/* * Block chaining cipher operations. * * Generic encrypt/decrypt wrapper for ciphers, handles operations across * multiple page boundaries by using temporary blocks. In user context, * the kernel is given a chance to schedule us once per page. * * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #include <crypto/internal/skcipher.h> #include <crypto/scatterwalk.h> #include <linux/errno.h> #include <linux/hardirq.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/scatterlist.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/cryptouser.h> #include <net/netlink.h> #include "internal.h" enum { BLKCIPHER_WALK_PHYS = 1 << 0, BLKCIPHER_WALK_SLOW = 1 << 1, BLKCIPHER_WALK_COPY = 1 << 2, BLKCIPHER_WALK_DIFF = 1 << 3, }; static int blkcipher_walk_next(struct blkcipher_desc *desc, struct blkcipher_walk *walk); static int blkcipher_walk_first(struct blkcipher_desc *desc, struct blkcipher_walk *walk); static inline void blkcipher_map_src(struct blkcipher_walk *walk) { walk->src.virt.addr = scatterwalk_map(&walk->in, 0); } static inline void blkcipher_map_dst(struct blkcipher_walk *walk) { walk->dst.virt.addr = scatterwalk_map(&walk->out, 1); } static inline void blkcipher_unmap_src(struct blkcipher_walk *walk) { scatterwalk_unmap(walk->src.virt.addr, 0); } static inline void blkcipher_unmap_dst(struct blkcipher_walk *walk) { scatterwalk_unmap(walk->dst.virt.addr, 1); } /* Get a spot of the specified length that does not straddle a page. * The caller needs to ensure that there is enough space for this operation. */ static inline u8 *blkcipher_get_spot(u8 *start, unsigned int len) { u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK); return max(start, end_page); } static inline unsigned int blkcipher_done_slow(struct crypto_blkcipher *tfm, struct blkcipher_walk *walk, unsigned int bsize) { u8 *addr; unsigned int alignmask = crypto_blkcipher_alignmask(tfm); addr = (u8 *)ALIGN((unsigned long)walk->buffer, alignmask + 1); addr = blkcipher_get_spot(addr, bsize); scatterwalk_copychunks(addr, &walk->out, bsize, 1); return bsize; } static inline unsigned int blkcipher_done_fast(struct blkcipher_walk *walk, unsigned int n) { if (walk->flags & BLKCIPHER_WALK_COPY) { blkcipher_map_dst(walk); memcpy(walk->dst.virt.addr, walk->page, n); blkcipher_unmap_dst(walk); } else if (!(walk->flags & BLKCIPHER_WALK_PHYS)) { if (walk->flags & BLKCIPHER_WALK_DIFF) blkcipher_unmap_dst(walk); blkcipher_unmap_src(walk); } scatterwalk_advance(&walk->in, n); scatterwalk_advance(&walk->out, n); return n; } int blkcipher_walk_done(struct blkcipher_desc *desc, struct blkcipher_walk *walk, int err) { struct crypto_blkcipher *tfm = desc->tfm; unsigned int nbytes = 0; if (likely(err >= 0)) { unsigned int n = walk->nbytes - err; if (likely(!(walk->flags & BLKCIPHER_WALK_SLOW))) n = blkcipher_done_fast(walk, n); else if (WARN_ON(err)) { err = -EINVAL; goto err; } else n = blkcipher_done_slow(tfm, walk, n); nbytes = walk->total - n; err = 0; } scatterwalk_done(&walk->in, 0, nbytes); scatterwalk_done(&walk->out, 1, nbytes); err: walk->total = nbytes; walk->nbytes = nbytes; if (nbytes) { crypto_yield(desc->flags); return blkcipher_walk_next(desc, walk); } if (walk->iv != desc->info) memcpy(desc->info, walk->iv, crypto_blkcipher_ivsize(tfm)); if (walk->buffer != walk->page) kfree(walk->buffer); if (walk->page) free_page((unsigned long)walk->page); return err; } EXPORT_SYMBOL_GPL(blkcipher_walk_done); static inline int blkcipher_next_slow(struct blkcipher_desc *desc, struct blkcipher_walk *walk, unsigned int bsize, unsigned int alignmask) { unsigned int n; unsigned aligned_bsize = ALIGN(bsize, alignmask + 1); if (walk->buffer) goto ok; walk->buffer = walk->page; if (walk->buffer) goto ok; n = aligned_bsize * 3 - (alignmask + 1) + (alignmask & ~(crypto_tfm_ctx_alignment() - 1)); walk->buffer = kmalloc(n, GFP_ATOMIC); if (!walk->buffer) return blkcipher_walk_done(desc, walk, -ENOMEM); ok: walk->dst.virt.addr = (u8 *)ALIGN((unsigned long)walk->buffer, alignmask + 1); walk->dst.virt.addr = blkcipher_get_spot(walk->dst.virt.addr, bsize); walk->src.virt.addr = blkcipher_get_spot(walk->dst.virt.addr + aligned_bsize, bsize); scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0); walk->nbytes = bsize; walk->flags |= BLKCIPHER_WALK_SLOW; return 0; } static inline int blkcipher_next_copy(struct blkcipher_walk *walk) { u8 *tmp = walk->page; blkcipher_map_src(walk); memcpy(tmp, walk->src.virt.addr, walk->nbytes); blkcipher_unmap_src(walk); walk->src.virt.addr = tmp; walk->dst.virt.addr = tmp; return 0; } static inline int blkcipher_next_fast(struct blkcipher_desc *desc, struct blkcipher_walk *walk) { unsigned long diff; walk->src.phys.page = scatterwalk_page(&walk->in); walk->src.phys.offset = offset_in_page(walk->in.offset); walk->dst.phys.page = scatterwalk_page(&walk->out); walk->dst.phys.offset = offset_in_page(walk->out.offset); if (walk->flags & BLKCIPHER_WALK_PHYS) return 0; diff = walk->src.phys.offset - walk->dst.phys.offset; diff |= walk->src.virt.page - walk->dst.virt.page; blkcipher_map_src(walk); walk->dst.virt.addr = walk->src.virt.addr; if (diff) { walk->flags |= BLKCIPHER_WALK_DIFF; blkcipher_map_dst(walk); } return 0; } static int blkcipher_walk_next(struct blkcipher_desc *desc, struct blkcipher_walk *walk) { struct crypto_blkcipher *tfm = desc->tfm; unsigned int alignmask = crypto_blkcipher_alignmask(tfm); unsigned int bsize; unsigned int n; int err; n = walk->total; if (unlikely(n < crypto_blkcipher_blocksize(tfm))) { desc->flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN; return blkcipher_walk_done(desc, walk, -EINVAL); } walk->flags &= ~(BLKCIPHER_WALK_SLOW | BLKCIPHER_WALK_COPY | BLKCIPHER_WALK_DIFF); if (!scatterwalk_aligned(&walk->in, alignmask) || !scatterwalk_aligned(&walk->out, alignmask)) { walk->flags |= BLKCIPHER_WALK_COPY; if (!walk->page) { walk->page = (void *)__get_free_page(GFP_ATOMIC); if (!walk->page) n = 0; } } bsize = min(walk->blocksize, n); n = scatterwalk_clamp(&walk->in, n); n = scatterwalk_clamp(&walk->out, n); if (unlikely(n < bsize)) { err = blkcipher_next_slow(desc, walk, bsize, alignmask); goto set_phys_lowmem; } walk->nbytes = n; if (walk->flags & BLKCIPHER_WALK_COPY) { err = blkcipher_next_copy(walk); goto set_phys_lowmem; } return blkcipher_next_fast(desc, walk); set_phys_lowmem: if (walk->flags & BLKCIPHER_WALK_PHYS) { walk->src.phys.page = virt_to_page(walk->src.virt.addr); walk->dst.phys.page = virt_to_page(walk->dst.virt.addr); walk->src.phys.offset &= PAGE_SIZE - 1; walk->dst.phys.offset &= PAGE_SIZE - 1; } return err; } static inline int blkcipher_copy_iv(struct blkcipher_walk *walk, struct crypto_blkcipher *tfm, unsigned int alignmask) { unsigned bs = walk->blocksize; unsigned int ivsize = crypto_blkcipher_ivsize(tfm); unsigned aligned_bs = ALIGN(bs, alignmask + 1); unsigned int size = aligned_bs * 2 + ivsize + max(aligned_bs, ivsize) - (alignmask + 1); u8 *iv; size += alignmask & ~(crypto_tfm_ctx_alignment() - 1); walk->buffer = kmalloc(size, GFP_ATOMIC); if (!walk->buffer) return -ENOMEM; iv = (u8 *)ALIGN((unsigned long)walk->buffer, alignmask + 1); iv = blkcipher_get_spot(iv, bs) + aligned_bs; iv = blkcipher_get_spot(iv, bs) + aligned_bs; iv = blkcipher_get_spot(iv, ivsize); walk->iv = memcpy(iv, walk->iv, ivsize); return 0; } int blkcipher_walk_virt(struct blkcipher_desc *desc, struct blkcipher_walk *walk) { walk->flags &= ~BLKCIPHER_WALK_PHYS; walk->blocksize = crypto_blkcipher_blocksize(desc->tfm); return