/* * arch/blackfin/kernel/kgdb.c - Blackfin kgdb pieces * * Copyright 2005-2008 Analog Devices Inc. * * Licensed under the GPL-2 or later. */ #include <linux/ptrace.h> /* for linux pt_regs struct */ #include <linux/kgdb.h> #include <linux/uaccess.h> void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs) { gdb_regs[BFIN_R0] = regs->r0; gdb_regs[BFIN_R1] = regs->r1; gdb_regs[BFIN_R2] = regs->r2; gdb_regs[BFIN_R3] = regs->r3; gdb_regs[BFIN_R4] = regs->r4; gdb_regs[BFIN_R5] = regs->r5; gdb_regs[BFIN_R6] = regs->r6; gdb_regs[BFIN_R7] = regs->r7; gdb_regs[BFIN_P0] = regs->p0; gdb_regs[BFIN_P1] = regs->p1; gdb_regs[BFIN_P2] = regs->p2; gdb_regs[BFIN_P3] = regs->p3; gdb_regs[BFIN_P4] = regs->p4; gdb_regs[BFIN_P5] = regs->p5; gdb_regs[BFIN_SP] = regs->reserved; gdb_regs[BFIN_FP] = regs->fp; gdb_regs[BFIN_I0] = regs->i0; gdb_regs[BFIN_I1] = regs->i1; gdb_regs[BFIN_I2] = regs->i2; gdb_regs[BFIN_I3] = regs->i3; gdb_regs[BFIN_M0] = regs->m0; gdb_regs[BFIN_M1] = regs->m1; gdb_regs[BFIN_M2] = regs->m2; gdb_regs[BFIN_M3] = regs->m3; gdb_regs[BFIN_B0] = regs->b0; gdb_regs[BFIN_B1] = regs->b1; gdb_regs[BFIN_B2] = regs->b2; gdb_regs[BFIN_B3] = regs->b3; gdb_regs[BFIN_L0] = regs->l0; gdb_regs[BFIN_L1] = regs->l1; gdb_regs[BFIN_L2] = regs->l2; gdb_regs[BFIN_L3] = regs->l3; gdb_regs[BFIN_A0_DOT_X] = regs->a0x; gdb_regs[BFIN_A0_DOT_W] = regs->a0w; gdb_regs[BFIN_A1_DOT_X] = regs->a1x; gdb_regs[BFIN_A1_DOT_W] = regs->a1w; gdb_regs[BFIN_ASTAT] = regs->astat; gdb_regs[BFIN_RETS] = regs->rets; gdb_regs[BFIN_LC0] = regs->lc0; gdb_regs[BFIN_LT0] = regs->lt0; gdb_regs[BFIN_LB0] = regs->lb0; gdb_regs[BFIN_LC1] = regs->lc1; gdb_regs[BFIN_LT1] = regs->lt1; gdb_regs[BFIN_LB1] = regs->lb1; gdb_regs[BFIN_CYCLES] = 0; gdb_regs[BFIN_CYCLES2] = 0; gdb_regs[BFIN_USP] = regs->usp; gdb_regs[BFIN_SEQSTAT] = regs->seqstat; gdb_regs[BFIN_SYSCFG] = regs->syscfg; gdb_regs[BFIN_RETI] = regs->pc; gdb_regs[BFIN_RETX] = regs->retx; gdb_regs[BFIN_RETN] = regs->retn; gdb_regs[BFIN_RETE] = regs->rete; gdb_regs[BFIN_PC] = regs->pc; gdb_regs[BFIN_CC] = (regs->astat >> 5) & 1; gdb_regs[BFIN_EXTRA1] = 0; gdb_regs[BFIN_EXTRA2] = 0; gdb_regs[BFIN_EXTRA3] = 0; gdb_regs[BFIN_IPEND] = regs->ipend; } /* * Extracts ebp, esp and eip values understandable by gdb from the values * saved by switch_to. * thread.esp points to ebp. flags and ebp are pushed in switch_to hence esp * prior to entering switch_to is 8 greater than the value that is saved. * If switch_to changes, change following code appropriately. */ void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p) { gdb_regs[BFIN_SP] = p->thread.ksp; gdb_regs[BFIN_PC] = p->thread.pc; gdb_regs[BFIN_SEQSTAT] = p->thread.seqstat; } void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs) { regs->r0 = gdb_regs[BFIN_R0]; regs->r1 = gdb_regs[BFIN_R1]; regs->r2 = gdb_regs[BFIN_R2]; regs->r3 = gdb_regs[BFIN_R3]; regs->r4 = gdb_regs[BFIN_R4]; regs->r5 = gdb_regs[BFIN_R5]; regs->r6 = gdb_regs[BFIN_R6]; regs->r7 = gdb_regs[BFIN_R7]; regs->p0 = gdb_regs[BFIN_P0]; regs->p1 = gdb_regs[BFIN_P1]; regs->p2 = gdb_regs[BFIN_P2]; regs->p3 = gdb_regs[BFIN_P3]; regs->p4 = gdb_regs[BFIN_P4]; regs->p5 = gdb_regs[BFIN_P5]; regs->fp = gdb_regs[BFIN_FP]; regs->i0 = gdb_regs[BFIN_I0]; regs->i1 = gdb_regs[BFIN_I1]; regs->i2 = gdb_regs[BFIN_I2]; regs->i3 = gdb_regs[BFIN_I3]; regs->m0 = gdb_regs[BFIN_M0]; regs->m1 = gdb_regs[BFIN_M1]; regs->m2 = gdb_regs[BFIN_M2]; regs->m3 = gdb_regs[BFIN_M3]; regs->b0 = gdb_regs[BFIN_B0]; regs->b1 = gdb_regs[BFIN_B1]; regs->b2 = gdb_regs[BFIN_B2]; regs->b3 = gdb_regs[BFIN_B3]; regs->l0 = gdb_regs[BFIN_L0]; regs->l1 = gdb_regs[BFIN_L1]; regs->l2 = gdb_regs[BFIN_L2]; regs->l3 = gdb_regs[BFIN_L3]; regs->a0x = gdb_regs[BFIN_A0_DOT_X]; regs->a0w = gdb_regs[BFIN_A0_DOT_W]; regs->a1x = gdb_regs[BFIN_A1_DOT_X]; regs->a1w = gdb_regs[BFIN_A1_DOT_W]; regs->rets = gdb_regs[BFIN_RETS]; regs->lc0 = gdb_regs[BFIN_LC0]; regs->lt0 = gdb_regs[BFIN_LT0]; regs->lb0 = gdb_regs[BFIN_LB0]; regs->lc1 = gdb_regs[BFIN_LC1]; regs->lt1 = gdb_regs[BFIN_LT1]; regs->lb1 = gdb_regs[BFIN_LB1]; regs->usp = gdb_regs[BFIN_USP]; regs->syscfg = gdb_regs[BFIN_SYSCFG]; regs->retx = gdb_regs[BFIN_RETX]; regs->retn = gdb_regs[BFIN_RETN]; regs->rete = gdb_regs[BFIN_RETE]; regs->pc = gdb_regs[BFIN_PC]; #if 0 /* can't change these */ regs->astat = gdb_regs[BFIN_ASTAT]; regs->seqstat = gdb_regs[BFIN_SEQSTAT]; regs->ipend = gdb_regs[BFIN_IPEND]; #endif } static struct hw_breakpoint { unsigned int occupied:1; unsigned int skip:1; unsigned int enabled:1; unsigned int type:1; unsigned int dataacc:2; unsigned short count; unsigned int addr; } breakinfo[HW_WATCHPOINT_NUM]; static int bfin_set_hw_break(unsigned long addr, int len, enum kgdb_bptype type) { int breakno; int bfin_type; int dataacc = 0; switch (type) { case BP_HARDWARE_BREAKPOINT: bfin_type = TYPE_INST_WATCHPOINT; break; case BP_WRITE_WATCHPOINT: dataacc = 1; bfin_type = TYPE_DATA_WATCHPOINT; break; case BP_READ_WATCHPOINT: dataacc = 2; bfin_type = TYPE_DATA_WATCHPOINT; break; case BP_ACCESS_WATCHPOINT: dataacc = 3; bfin_type = TYPE_DATA_WATCHPOINT; break; default: return -ENOSPC; } /* Because hardware data watchpoint impelemented in current * Blackfin can not trigger an exception event as the hardware * instrction watchpoint does, we ignaore all data watch point here. * They can be turned on easily after future blackfin design * supports this feature. */ for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++) if (bfin_type == breakinfo[breakno].type && !breakinfo[breakno].occupied) { breakinfo[breakno].occupied = 1; breakinfo[breakno].skip = 0; breakinfo[breakno].enabled = 1; breakinfo[breakno].addr = addr; breakinfo[breakno].dataacc = dataacc; breakinfo[breakno].count = 0; return 0; } return -ENOSPC; } static int bfin_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype type) { int breakno; int bfin_type; switch (type) { case BP_HARDWARE_BREAKPOINT: bfin_type = TYPE_INST_WATCHPOINT; break; case BP_WRITE_WATCHPOINT: case BP_READ_WATCHPOINT: case