/* * Alchemy PCI host mode support. * * Copyright 2001-2003, 2007-2008 MontaVista Software Inc. * Author: MontaVista Software, Inc. <source@mvista.com> * * Support for all devices (greater than 16) added by David Gathright. */ #include <linux/export.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/platform_device.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/syscore_ops.h> #include <linux/vmalloc.h> #include <asm/mach-au1x00/au1000.h> #include <asm/tlbmisc.h> #ifdef CONFIG_DEBUG_PCI #define DBG(x...) printk(KERN_DEBUG x) #else #define DBG(x...) do {} while (0) #endif #define PCI_ACCESS_READ 0 #define PCI_ACCESS_WRITE 1 struct alchemy_pci_context { struct pci_controller alchemy_pci_ctrl; /* leave as first member! */ void __iomem *regs; /* ctrl base */ /* tools for wired entry for config space access */ unsigned long last_elo0; unsigned long last_elo1; int wired_entry; struct vm_struct *pci_cfg_vm; unsigned long pm[12]; int (*board_map_irq)(const struct pci_dev *d, u8 slot, u8 pin); int (*board_pci_idsel)(unsigned int devsel, int assert); }; /* for syscore_ops. There's only one PCI controller on Alchemy chips, so this * should suffice for now. */ static struct alchemy_pci_context *__alchemy_pci_ctx; /* IO/MEM resources for PCI. Keep the memres in sync with __fixup_bigphys_addr * in arch/mips/alchemy/common/setup.c */ static struct resource alchemy_pci_def_memres = { .start = ALCHEMY_PCI_MEMWIN_START, .end = ALCHEMY_PCI_MEMWIN_END, .name = "PCI memory space", .flags = IORESOURCE_MEM }; static struct resource alchemy_pci_def_iores = { .start = ALCHEMY_PCI_IOWIN_START, .end = ALCHEMY_PCI_IOWIN_END, .name = "PCI IO space", .flags = IORESOURCE_IO }; static void mod_wired_entry(int entry, unsigned long entrylo0, unsigned long entrylo1, unsigned long entryhi, unsigned long pagemask) { unsigned long old_pagemask; unsigned long old_ctx; /* Save old context and create impossible VPN2 value */ old_ctx = read_c0_entryhi() & 0xff; old_pagemask = read_c0_pagemask(); write_c0_index(entry); write_c0_pagemask(pagemask); write_c0_entryhi(entryhi); write_c0_entrylo0(entrylo0); write_c0_entrylo1(entrylo1); tlb_write_indexed(); write_c0_entryhi(old_ctx); write_c0_pagemask(old_pagemask); } static void alchemy_pci_wired_entry(struct alchemy_pci_context *ctx) { ctx->wired_entry = read_c0_wired(); add_wired_entry(0, 0, (unsigned long)ctx->pci_cfg_vm->addr, PM_4K); ctx->last_elo0 = ctx->last_elo1 = ~0; } static int config_access(unsigned char access_type, struct pci_bus *bus, unsigned int dev_fn, unsigned char where, u32 *data) { struct alchemy_pci_context *ctx = bus->sysdata; unsigned int device = PCI_SLOT(dev_fn); unsigned int function = PCI_FUNC(dev_fn); unsigned long offset, status, cfg_base, flags, entryLo0, entryLo1, r; int error = PCIBIOS_SUCCESSFUL; if (device > 19) { *data = 0xffffffff; return -1; } local_irq_save(flags); r = __raw_readl(ctx->regs + PCI_REG_STATCMD) & 0x0000ffff; r |= PCI_STATCMD_STATUS(0x2000); __raw_writel(r, ctx->regs + PCI_REG_STATCMD); wmb(); /* Allow board vendors to implement their own off-chip IDSEL. * If it doesn't succeed, may as well bail out at this point. */ if (ctx->board_pci_idsel(device, 1) == 0) { *data = 0xffffffff; local_irq_restore(flags); return -1; } /* Setup the config window */ if (bus->number == 0) cfg_base = (1 << device) << 