/* * Cobalt Qube/Raq PCI support * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1995, 1996, 1997, 2002, 2003 by Ralf Baechle * Copyright (C) 2001, 2002, 2003 by Liam Davies (ldavies@agile.tv) */ #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/init.h> #include <asm/pci.h> #include <asm/io.h> #include <asm/gt64120.h> #include <cobalt.h> #include <irq.h> /* * PCI slot numbers */ #define COBALT_PCICONF_CPU 0x06 #define COBALT_PCICONF_ETH0 0x07 #define COBALT_PCICONF_RAQSCSI 0x08 #define COBALT_PCICONF_VIA 0x09 #define COBALT_PCICONF_PCISLOT 0x0A #define COBALT_PCICONF_ETH1 0x0C /* * The Cobalt board ID information. The boards have an ID number wired * into the VIA that is available in the high nibble of register 94. */ #define VIA_COBALT_BRD_ID_REG 0x94 #define VIA_COBALT_BRD_REG_to_ID(reg) ((unsigned char)(reg) >> 4) static void qube_raq_galileo_early_fixup(struct pci_dev *dev) { if (dev->devfn == PCI_DEVFN(0, 0) && (dev->class >> 8) == PCI_CLASS_MEMORY_OTHER) { dev->class = (PCI_CLASS_BRIDGE_HOST << 8) | (dev->class & 0xff); printk(KERN_INFO "Galileo: fixed bridge class\n"); } } DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_GT64111, qube_raq_galileo_early_fixup); static void __devinit cobalt_legacy_ide_resource_fixup(struct pci_dev *dev, struct resource *res) { struct pci_controller *hose = (struct pci_controller *)dev->sysdata; unsigned long offset = hose->io_offset; struct resource orig = *res; if (!(res->flags & IORESOURCE_IO) || !(res->flags & IORESOURCE_PCI_FIXED)) return; res->start -= offset; res->end -= offset; dev_printk(KERN_DEBUG, &dev->dev, "converted legacy %pR to bus %pR\n", &orig, res); } static void __devinit cobalt_legacy_ide_fixup(struct pci_dev *dev) { u32 class; u8 progif; /* * If the IDE controller is in legacy mode, pci_setup_device() fills in * the resources with the legacy addresses that normally appear on the * PCI bus, just as if we had read them from a BAR. * * However, with the GT-64111, those legacy addresses, e.g., 0x1f0, * will never appear on the PCI bus because it converts memory accesses * in the PCI I/O region (which is never at address zero) into I/O port * accesses with no address translation. * * For example, if GT_DEF_PCI0_IO_BASE is 0x10000000, a load or store * to physical address 0x100001f0 will become a PCI access to I/O port * 0x100001f0. There's no way to generate an access to I/O port 0x1f0, * but the VT82C586 IDE controller does respond at 0x100001f0 because * it only decodes the low 24 bits of the address. * * When this quirk runs, the pci_dev resources should contain bus * addresses, not Linux I/O port numbers, so convert legacy addresses * like 0x1f0 to bus addresses like 0x100001f0. Later, we'll convert * them back with pcibios_fixup_bus() or pcibios_bus_to_resource(). */ class = dev->class >> 8; if (class != PCI_CLASS_STORAGE_IDE) return; pci_read_config_byte(dev, PCI_CLASS_PROG, &progif); if ((progif & 1) == 0) { cobalt_legacy_ide_resource_fixup(dev, &dev->resource[0]); cobalt_legacy_ide_resource_fixup(dev, &dev->resource[1]); } if ((progif & 4) == 0) { cobalt_legacy_ide_resource_fixup(dev, &dev->resource[2]); cobalt_legacy_ide_resource_fixup(dev, &dev->resource[3]); } } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C586_1, cobalt_legacy_ide_fixup); static void qube_raq_via_bmIDE_fixup(struct pci_dev *dev) { unsigned short cfgword; unsigned char lt; /* Enable Bus Mastering and fast back to back. */ pci_read_config_word(dev, PCI_COMMAND, &cfgword); cfgword |= (PCI_COMMAND_FAST_BACK | PCI_COMMAND_MASTER); pci_write_config_word(dev, PCI_COMMAND, cfgword); /* Enable