BP_ACCESS_WATCHPOINT: bfin_type = TYPE_DATA_WATCHPOINT; break; default: return 0; } for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++) if (bfin_type == breakinfo[breakno].type && breakinfo[breakno].occupied && breakinfo[breakno].addr == addr) { breakinfo[breakno].occupied = 0; breakinfo[breakno].enabled = 0; } return 0; } static void bfin_remove_all_hw_break(void) { int breakno; memset(breakinfo, 0, sizeof(struct hw_breakpoint)*HW_WATCHPOINT_NUM); for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++) breakinfo[breakno].type = TYPE_INST_WATCHPOINT; for (; breakno < HW_WATCHPOINT_NUM; breakno++) breakinfo[breakno].type = TYPE_DATA_WATCHPOINT; } static void bfin_correct_hw_break(void) { int breakno; unsigned int wpiactl = 0; unsigned int wpdactl = 0; int enable_wp = 0; for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++) if (breakinfo[breakno].enabled) { enable_wp = 1; switch (breakno) { case 0: wpiactl |= WPIAEN0|WPICNTEN0; bfin_write_WPIA0(breakinfo[breakno].addr); bfin_write_WPIACNT0(breakinfo[breakno].count + breakinfo->skip); break; case 1: wpiactl |= WPIAEN1|WPICNTEN1; bfin_write_WPIA1(breakinfo[breakno].addr); bfin_write_WPIACNT1(breakinfo[breakno].count + breakinfo->skip); break; case 2: wpiactl |= WPIAEN2|WPICNTEN2; bfin_write_WPIA2(breakinfo[breakno].addr); bfin_write_WPIACNT2(breakinfo[breakno].count + breakinfo->skip); break; case 3: wpiactl |= WPIAEN3|WPICNTEN3; bfin_write_WPIA3(breakinfo[breakno].addr); bfin_write_WPIACNT3(breakinfo[breakno].count + breakinfo->skip); break; case 4: wpiactl |= WPIAEN4|WPICNTEN4; bfin_write_WPIA4(breakinfo[breakno].addr); bfin_write_WPIACNT4(breakinfo[breakno].count + breakinfo->skip); break; case 5: wpiactl |= WPIAEN5|WPICNTEN5; bfin_write_WPIA5(breakinfo[breakno].addr); bfin_write_WPIACNT5(breakinfo[breakno].count + breakinfo->skip); break; case 6: wpdactl |= WPDAEN0|WPDCNTEN0|WPDSRC0; wpdactl |= breakinfo[breakno].dataacc << WPDACC0_OFFSET; bfin_write_WPDA0(breakinfo[breakno].addr); bfin_write_WPDACNT0(breakinfo[breakno].count + breakinfo->skip); break; case 7: wpdactl |= WPDAEN1|WPDCNTEN1|WPDSRC1; wpdactl |= breakinfo[breakno].dataacc << WPDACC1_OFFSET; bfin_write_WPDA1(breakinfo[breakno].addr); bfin_write_WPDACNT1(breakinfo[breakno].count + breakinfo->skip); break; } } /* Should enable WPPWR bit first before set any other * WPIACTL and WPDACTL bits */ if (enable_wp) { bfin_write_WPIACTL(WPPWR); CSYNC(); bfin_write_WPIACTL(wpiactl|WPPWR); bfin_write_WPDACTL(wpdactl); CSYNC(); } } static void bfin_disable_hw_debug(struct pt_regs *regs) { /* Disable hardware debugging while we are in kgdb */ bfin_write_WPIACTL(0); bfin_write_WPDACTL(0); CSYNC(); } #ifdef CONFIG_SMP void kgdb_passive_cpu_callback(void *info) { kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs()); } void kgdb_roundup_cpus(unsigned long flags) { smp_call_function(kgdb_passive_cpu_callback, NULL, 0); } void kgdb_roundup_cpu(int cpu, unsigned long flags) { smp_call_function_single(cpu, kgdb_passive_cpu_callback, NULL, 