/*************************************************************************** * Copyright (C) 2006 by Joachim Fritschi, <jfritschi@freenet.de> * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ .file "twofish-i586-asm.S" .text #include <asm/asm-offsets.h> /* return address at 0 */ #define in_blk 12 /* input byte array address parameter*/ #define out_blk 8 /* output byte array address parameter*/ #define ctx 4 /* Twofish context structure */ #define a_offset 0 #define b_offset 4 #define c_offset 8 #define d_offset 12 /* Structure of the crypto context struct*/ #define s0 0 /* S0 Array 256 Words each */ #define s1 1024 /* S1 Array */ #define s2 2048 /* S2 Array */ #define s3 3072 /* S3 Array */ #define w 4096 /* 8 whitening keys (word) */ #define k 4128 /* key 1-32 ( word ) */ /* define a few register aliases to allow macro substitution */ #define R0D %eax #define R0B %al #define R0H %ah #define R1D %ebx #define R1B %bl #define R1H %bh #define R2D %ecx #define R2B %cl #define R2H %ch #define R3D %edx #define R3B %dl #define R3H %dh /* performs input whitening */ #define input_whitening(src,context,offset)\ xor w+offset(context), src; /* performs input whitening */ #define output_whitening(src,context,offset)\ xor w+16+offset(context), src; /* * a input register containing a (rotated 16) * b input register containing b * c input register containing c * d input register containing d (already rol $1) * operations on a and b are interleaved to increase performance */ #define encrypt_round(a,b,c,d,round)\ push d ## D;\ movzx b ## B, %edi;\ mov s1(%ebp,%edi,4),d ## D;\ movzx a ## B, %edi;\ mov s2(%ebp,%edi,4),%esi;\ movzx b ## H, %edi;\ ror $16, b ## D;\ xor s2(%ebp,%edi,4),d ## D;\ movzx a ## H, %edi;\ ror $16, a ## D;\ xor s3(%ebp,%edi,4),%esi;\ movzx b ## B, %edi;\ xor s3(%ebp,%edi,4),d ## D;\ movzx a ## B, %edi;\ xor (%ebp,%edi,4), %esi;\ movzx b ## H, %edi;\ ror $15, b ## D;\ xor (%ebp,%edi,4), d ## D;\ movzx a ## H, %edi;\ xor s1(%ebp,%edi,4),%esi;\ pop %edi;\ add d ## D, %esi;\ add %esi, d ## D;\ add k+round(%ebp), %esi;\ xor %esi, c ## D;\ rol $15, c ## D;\ add k+4+round(%ebp),d ## D;\ xor %edi, d ## D; /* * a input register containing a (rotated 16) * b input register containing b * c input register containing c * d input register containing d (already rol $1) * operations on a and b are interleaved to increase performance * last round has different rotations for the output preparation */ #define encrypt_last_round(a,b,c,d,round)\ push d ## D;\ movzx b ## B, %edi;\ mov s1(%ebp,%edi,4),d ## D;\ movzx a ## B, %edi;\ mov s2(%ebp,%edi,4),%esi;\ movzx b ## H, %edi;\ ror $16, b ## D;\ xor s2(%ebp,%edi,4),d ## D;\ movzx a ## H, %edi;\ ror $16, a ## D;\ xor s3(%ebp,%edi,4),%esi;\ movzx b ## B, %edi;\ xor s3(%ebp,%edi,4),d ## D;\ movzx a ## B, %edi;\ xor (%ebp,%edi,4), %esi;\ movzx b ## H, %edi;\ ror $16, b ## D;\ xor (%ebp,%edi,4), d ## D;\ movzx a ## H, %edi;\ xor s1(%ebp,%edi,4),%esi;\ pop %edi;\ add d ## D, %esi;\ add %esi, d ## D;\ add k+round(%ebp), %esi;\ xor %esi, c ## D;\ ror $1, c ## D;\ add k+4+round(%ebp),d ## D;\ xor %edi, d ## D; /* * a input register containing a * b input register containing b (rotated 16) * c input register containing c * d input register containing d (already rol $1) * operations on a and b are interleaved to increase performance */ #define decrypt_round(a,b,c,d,round)\ push c ## D;\ movzx a ## B, %edi;\ mov (%ebp,%edi,4), c ## D;\ movzx b ## B, %edi;\ mov s3(%ebp,%edi,4),%esi;\ movzx a ## H, %edi;\ ror $16, a ## D;\ xor s1(%ebp,%edi,4),c ## D;\ movzx b ## H, %edi;\ ror $16, b ## D;\ xor (%ebp,%edi,4), %esi;\ movzx a ## B, %edi;\ xor s2(%ebp,%edi,4),c ## D;\ movzx b ## B, %edi;\ xor s1(%ebp,%edi,4),%esi;\ movzx a ## H, %edi;\ ror $15, a ## D;\ xor s3(%ebp,%edi,4),c ## D;\ movzx b ## H, %edi;\ xor s2(%ebp,%edi,4),%esi;\ pop %edi;\ add %esi, c ## D;\ add