11; else cfg_base = 0x80000000 | (bus->number << 16) | (device << 11); /* Setup the lower bits of the 36-bit address */ offset = (function << 8) | (where & ~0x3); /* Pick up any address that falls below the page mask */ offset |= cfg_base & ~PAGE_MASK; /* Page boundary */ cfg_base = cfg_base & PAGE_MASK; /* To improve performance, if the current device is the same as * the last device accessed, we don't touch the TLB. */ entryLo0 = (6 << 26) | (cfg_base >> 6) | (2 << 3) | 7; entryLo1 = (6 << 26) | (cfg_base >> 6) | (0x1000 >> 6) | (2 << 3) | 7; if ((entryLo0 != ctx->last_elo0) || (entryLo1 != ctx->last_elo1)) { mod_wired_entry(ctx->wired_entry, entryLo0, entryLo1, (unsigned long)ctx->pci_cfg_vm->addr, PM_4K); ctx->last_elo0 = entryLo0; ctx->last_elo1 = entryLo1; } if (access_type == PCI_ACCESS_WRITE) __raw_writel(*data, ctx->pci_cfg_vm->addr + offset); else *data = __raw_readl(ctx->pci_cfg_vm->addr + offset); wmb(); DBG("alchemy-pci: cfg access %d bus %u dev %u at %x dat %x conf %lx\n", access_type, bus->number, device, where, *data, offset); /* check for errors, master abort */ status = __raw_readl(ctx->regs + PCI_REG_STATCMD); if (status & (1 << 29)) { *data = 0xffffffff; error = -1; DBG("alchemy-pci: master abort on cfg access %d bus %d dev %d", access_type, bus->number, device); } else if ((status >> 28) & 0xf) { DBG("alchemy-pci: PCI ERR detected: dev %d, status %lx\n", device, (status >> 28) & 0xf); /* clear errors */ __raw_writel(status & 0xf000ffff, ctx->regs + PCI_REG_STATCMD); *data = 0xffffffff; error = -1; } /* Take away the IDSEL. */ (void)ctx->board_pci_idsel(device, 0); local_irq_restore(flags); return error; } static int read_config_byte(struct pci_bus *bus, unsigned int devfn, int where, u8 *val) { u32 data; int ret = config_access(PCI_ACCESS_READ, bus, devfn, where, &data); if (where & 1) data >>= 8; if (where & 2) data >>= 16; *val = data & 0xff; return ret; } static int read_config_word(struct pci_bus *bus, unsigned int devfn, int where, u16 *val) { u32 data; int ret = config_access(PCI_ACCESS_READ, bus, devfn, where, &data); if (where & 2) data >>= 16; *val = data & 0xffff; return ret; } static int read_config_dword(struct pci_bus *bus, unsigned int devfn, int where, u32 *val) { return config_access(PCI_ACCESS_READ, bus, devfn, where, val); } static int write_config_byte(struct pci_bus *bus, unsigned int devfn, int where, u8 val) { u32 data = 0; if (config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) return -1; data = (data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); if (config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data)) return -1; return PCIBIOS_SUCCESSFUL; } static int write_config_word(struct pci_bus *bus, unsigned int devfn, int where, u16 val) { u32 data = 0; if (config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) return -1; data = (data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); if (config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data)) return -1; return PCIBIOS_SUCCESSFUL; } static int write_config_dword(struct pci_bus *bus, unsigned int devfn, int where, u32 val) { return config_access(PCI_ACCESS_WRITE, bus, devfn, where, &val); } static int alchemy_pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { switch (size) { case 1: { u8 _val; int rc = read_config_byte(bus, devfn, where, &_val); *val = _val; return rc; } case 2: { u16 _val; int rc = read_config_word(bus, devfn, where, &_val); *val = _val; return rc; } default: return read_config_dword(bus, devfn, where, val); } } static int alchemy_pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { switch (size) { case 1: return write_config_byte(bus, devfn, where, (u8) val); case 2: return write_config_word(bus, devfn, where, (u16) val); default: return write_config_dword(bus, devfn, where, val); } } static struct pci_ops alchemy_pci_ops = { .read = alchemy_pci_read, .write = alchemy_pci_write, }; static int alchemy_pci_def_idsel(unsigned int devsel, int assert) { return 1; /* success */ } /* save PCI controller register contents. */ static int alchemy_pci_suspend(void) { struct alchemy_pci_context *ctx = __alchemy_pci_ctx; if (!ctx) return 0; ctx->pm[0] = __raw_readl(ctx->regs + PCI_REG_CMEM); ctx->pm[1] = __raw_readl(ctx->regs + PCI_REG_CONFIG) & 0x0009ffff; ctx->pm[2] = __raw_readl(ctx->regs + PCI_REG_B2BMASK_CCH); ctx->pm[3] = __raw_readl(ctx->regs + PCI_REG_B2BBASE0_VID); ctx->pm[4] = __raw_readl(ctx->regs + PCI_REG_B2BBASE1_SID); ctx->pm[5] = __raw_readl(ctx->regs + PCI_REG_MWMASK_DEV); ctx->pm[6] = __raw_readl(ctx->regs + PCI_REG_MWBASE_REV_CCL); ctx->pm[7] = __raw_readl(ctx->regs + PCI_REG_ID); ctx->pm[8] = __raw_readl(ctx->regs + PCI_REG_CLASSREV); ctx->pm[9] = __raw_readl(ctx->regs + PCI_REG_PARAM); ctx->pm[10] = __raw_readl(ctx->regs + PCI_REG_MBAR); ctx->pm[11] = __raw_readl(ctx->regs + PCI_REG_TIMEOUT); return 0; } static void alchemy_pci_resume(void) { struct alchemy_pci_context *ctx = __alchemy_pci_ctx; if (!ctx) return; __raw_writel(ctx->pm[0], ctx->regs + PCI_REG_CMEM); __raw_writel(ctx->pm[2], ctx->regs + PCI_REG_B2BMASK_CCH); __raw_writel(ctx->pm[3], ctx->regs + PCI_REG_B2BBASE0_VID); __raw_writel(ctx->pm[4], ctx->regs + PCI_REG_B2BBASE1_SID); __raw_writel(ctx->pm[5], ctx->regs + PCI_REG_MWMASK_DEV); __raw_writel(ctx->pm[6], ctx->regs + PCI_REG_MWBASE_REV_CCL); __raw_writel(ctx->pm[7], ctx->regs + PCI_REG_ID); __raw_writel(ctx->pm[8], ctx->regs + PCI_REG_CLASSREV); __raw_writel(ctx->pm[9], ctx->regs + PCI_REG_PARAM); __raw_writel(ctx->pm[10], ctx->regs + PCI_REG_MBAR); __raw_writel(ctx->pm[11], ctx->regs + PCI_REG_TIMEOUT); wmb(); __raw_writel(ctx->pm[1], ctx->regs + PCI_REG_CONFIG); wmb(); /* YAMON on all db1xxx boards wipes the TLB and writes zero to C0_wired * on resume, making it necessary to recreate it as soon as possible. */ ctx->wired_entry = 8191; /* impossibly high value */ alchemy_pci_wired_entry(ctx); /* install it */ } static struct syscore_ops alchemy_pci_pmops = { .suspend = alchemy_pci_suspend, .resume = alchemy_pci_resume, }; static int __devinit alchemy_pci_probe(struct platform_device *pdev) { struct alchemy_pci_platdata *pd = pdev->dev.platform_data; struct alchemy_pci_context *ctx; void __iomem *virt_io; unsigned long val; struct resource *r; int ret; /* need at least PCI IRQ mapping table */ if (!pd) { dev_err(&pdev->dev, "need platform data for PCI setup\n"); ret = -ENODEV; goto out; } ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) { dev_err(&pdev->dev, "no memory for pcictl context\n"); ret = -ENOMEM; goto out; } r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) { dev_err(&pdev->dev, "no pcictl ctrl