0); } #endif #ifdef CONFIG_IPIPE static unsigned long kgdb_arch_imask; #endif void kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code) { if (kgdb_single_step) preempt_enable(); #ifdef CONFIG_IPIPE if (kgdb_arch_imask) { cpu_pda[raw_smp_processor_id()].ex_imask = kgdb_arch_imask; kgdb_arch_imask = 0; } #endif } int kgdb_arch_handle_exception(int vector, int signo, int err_code, char *remcom_in_buffer, char *remcom_out_buffer, struct pt_regs *regs) { long addr; char *ptr; int newPC; int i; switch (remcom_in_buffer[0]) { case 'c': case 's': if (kgdb_contthread && kgdb_contthread != current) { strcpy(remcom_out_buffer, "E00"); break; } kgdb_contthread = NULL; /* try to read optional parameter, pc unchanged if no parm */ ptr = &remcom_in_buffer[1]; if (kgdb_hex2long(&ptr, &addr)) { regs->retx = addr; } newPC = regs->retx; /* clear the trace bit */ regs->syscfg &= 0xfffffffe; /* set the trace bit if we're stepping */ if (remcom_in_buffer[0] == 's') { regs->syscfg |= 0x1; kgdb_single_step = regs->ipend; kgdb_single_step >>= 6; for (i = 10; i > 0; i--, kgdb_single_step >>= 1) if (kgdb_single_step & 1) break; /* i indicate event priority of current stopped instruction * user space instruction is 0, IVG15 is 1, IVTMR is 10. * kgdb_single_step > 0 means in single step mode */ kgdb_single_step = i + 1; preempt_disable(); #ifdef CONFIG_IPIPE kgdb_arch_imask = cpu_pda[raw_smp_processor_id()].ex_imask; cpu_pda[raw_smp_processor_id()].ex_imask = 0; #endif } bfin_correct_hw_break(); return 0; } /* switch */ return -1; /* this means that we do not want to exit from the handler */ } struct kgdb_arch arch_kgdb_ops = { .gdb_bpt_instr = {0xa1}, .flags = KGDB_HW_BREAKPOINT, .set_hw_breakpoint = bfin_set_hw_break, .remove_hw_breakpoint = bfin_remove_hw_break, .disable_hw_break = bfin_disable_hw_debug, .remove_all_hw_break = bfin_remove_all_hw_break, .correct_hw_break = bfin_correct_hw_break, }; #define IN_MEM(addr, size, l1_addr, l1_size) \ ({ \ unsigned long __addr = (unsigned long)(addr); \ (l1_size && __addr >= l1_addr && __addr + (size) <= l1_addr + l1_size); \ }) #define ASYNC_BANK_SIZE \ (ASYNC_BANK0_SIZE + ASYNC_BANK1_SIZE + \ ASYNC_BANK2_SIZE + ASYNC_BANK3_SIZE) int kgdb_validate_break_address(unsigned long addr) { int cpu = raw_smp_processor_id(); if (addr >= 0x1000 && (addr + BREAK_INSTR_SIZE) <= physical_mem_end) return 0; if (IN_MEM(addr, BREAK_INSTR_SIZE, ASYNC_BANK0_BASE, ASYNC_BANK_SIZE)) return 0; if (cpu == 0 && IN_MEM(addr, BREAK_INSTR_SIZE, L1_CODE_START, L1_CODE_LENGTH)) return 0; #ifdef CONFIG_SMP else if (cpu == 1 && IN_MEM(addr, BREAK_INSTR_SIZE, COREB_L1_CODE_START, L1_CODE_LENGTH)) return 0; #endif if (IN_MEM(addr, BREAK_INSTR_SIZE, L2_START, L2_LENGTH)) return 0; return -EFAULT; } void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip) { regs->retx = ip; } int kgdb_arch_init(void) { kgdb_single_step = 0; #ifdef CONFIG_IPIPE kgdb_arch_imask = 0; #endif bfin_remove_all_hw_break(); return 0; } void kgdb_arch_exit(void) { }