/* * IBM Onboard Peripheral Bus Interrupt Controller * * Copyright 2010 Jack Miller, IBM Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include <linux/interrupt.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/of.h> #include <linux/slab.h> #include <linux/time.h> #include <asm/reg_a2.h> #include <asm/irq.h> #define OPB_NR_IRQS 32 #define OPB_MLSASIER 0x04 /* MLS Accumulated Status IER */ #define OPB_MLSIR 0x50 /* MLS Interrupt Register */ #define OPB_MLSIER 0x54 /* MLS Interrupt Enable Register */ #define OPB_MLSIPR 0x58 /* MLS Interrupt Polarity Register */ #define OPB_MLSIIR 0x5c /* MLS Interrupt Inputs Register */ static int opb_index = 0; struct opb_pic { struct irq_host *host; void *regs; int index; spinlock_t lock; }; static u32 opb_in(struct opb_pic *opb, int offset) { return in_be32(opb->regs + offset); } static void opb_out(struct opb_pic *opb, int offset, u32 val) { out_be32(opb->regs + offset, val); } static void opb_unmask_irq(struct irq_data *d) { struct opb_pic *opb; unsigned long flags; u32 ier, bitset; opb = d->chip_data; bitset = (1 << (31 - irqd_to_hwirq(d))); spin_lock_irqsave(&opb->lock, flags); ier = opb_in(opb, OPB_MLSIER); opb_out(opb, OPB_MLSIER, ier | bitset); ier = opb_in(opb, OPB_MLSIER); spin_unlock_irqrestore(&opb->lock, flags); } static void opb_mask_irq(struct irq_data *d) { struct opb_pic *opb; unsigned long flags; u32 ier, mask; opb = d->chip_data; mask = ~(1 << (31 - irqd_to_hwirq(d))); spin_lock_irqsave(&opb->lock, flags); ier = opb_in(opb, OPB_MLSIER); opb_out(opb, OPB_MLSIER, ier & mask); ier = opb_in(opb, OPB_MLSIER); // Flush posted writes spin_unlock_irqrestore(&opb->lock, flags); } static void opb_ack_irq(struct irq_data *d) { struct opb_pic *opb; unsigned long flags; u32 bitset; opb = d->chip_data; bitset = (1 << (31 - irqd_to_hwirq(d))); spin_lock_irqsave(&opb->lock, flags); opb_out(opb, OPB_MLSIR, bitset); opb_in(opb, OPB_MLSIR); // Flush posted writes spin_unlock_irqrestore(&opb->lock, flags); } static void opb_mask_ack_irq(struct irq_data *d) { struct opb_pic *opb; unsigned long flags; u32 bitset; u32 ier, ir; opb = d->chip_data; bitset = (1 << (31 - irqd_to_hwirq(d))); spin_lock_irqsave(&opb->lock, flags); ier = opb_in(opb, OPB_MLSIER); opb_out(opb, OPB_MLSIER, ier & ~bitset); ier = opb_in(opb, OPB_MLSIER); // Flush posted writes opb_out(opb, OPB_MLSIR, bitset); ir = opb_in(opb, OPB_MLSIR); // Flush posted writes spin_unlock_irqrestore(&opb->lock, flags); } static int opb_set_irq_type(struct irq_data *d, unsigned int flow) { struct opb_pic *opb; unsigned long flags; int invert, ipr, mask, bit; opb = d->chip_data; /* The only information we're interested in in the type is whether it's * a high or low trigger. For high triggered interrupts, the polarity * set for it in the MLS Interrupt Polarity Register is 0, for low * interrupts it's 1 so that the proper input in the MLS Interrupt Input * Register is interrupted as asserting the interrupt. */ switch (flow) { case IRQ_TYPE_NONE: opb_mask_irq(d); return 0; case IRQ_TYPE_LEVEL_HIGH: invert = 0; break; case IRQ_TYPE_LEVEL_LOW: invert = 1; break; default: return -EINVAL; } bit = (1 << (31 - irqd_to_hwirq(d))); mask = ~bit; spin_lock_irqsave(&opb->lock, flags); ipr = opb_in(opb, OPB_MLSIPR); ipr = (ipr & mask) | (invert ? bit : 0); opb_out(opb, OPB_MLSIPR, ipr); ipr = opb_in(opb, OPB_MLSIPR); // Flush posted writes spin_unlock_irqrestore(&opb->lock, flags); /* Record the type in the interrupt descriptor */ irqd_set_trigger_type(d, flow); return 0; } static struct