regs resource\n"); ret = -ENODEV; goto out1; } if (!request_mem_region(r->start, resource_size(r), pdev->name)) { dev_err(&pdev->dev, "cannot claim pci regs\n"); ret = -ENODEV; goto out1; } ctx->regs = ioremap_nocache(r->start, resource_size(r)); if (!ctx->regs) { dev_err(&pdev->dev, "cannot map pci regs\n"); ret = -ENODEV; goto out2; } /* map parts of the PCI IO area */ /* REVISIT: if this changes with a newer variant (doubt it) make this * a platform resource. */ virt_io = ioremap(AU1500_PCI_IO_PHYS_ADDR, 0x00100000); if (!virt_io) { dev_err(&pdev->dev, "cannot remap pci io space\n"); ret = -ENODEV; goto out3; } ctx->alchemy_pci_ctrl.io_map_base = (unsigned long)virt_io; #ifdef CONFIG_DMA_NONCOHERENT /* Au1500 revisions older than AD have borked coherent PCI */ if ((alchemy_get_cputype() == ALCHEMY_CPU_AU1500) && (read_c0_prid() < 0x01030202)) { val = __raw_readl(ctx->regs + PCI_REG_CONFIG); val |= PCI_CONFIG_NC; __raw_writel(val, ctx->regs + PCI_REG_CONFIG); wmb(); dev_info(&pdev->dev, "non-coherent PCI on Au1500 AA/AB/AC\n"); } #endif if (pd->board_map_irq) ctx->board_map_irq = pd->board_map_irq; if (pd->board_pci_idsel) ctx->board_pci_idsel = pd->board_pci_idsel; else ctx->board_pci_idsel = alchemy_pci_def_idsel; /* fill in relevant pci_controller members */ ctx->alchemy_pci_ctrl.pci_ops = &alchemy_pci_ops; ctx->alchemy_pci_ctrl.mem_resource = &alchemy_pci_def_memres; ctx->alchemy_pci_ctrl.io_resource = &alchemy_pci_def_iores; /* we can't ioremap the entire pci config space because it's too large, * nor can we dynamically ioremap it because some drivers use the * PCI config routines from within atomic contex and that becomes a * problem in get_vm_area(). Instead we use one wired TLB entry to * handle all config accesses for all busses. */ ctx->pci_cfg_vm = get_vm_area(0x2000, VM_IOREMAP); if (!ctx->pci_cfg_vm) { dev_err(&pdev->dev, "unable to get vm area\n"); ret = -ENOMEM; goto out4; } ctx->wired_entry = 8191; /* impossibly high value */ alchemy_pci_wired_entry(ctx); /* install it */ set_io_port_base((unsigned long)ctx->alchemy_pci_ctrl.io_map_base); /* board may want to modify bits in the config register, do it now */ val = __raw_readl(ctx->regs + PCI_REG_CONFIG); val &= ~pd->pci_cfg_clr; val |= pd->pci_cfg_set; val &= ~PCI_CONFIG_PD; /* clear disable bit */ __raw_writel(val, ctx->regs + PCI_REG_CONFIG); wmb(); __alchemy_pci_ctx = ctx; platform_set_drvdata(pdev, ctx); register_syscore_ops(&alchemy_pci_pmops); register_pci_controller(&ctx->alchemy_pci_ctrl); return 0; out4: iounmap(virt_io); out3: iounmap(ctx->regs); out2: release_mem_region(r->start, resource_size(r)); out1: kfree(ctx); out: return ret; } static struct platform_driver alchemy_pcictl_driver = { .probe = alchemy_pci_probe, .driver = { .name = "alchemy-pci", .owner = THIS_MODULE, }, }; static int __init alchemy_pci_init(void) { /* Au1500/Au1550 have PCI */ switch (alchemy_get_cputype()) { case ALCHEMY_CPU_AU1500: case ALCHEMY_CPU_AU1550: return platform_driver_register(&alchemy_pcictl_driver); } return 0; } arch_initcall(alchemy_pci_init); int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { struct alchemy_pci_context *ctx = dev->sysdata; if (ctx && ctx->board_map_irq) return ctx->board_map_irq(dev, slot, pin); return -1; } int pcibios_plat_dev_init(struct pci_dev *dev) { return 0; }