both ide interfaces. ROM only enables primary one. */ pci_write_config_byte(dev, 0x40, 0xb); /* Set latency timer to reasonable value. */ pci_read_config_byte(dev, PCI_LATENCY_TIMER, <); if (lt < 64) pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64); pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 8); } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C586_1, qube_raq_via_bmIDE_fixup); static void qube_raq_galileo_fixup(struct pci_dev *dev) { if (dev->devfn != PCI_DEVFN(0, 0)) return; /* Fix PCI latency-timer and cache-line-size values in Galileo * host bridge. */ pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64); pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 8); /* * The code described by the comment below has been removed * as it causes bus mastering by the Ethernet controllers * to break under any kind of network load. We always set * the retry timeouts to their maximum. * * --x--x--x--x--x--x--x--x--x--x--x--x--x--x--x--x--x--x--x--x-- * * On all machines prior to Q2, we had the STOP line disconnected * from Galileo to VIA on PCI. The new Galileo does not function * correctly unless we have it connected. * * Therefore we must set the disconnect/retry cycle values to * something sensible when using the new Galileo. */ printk(KERN_INFO "Galileo: revision %u\n", dev->revision); #if 0 if (dev->revision >= 0x10) { /* New Galileo, assumes PCI stop line to VIA is connected. */ GT_WRITE(GT_PCI0_TOR_OFS, 0x4020); } else if (dev->revision == 0x1 || dev->revision == 0x2) #endif { signed int timeo; /* XXX WE MUST DO THIS ELSE GALILEO LOCKS UP! -DaveM */ timeo = GT_READ(GT_PCI0_TOR_OFS); /* Old Galileo, assumes PCI STOP line to VIA is disconnected. */ GT_WRITE(GT_PCI0_TOR_OFS, (0xff << 16) | /* retry count */ (0xff << 8) | /* timeout 1 */ 0xff); /* timeout 0 */ /* enable PCI retry exceeded interrupt */ GT_WRITE(GT_INTRMASK_OFS, GT_INTR_RETRYCTR0_MSK | GT_READ(GT_INTRMASK_OFS)); } } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_GT64111, qube_raq_galileo_fixup); int cobalt_board_id; static void qube_raq_via_board_id_fixup(struct pci_dev *dev) { u8 id; int retval; retval = pci_read_config_byte(dev, VIA_COBALT_BRD_ID_REG, &id); if (retval) { panic("Cannot read board ID"); return; } cobalt_board_id = VIA_COBALT_BRD_REG_to_ID(id); printk(KERN_INFO "Cobalt board ID: %d\n", cobalt_board_id); } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C586_0, qube_raq_via_board_id_fixup); static char irq_tab_qube1[] __initdata = { [COBALT_PCICONF_CPU] = 0, [COBALT_PCICONF_ETH0] = QUBE1_ETH0_IRQ, [COBALT_PCICONF_RAQSCSI] = SCSI_IRQ, [COBALT_PCICONF_VIA] = 0, [COBALT_PCICONF_PCISLOT] = PCISLOT_IRQ, [COBALT_PCICONF_ETH1] = 0 }; static char irq_tab_cobalt[] __initdata = { [COBALT_PCICONF_CPU] = 0, [COBALT_PCICONF_ETH0] = ETH0_IRQ, [COBALT_PCICONF_RAQSCSI] = SCSI_IRQ, [COBALT_PCICONF_VIA] = 0, [COBALT_PCICONF_PCISLOT] = PCISLOT_IRQ, [COBALT_PCICONF_ETH1] = ETH1_IRQ }; static char irq_tab_raq2[] __initdata = { [COBALT_PCICONF_CPU] = 0, [COBALT_PCICONF_ETH0] = ETH0_IRQ, [COBALT_PCICONF_RAQSCSI] = RAQ2_SCSI_IRQ, [COBALT_PCICONF_VIA] = 0, [COBALT_PCICONF_PCISLOT] = PCISLOT_IRQ, [COBALT_PCICONF_ETH1] = ETH1_IRQ }; int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { if (cobalt_board_id <= COBALT_BRD_ID_QUBE1) return irq_tab_qube1[slot]; if (cobalt_board_id == COBALT_BRD_ID_RAQ2) return irq_tab_raq2[slot]; return irq_tab_cobalt[slot]; } /* Do platform specific device initialization at pci_enable_device() time */ int pcibios_plat_dev_init(struct pci_dev *dev) { return 0; }