irq_chip opb_irq_chip = { .name = "OPB", .irq_mask = opb_mask_irq, .irq_unmask = opb_unmask_irq, .irq_mask_ack = opb_mask_ack_irq, .irq_ack = opb_ack_irq, .irq_set_type = opb_set_irq_type }; static int opb_host_map(struct irq_host *host, unsigned int virq, irq_hw_number_t hwirq) { struct opb_pic *opb; opb = host->host_data; /* Most of the important stuff is handled by the generic host code, like * the lookup, so just attach some info to the virtual irq */ irq_set_chip_data(virq, opb); irq_set_chip_and_handler(virq, &opb_irq_chip, handle_level_irq); irq_set_irq_type(virq, IRQ_TYPE_NONE); return 0; } static int opb_host_xlate(struct irq_host *host, struct device_node *dn, const u32 *intspec, unsigned int intsize, irq_hw_number_t *out_hwirq, unsigned int *out_type) { /* Interrupt size must == 2 */ BUG_ON(intsize != 2); *out_hwirq = intspec[0]; *out_type = intspec[1]; return 0; } static struct irq_host_ops opb_host_ops = { .map = opb_host_map, .xlate = opb_host_xlate, }; irqreturn_t opb_irq_handler(int irq, void *private) { struct opb_pic *opb; u32 ir, src, subvirq; opb = (struct opb_pic *) private; /* Read the OPB MLS Interrupt Register for * asserted interrupts */ ir = opb_in(opb, OPB_MLSIR); if (!ir) return IRQ_NONE; do { /* Get 1 - 32 source, *NOT* bit */ src = 32 - ffs(ir); /* Translate from the OPB's conception of interrupt number to * Linux's virtual IRQ */ subvirq = irq_linear_revmap(opb->host, src); generic_handle_irq(subvirq); } while ((ir = opb_in(opb, OPB_MLSIR))); return IRQ_HANDLED; } struct opb_pic *opb_pic_init_one(struct device_node *dn) { struct opb_pic *opb; struct resource res; if (of_address_to_resource(dn, 0, &res)) { printk(KERN_ERR "opb: Couldn't translate resource\n"); return NULL; } opb = kzalloc(sizeof(struct opb_pic), GFP_KERNEL); if (!opb) { printk(KERN_ERR "opb: Failed to allocate opb struct!\n"); return NULL; } /* Get access to the OPB MMIO registers */ opb->regs = ioremap(res.start + 0x10000, 0x1000); if (!opb->regs) { printk(KERN_ERR "opb: Failed to allocate register space!\n"); goto free_opb; } /* Allocate an irq host so that Linux knows that despite only * having one interrupt to issue, we're the controller for multiple * hardware IRQs, so later we can lookup their virtual IRQs. */ opb->host = irq_alloc_host(dn, IRQ_HOST_MAP_LINEAR, OPB_NR_IRQS, &opb_host_ops, -1); if (!opb->host) { printk(KERN_ERR "opb: Failed to allocate IRQ host!\n"); goto free_regs; } opb->index = opb_index++; spin_lock_init(&opb->lock); opb->host->host_data = opb; /* Disable all interrupts by default */ opb_out(opb, OPB_MLSASIER, 0); opb_out(opb, OPB_MLSIER, 0); /* ACK any interrupts left by FW */ opb_out(opb, OPB_MLSIR, 0xFFFFFFFF); return opb; free_regs: iounmap(opb->regs); free_opb: kfree(opb); return NULL; } void __init opb_pic_init(void) { struct device_node *dn; struct opb_pic *opb; int virq; int rc; /* Call init_one for each OPB device */ for_each_compatible_node(dn, NULL, "ibm,opb") { /* Fill in an OPB struct */ opb = opb_pic_init_one(dn); if (!opb) { printk(KERN_WARNING "opb: Failed to init node, skipped!\n"); continue; } /* Map / get opb's hardware virtual irq */ virq = irq_of_parse_and_map(dn, 0); if (virq <= 0) { printk("opb: irq_op_parse_and_map failed!\n"); continue; } /* Attach opb interrupt handler to new virtual IRQ */ rc = request_irq(virq, opb_irq_handler, IRQF_NO_THREAD, "OPB LS Cascade", opb); if (rc) { printk("opb: request_irq failed: %d\n", rc); continue; } printk("OPB%d init with %d IRQs at %p\n", opb->index, OPB_NR_IRQS, opb->regs); } }