/* * OpenRISC Linux * * Linux architectural port borrowing liberally from similar works of * others. All original copyrights apply as per the original source * declaration. * * OpenRISC implementation: * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com> * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se> * et al. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #ifndef __ASM_OPENRISC_UACCESS_H #define __ASM_OPENRISC_UACCESS_H /* * User space memory access functions */ #include <linux/errno.h> #include <linux/thread_info.h> #include <linux/prefetch.h> #include <linux/string.h> #include <linux/thread_info.h> #include <asm/page.h> #define VERIFY_READ 0 #define VERIFY_WRITE 1 /* * The fs value determines whether argument validity checking should be * performed or not. If get_fs() == USER_DS, checking is performed, with * get_fs() == KERNEL_DS, checking is bypassed. * * For historical reasons, these macros are grossly misnamed. */ /* addr_limit is the maximum accessible address for the task. we misuse * the KERNEL_DS and USER_DS values to both assign and compare the * addr_limit values through the equally misnamed get/set_fs macros. * (see above) */ #define KERNEL_DS (~0UL) #define get_ds() (KERNEL_DS) #define USER_DS (TASK_SIZE) #define get_fs() (current_thread_info()->addr_limit) #define set_fs(x) (current_thread_info()->addr_limit = (x)) #define segment_eq(a, b) ((a) == (b)) /* Ensure that the range from addr to addr+size is all within the process' * address space */ #define __range_ok(addr, size) (size <= get_fs() && addr <= (get_fs()-size)) /* Ensure that addr is below task's addr_limit */ #define __addr_ok(addr) ((unsigned long) addr < get_fs()) #define access_ok(type, addr, size) \ __range_ok((unsigned long)addr, (unsigned long)size) /* * The exception table consists of pairs of addresses: the first is the * address of an instruction that is allowed to fault, and the second is * the address at which the program should continue. No registers are * modified, so it is entirely up to the continuation code to figure out * what to do. * * All the routines below use bits of fixup code that are out of line * with the main instruction path. This means when everything is well, * we don't even have to jump over them. Further, they do not intrude * on our cache or tlb entries. */ struct exception_table_entry { unsigned long insn, fixup; }; /* Returns 0 if exception not found and fixup otherwise. */ extern unsigned long search_exception_table(unsigned long); extern void sort_exception_table(void); /* * These are the main single-value transfer routines. They automatically * use the right size if we just have the right pointer type. * * This gets kind of ugly. We want to return _two_ values in "get_user()" * and yet we don't want to do any pointers, because that is too much * of a performance impact. Thus we have a few rather ugly macros here, * and hide all the uglyness from the user. * * The "__xxx" versions of the user access functions are versions that * do not verify the address space, that must have been done previously * with a separate "access_ok()" call (this is used when we do multiple * accesses to the same area of user memory). * * As we use the same address space for kernel and user data on the * PowerPC, we can just do these as direct assignments. (Of course, the * exception handling means that it's no longer "just"...) */ #define get_user(x, ptr) \ __get_user_check((x), (ptr), sizeof(*(ptr))) #define put_user(x, ptr) \ __put_user_check((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr))) #define __get_user(x, ptr) \ __get_user_nocheck((x), (ptr), sizeof(*(ptr))) #define __put_user(x, ptr) \ __put_user_nocheck((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr))) extern long __put_user_bad(void); #define __put_user_nocheck(x, ptr, size) \ ({ \ long __pu_err; \ __put_user_size((x), (ptr), (size), __pu_err); \ __pu_err; \ }) #define __put_user_check(x, ptr, size) \ ({ \ long __pu_err = -EFAULT; \ __typeof__(*(ptr)) *__pu_addr = (ptr); \ if (access_ok(VERIFY_WRITE, __pu_addr, size)) \ __put_user_size((x), __pu_addr, (size), __pu_err); \ __pu_err; \ }) #define __put_user_size(x, ptr, size, retval) \ do { \ retval = 0; \ switch (size) { \ case 1: __put_user_asm(x, ptr, retval, "l.sb"); break; \ case 2: __put_user_asm(x, ptr, retval, "l.sh"); break; \ case 4: __put_user_asm(x, ptr, retval, "l.sw"); break; \ case 8: __put_user_asm2(x, ptr, retval); break; \ default: __put_user_bad(); \ } \ } while (0) struct __large_struct { unsigned long buf[100]; }; #define __m(x) (*(struct __large_struct *)(x)) /* * We don't tell gcc that we are accessing memory, but this is OK * because we do not write to any memory gcc knows about, so there * are no aliasing issues. */ #define __put_user_asm(x, addr, err, op) \ __asm__ __volatile__( \ "1: "op" 0(%2),%1\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: l.addi %0,r0,%3\n" \ " l.j 2b\n" \ " l.nop\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 2\n" \ " .long 1b,3b\n" \ ".previous" \ : "=r"(err) \ : "r"(x), "r"(addr), "i"(-EFAULT), "0"(err)) #define __put_user_asm2(x, addr, err) \ __asm__ __volatile__( \ "1: l.sw 0(%2),%1\n" \ "2: l.sw 4(%2),%H1\n" \ "3:\n" \ ".section .fixup,\"ax\"\n" \ "4: l.addi %0,r0,%3\n" \ " l.j 3b\n" \ " l.nop\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 2\n" \ " .long 1b,4b\n" \ " .long 2b,4b\n" \ ".previous" \ : "=r"(err) \ : "r"(x), "r"(addr), "i"(-EFAULT), "0"(err)) #define __get_user_nocheck(x, ptr, size) \ ({ \ long __gu_err, __gu_val; \ __get_user_size(__gu_val, (ptr), (size), __gu_err); \ (x) = (__typeof__(*(ptr)))__gu_val; \ __gu_err; \ }) #define __get_user_check(x, ptr, size) \ ({ \ long __gu_err = -EFAULT, __gu_val = 0; \ const __typeof__(*(ptr)) * __gu_addr = (ptr); \ if (access_ok(VERIFY_READ, __gu_addr, size)) \ __get_user_size(__gu_val, __gu_addr, (size), __gu_err); \ (x) = (__typeof__(*(ptr)))__gu_val; \ __gu_err; \ }) extern long __get_user_bad(void); #define __get_user_size(x, ptr, size, retval) \ do { \ retval = 0; \ switch (size) { \ case 1: __get_user_asm(x, ptr, retval, "l.lbz"); break; \ case 2: __get_user_asm(x, ptr, retval, "l.lhz"); break; \ case 4: __get_user_asm(x, ptr, retval, "l.lwz"); break; \ case 8: __get_user_asm2(x, ptr, retval); \ default: (x) = __get_user_bad(); \ } \ } while (0) #define __get_user_asm(x, addr, err, op) \ __asm__ __volatile__( \ "1: "op" %1,0(%2)\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: l.addi %0,r0,%3\n" \ " l.addi %1,r0,0\n" \ " l.j 2b\n" \ " l.nop\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 2\n" \ " .long 1b,3b\n" \ ".previous" \ : "=r"(err), "=r"(x) \ : "r"(addr), "i"(-EFAULT), "0"(err)) #define __get_user_asm2(x, addr, err) \ __asm__ __volatile__( \ "1: l.lwz %1,0(%2)\n" \ "2: l.lwz %H1,4(%2)\n" \ "3:\n" \ ".section .fixup,\"ax\"\n" \ "4: l.addi %0,r0,%3\n" \ " l.addi %1,r0,0\n" \ " l.addi %H1,r0,0\n" \ " l.j 3b\n" \ " l.nop\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 2\n" \ " .long 1b,4b\n" \ " .long 2b,4b\n" \ ".previous" \ : "=r"(err), "=&r"(x) \ : "r"(addr), "i"(-EFAULT), "0"(err)) /* more complex routines */ extern unsigned long __must_check __copy_tofrom_user(void *to, const void *from, unsigned long size); #define __copy_from_user(to, from, size) \ __copy_tofrom_user(to, from, size) #define __copy_to_user(to, from, size) \ __copy_tofrom_user(to, from, size) #define __copy_to_user_inatomic __copy_to_user #define __copy_from_user_inatomic __copy_from_user static inline unsigned long copy_from_user(void *to, const void *from, unsigned long n) { unsigned long over; if (access_ok(VERIFY_READ, from, n)) return __copy_tofrom_user(to, from, n); if ((unsigned long)from < TASK_SIZE) { over = (unsigned long)from + n - TASK_SIZE; return __copy_tofrom_user(to, from, n - over) + over; } return n; } static inline unsigned long copy_to_user(void *to, const void *from, unsigned long n) { unsigned long over; if (access_ok(VERIFY_WRITE, to, n)) return __copy_tofrom_user(to, from, n); if ((unsigned long)to < TASK_SIZE) { over = (unsigned long)to + n - TASK_SIZE; return __copy_tofrom_user(to, from, n - over) + over; } return n; } extern unsigned long __clear_user(void *addr, unsigned long size); static inline __must_check unsigned long clear_user(void *addr, unsigned long size) { if (access_ok(VERIFY_WRITE, addr, size)) return __clear_user(addr, size); if ((unsigned long)addr < TASK_SIZE) { unsigned long over = (unsigned long)addr + size - TASK_SIZE; return __clear_user(addr, size - over) + over; } return size; } extern int __strncpy_from_user(char *dst, const char *src, long count); static inline long strncpy_from_user(char *dst, const char *src, long count) { if (access_ok(VERIFY_READ, src, 1)) return __strncpy_from_user(dst, src, count); return -EFAULT; } /* * Return the size of a string (including the ending 0) * * Return 0 for error */ extern int __strnlen_user(const char *str, long len, unsigned long top); /* * Returns the length of the string at str (including the null byte), * or 0 if we hit a page we can't access, * or something > len if we didn't find a null byte. * * The `top' parameter to __strnlen_user is to make sure that * we can never overflow from the user area into kernel space. */ static inline long strnlen_user(const char __user *str, long len) { unsigned long top = (unsigned long)get_fs(); unsigned long res = 0; if (__addr_ok(str)) res = __strnlen_user(str, len, top); return res; } #define strlen_user(str) strnlen_user(str, TASK_SIZE-1) #endif /* __ASM_OPENRISC_UACCESS_H */