SIG_ACTIVE_HIGH;
rfbi.timings.data_pclk_edge = OMAPDSS_DRIVE_SIG_RISING_EDGE;
rfbi.timings.de_level = OMAPDSS_SIG_ACTIVE_HIGH;
rfbi.timings.sync_pclk_edge = OMAPDSS_DRIVE_SIG_OPPOSITE_EDGES;
dss_mgr_set_timings(mgr, &rfbi.timings);
}
static int rfbi_display_enable(struct omap_dss_device *dssdev)
{
struct omap_dss_device *out = &rfbi.output;
int r;
if (out == NULL || out->manager == NULL) {
DSSERR("failed to enable display: no output/manager\n");
return -ENODEV;
}
r = rfbi_runtime_get();
if (r)
return r;
r = dss_mgr_register_framedone_handler(out->manager,
framedone_callback, NULL);
if (r) {
DSSERR("can't get FRAMEDONE irq\n");
goto err1;
}
rfbi_config_lcd_manager(dssdev);
rfbi_configure_bus(dssdev->phy.rfbi.channel, rfbi.pixel_size,
rfbi.data_lines);
rfbi_set_timings(dssdev->phy.rfbi.channel, &rfbi.intf_timings);
return 0;
err1:
rfbi_runtime_put();
return r;
}
static void rfbi_display_disable(struct omap_dss_device *dssdev)
{
struct omap_dss_device *out = &rfbi.output;
dss_mgr_unregister_framedone_handler(out->manager,
framedone_callback, NULL);
rfbi_runtime_put();
}
static int rfbi_init_display(struct omap_dss_device *dssdev)
{
rfbi.dssdev[dssdev->phy.rfbi.channel] = dssdev;
return 0;
}
static void rfbi_init_output(struct platform_device *pdev)
{
struct omap_dss_device *out = &rfbi.output;
out->dev = &pdev->dev;
out->id = OMAP_DSS_OUTPUT_DBI;
out->output_type = OMAP_DISPLAY_TYPE_DBI;
out->name = "rfbi.0";
out->dispc_channel = OMAP_DSS_CHANNEL_LCD;
out->owner = THIS_MODULE;
omapdss_register_output(out);
}
static void __exit rfbi_uninit_output(struct platform_device *pdev)
{
struct omap_dss_device *out = &rfbi.output;
omapdss_unregister_output(out);
}
/* RFBI HW IP initialisation */
static int omap_rfbihw_probe(struct platform_device *pdev)
{
u32 rev;
struct resource *rfbi_mem;
struct clk *clk;
int r;
rfbi.pdev = pdev;
sema_init(&rfbi.bus_lock, 1);
rfbi_mem = platform_get_resource(rfbi.pdev, IORESOURCE_MEM, 0);
if (!rfbi_mem) {
DSSERR("can't get IORESOURCE_MEM RFBI\n");
return -EINVAL;
}
rfbi.base = devm_ioremap(&pdev->dev, rfbi_mem->start,
resource_size(rfbi_mem));
if (!rfbi.base) {
DSSERR("can't ioremap RFBI\n");
return -ENOMEM;
}
clk = clk_get(&pdev->dev, "ick");
if (IS_ERR(clk)) {
DSSERR("can't get ick\n");
return PTR_ERR(clk);
}
rfbi.l4_khz = clk_get_rate(clk) / 1000;
clk_put(clk);
pm_runtime_enable(&pdev->dev);
r = rfbi_runtime_get();
if (r)
goto err_runtime_get;
msleep(10);
rev = rfbi_read_reg(RFBI_REVISION);
dev_dbg(&pdev->dev, "OMAP RFBI rev %d.%d\n",
FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
rfbi_runtime_put();
dss_debugfs_create_file("rfbi", rfbi_dump_regs);
rfbi_init_output(pdev);
return 0;
err_runtime_get:
pm_runtime_disable(&pdev->dev);
return r;
}
static int __exit omap_rfbihw_remove(struct platform_device *pdev)
{
rfbi_uninit_output(pdev);
pm_runtime_disable(&pdev->dev);
return 0;
}
static int rfbi_runtime_suspend(struct device *dev)
{
dispc_runtime_put();
return 0;
}
static int rfbi_runtime_resume(struct device *dev)
{
int r;
r = dispc_runtime_get();
if (r < 0)
return r;
return 0;
}
static const struct dev_pm_ops rfbi_pm_ops = {
.runtime_suspend = rfbi_runtime_suspend,
.runtime_resume = rfbi_runtime_resume,
};
static struct platform_driver omap_rfbihw_driver = {
.probe = omap_rfbihw_probe,
.remove = __exit_p(omap_rfbihw_remove),
.driver = {
.name = "omapdss_rfbi",
.owner = THIS_MODULE,
.pm = &rfbi_pm_ops,
.suppress_bind_attrs = true,
},
};
int __init rfbi_init_platform_driver(void)
{
return platform_driver_register(&omap_rfbihw_driver);
}
void __exit rfbi_uninit_platform_driver(void)
{
platform_driver_unregister(&omap_rfbihw_driver);
}