c ## D, %esi;\ add k+round(%ebp), c ## D;\ xor %edi, c ## D;\ add k+4+round(%ebp),%esi;\ xor %esi, d ## D;\ rol $15, d ## D; /* * a input register containing a * b input register containing b (rotated 16) * c input register containing c * d input register containing d (already rol $1) * operations on a and b are interleaved to increase performance * last round has different rotations for the output preparation */ #define decrypt_last_round(a,b,c,d,round)\ push c ## D;\ movzx a ## B, %edi;\ mov (%ebp,%edi,4), c ## D;\ movzx b ## B, %edi;\ mov s3(%ebp,%edi,4),%esi;\ movzx a ## H, %edi;\ ror $16, a ## D;\ xor s1(%ebp,%edi,4),c ## D;\ movzx b ## H, %edi;\ ror $16, b ## D;\ xor (%ebp,%edi,4), %esi;\ movzx a ## B, %edi;\ xor s2(%ebp,%edi,4),c ## D;\ movzx b ## B, %edi;\ xor s1(%ebp,%edi,4),%esi;\ movzx a ## H, %edi;\ ror $16, a ## D;\ xor s3(%ebp,%edi,4),c ## D;\ movzx b ## H, %edi;\ xor s2(%ebp,%edi,4),%esi;\ pop %edi;\ add %esi, c ## D;\ add c ## D, %esi;\ add k+round(%ebp), c ## D;\ xor %edi, c ## D;\ add k+4+round(%ebp),%esi;\ xor %esi, d ## D;\ ror $1, d ## D; .align 4 .global twofish_enc_blk .global twofish_dec_blk twofish_enc_blk: push %ebp /* save registers according to calling convention*/ push %ebx push %esi push %edi mov ctx + 16(%esp), %ebp /* abuse the base pointer: set new base * pointer to the ctx address */ mov in_blk+16(%esp),%edi /* input address in edi */ mov (%edi), %eax mov b_offset(%edi), %ebx mov c_offset(%edi), %ecx mov d_offset(%edi), %edx input_whitening(%eax,%ebp,a_offset) ror $16, %eax input_whitening(%ebx,%ebp,b_offset) input_whitening(%ecx,%ebp,c_offset) input_whitening(%edx,%ebp,d_offset) rol $1, %edx encrypt_round(R0,R1,R2,R3,0); encrypt_round(R2,R3,R0,R1,8); encrypt_round(R0,R1,R2,R3,2*8); encrypt_round(R2,R3,R0,R1,3*8); encrypt_round(R0,R1,R2,R3,4*8); encrypt_round(R2,R3,R0,R1,5*8); encrypt_round(R0,R1,R2,R3,6*8); encrypt_round(R2,R3,R0,R1,7*8); encrypt_round(R0,R1,R2,R3,8*8); encrypt_round(R2,R3,R0,R1,9*8); encrypt_round(R0,R1,R2,R3,10*8); encrypt_round(R2,R3,R0,R1,11*8); encrypt_round(R0,R1,R2,R3,12*8); encrypt_round(R2,R3,R0,R1,13*8); encrypt_round(R0,R1,R2,R3,14*8); encrypt_last_round(R2,R3,R0,R1,15*8); output_whitening(%eax,%ebp,c_offset) output_whitening(%ebx,%ebp,d_offset) output_whitening(%ecx,%ebp,a_offset) output_whitening(%edx,%ebp,b_offset) mov out_blk+16(%esp),%edi; mov %eax, c_offset(%edi) mov %ebx, d_offset(%edi) mov %ecx, (%edi) mov %edx, b_offset(%edi) pop %edi pop %esi pop %ebx pop %ebp mov $1, %eax ret twofish_dec_blk: push %ebp /* save registers according to calling convention*/ push %ebx push %esi push %edi mov ctx + 16(%esp), %ebp /* abuse the base pointer: set new base * pointer to the ctx address */ mov in_blk+16(%esp),%edi /* input address in edi */ mov (%edi), %eax mov b_offset(%edi), %ebx mov c_offset(%edi), %ecx mov d_offset(%edi), %edx output_whitening(%eax,%ebp,a_offset) output_whitening(%ebx,%ebp,b_offset) ror $16, %ebx output_whitening(%ecx,%ebp,c_offset) output_whitening(%edx,%ebp,d_offset) rol $1, %ecx decrypt_round(R0,R1,R2,R3,15*8); decrypt_round(R2,R3,R0,R1,14*8); decrypt_round(R0,R1,R2,R3,13*8); decrypt_round(R2,R3,R0,R1,12*8); decrypt_round(R0,R1,R2,R3,11*8); decrypt_round(R2,R3,R0,R1,10*8); decrypt_round(R0,R1,R2,R3,9*8); decrypt_round(R2,R3,R0,R1,8*8); decrypt_round(R0,R1,R2,R3,7*8); decrypt_round(R2,R3,R0,R1,6*8); decrypt_round(R0,R1,R2,R3,5*8); decrypt_round(R2,R3,R0,R1,4*8); decrypt_round(R0,R1,R2,R3,3*8); decrypt_round(R2,R3,R0,R1,2*8); decrypt_round(R0,R1,R2,R3,1*8); decrypt_last_round(R2,R3,R0,R1,0); input_whitening(%eax,%ebp,c_offset) input_whitening(%ebx,%ebp,d_offset) input_whitening(%ecx,%ebp,a_offset) input_whitening(%edx,%ebp,b_offset) mov out_blk+16(%esp),%edi; mov %eax, c_offset(%edi) mov %ebx, d_offset(%edi) mov %ecx, (%edi) mov %edx, b_offset(%edi) pop %edi pop %esi pop %ebx pop %ebp mov $1, %eax ret