blkcipher_walk_first(desc, walk); } EXPORT_SYMBOL_GPL(blkcipher_walk_virt); int blkcipher_walk_phys(struct blkcipher_desc *desc, struct blkcipher_walk *walk) { walk->flags |= BLKCIPHER_WALK_PHYS; walk->blocksize = crypto_blkcipher_blocksize(desc->tfm); return blkcipher_walk_first(desc, walk); } EXPORT_SYMBOL_GPL(blkcipher_walk_phys); static int blkcipher_walk_first(struct blkcipher_desc *desc, struct blkcipher_walk *walk) { struct crypto_blkcipher *tfm = desc->tfm; unsigned int alignmask = crypto_blkcipher_alignmask(tfm); if (WARN_ON_ONCE(in_irq())) return -EDEADLK; walk->nbytes = walk->total; if (unlikely(!walk->total)) return 0; walk->buffer = NULL; walk->iv = desc->info; if (unlikely(((unsigned long)walk->iv & alignmask))) { int err = blkcipher_copy_iv(walk, tfm, alignmask); if (err) return err; } scatterwalk_start(&walk->in, walk->in.sg); scatterwalk_start(&walk->out, walk->out.sg); walk->page = NULL; return blkcipher_walk_next(desc, walk); } int blkcipher_walk_virt_block(struct blkcipher_desc *desc, struct blkcipher_walk *walk, unsigned int blocksize) { walk->flags &= ~BLKCIPHER_WALK_PHYS; walk->blocksize = blocksize; return blkcipher_walk_first(desc, walk); } EXPORT_SYMBOL_GPL(blkcipher_walk_virt_block); static int setkey_unaligned(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen) { struct blkcipher_alg *cipher = &tfm->__crt_alg->cra_blkcipher; unsigned long alignmask = crypto_tfm_alg_alignmask(tfm); int ret; u8 *buffer, *alignbuffer; unsigned long absize; absize = keylen + alignmask; buffer = kmalloc(absize, GFP_ATOMIC); if (!buffer) return -ENOMEM; alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1); memcpy(alignbuffer, key, keylen); ret = cipher->setkey(tfm, alignbuffer, keylen); memset(alignbuffer, 0, keylen); kfree(buffer); return ret; } static int setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen) { struct blkcipher_alg *cipher = &tfm->__crt_alg->cra_blkcipher; unsigned long alignmask = crypto_tfm_alg_alignmask(tfm); if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) { tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; return -EINVAL; } if ((unsigned long)key & alignmask) return setkey_unaligned(tfm, key, keylen); return cipher->setkey(tfm, key, keylen); } static int async_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen) { return setkey(crypto_ablkcipher_tfm(tfm), key, keylen); } static int async_encrypt(struct ablkcipher_request *req) { struct crypto_tfm *tfm = req->base.tfm; struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher; struct blkcipher_desc desc = { .tfm = __crypto_blkcipher_cast(tfm), .info = req->info, .flags = req->base.flags, }; return alg->encrypt(&desc, req->dst, req->src, req->nbytes); } static int async_decrypt(struct ablkcipher_request *req) { struct crypto_tfm *tfm = req->base.tfm; struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher; struct blkcipher_desc desc = { .tfm = __crypto_blkcipher_cast(tfm), .info = req->info, .flags = req->base.flags, }; return alg->decrypt(&desc, req->dst, req->src, req->nbytes); } static unsigned int crypto_blkcipher_ctxsize(struct crypto_alg *alg, u32 type, u32 mask) { struct blkcipher_alg *cipher = &alg->cra_blkcipher; unsigned int len = alg->cra_ctxsize; if ((mask & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_MASK && cipher->ivsize) { len = ALIGN(len, (unsigned long)alg->cra_alignmask + 1); len += cipher->ivsize; } return len; } static int crypto_init_blkcipher_ops_async(struct crypto_tfm *tfm) { struct ablkcipher_tfm *crt = &tfm->crt_ablkcipher; struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher; crt->setkey = async_setkey; crt->encrypt = async_encrypt; crt->decrypt = async_decrypt; if (!alg->ivsize) { crt->givencrypt = skcipher_null_givencrypt; crt->givdecrypt = skcipher_null_givdecrypt; } crt->base = __crypto_ablkcipher_cast(tfm); crt->ivsize = alg->ivsize; return 0; } static int crypto_init_blkcipher_ops_sync(struct crypto_tfm *tfm) { struct blkcipher_tfm *crt = &tfm->crt_blkcipher; struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher; unsigned long align = crypto_tfm_alg_alignmask(tfm) + 1; unsigned long addr; crt->setkey = setkey; crt->encrypt = alg->encrypt; crt->decrypt = alg->decrypt; addr = (unsigned long)crypto_tfm_ctx(tfm); addr = ALIGN(addr, align); addr += ALIGN(tfm->__crt_alg->cra_ctxsize, align); crt->iv = (void *)addr; return 0; } static int crypto_init_blkcipher_ops(struct crypto_tfm *tfm, u32 type, u32 mask) { struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher; if (alg->ivsize > PAGE_SIZE / 8) return -EINVAL; if ((mask & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_MASK) return crypto_init_blkcipher_ops_sync(tfm); else return crypto_init_blkcipher_ops_async(tfm); } #ifdef CONFIG_NET static int crypto_blkcipher_report(struct sk_buff *skb, struct crypto_alg *alg) { struct crypto_report_blkcipher rblkcipher; snprintf(rblkcipher.type, CRYPTO_MAX_ALG_NAME, "%s", "blkcipher"); snprintf(rblkcipher.geniv, CRYPTO_MAX_ALG_NAME, "%s", alg->cra_blkcipher.geniv ?: "<default>"); rblkcipher.blocksize = alg->cra_blocksize; rblkcipher.min_keysize = alg->cra_blkcipher.min_keysize; rblkcipher.max_keysize = alg->cra_blkcipher.max_keysize; rblkcipher.ivsize = alg->cra_blkcipher.ivsize; NLA_PUT(skb, CRYPTOCFGA_REPORT_BLKCIPHER, sizeof(struct crypto_report_blkcipher), &rblkcipher); return 0; nla_put_failure: return -EMSGSIZE; } #else static int crypto_blkcipher_report(struct sk_buff *skb, struct crypto_alg *alg) { return -ENOSYS; } #endif static void crypto_blkcipher_show(struct seq_file *m, struct crypto_alg *alg) __attribute__ ((unused)); static void crypto_blkcipher_show(struct seq_file *m, struct crypto_alg *alg) { seq_printf(m, "type : blkcipher\n"); seq_printf(m, "blocksize : %u\n", alg->cra_blocksize); seq_printf(m, "min keysize : %u\n", alg->cra_blkcipher.min_keysize); seq_printf(m, "max keysize : %u\n", alg->cra_blkcipher.max_keysize); seq_printf(m, "ivsize : %u\n", alg->cra_blkcipher.ivsize); seq_printf(m, "geniv : %s\n", alg->cra_blkcipher.geniv ?: "<default>"); } const struct crypto_type crypto_blkcipher_type = { .ctxsize = crypto_blkcipher_ctxsize, .init = crypto_init_blkcipher_ops, #ifdef CONFIG_PROC_FS .show = crypto_blkcipher_show, #endif .report = crypto_blkcipher_report, }; EXPORT_SYMBOL_GPL(crypto_blkcipher_type); static int crypto_grab_nivcipher(struct crypto_skcipher_spawn *spawn, const char *name, u32 type, u32 mask) { struct crypto_alg *alg; int err; type = crypto_skcipher_type(type); mask = crypto_skcipher_mask(mask)| CRYPTO_ALG_GENIV; alg = crypto_alg_mod_lookup(name, type, mask); if (IS_ERR(alg)) return PTR_ERR(alg); err = crypto_init_spawn(&spawn->base, alg, spawn->base.inst, mask); crypto_mod_put(alg); return err; } struct crypto_instance *skcipher_geniv_alloc(struct crypto_template *tmpl, struct rtattr **tb, u32 type, u32 mask) { struct { int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen); int (*encrypt)(struct ablkcipher_request *req); int (*decrypt)(struct ablkcipher_request *req); unsigned int min_keysize; unsigned int max_keysize; unsigned int ivsize; const char *geniv; } balg; const char *name; struct crypto_skcipher_spawn *spawn; struct crypto_attr_type *algt; struct crypto_instance *inst; struct crypto_alg *alg; int err; algt = crypto_get_attr_type(tb); err = PTR_ERR(algt); if (IS_ERR(algt)) return ERR_PTR(err); if ((algt->type ^ (CRYPTO_ALG_TYPE_GIVCIPHER | CRYPTO_ALG_GENIV)) & algt->mask) return ERR_PTR(-EINVAL); name = crypto_attr_alg_name(tb[1]); err = PTR_ERR(name); if (IS_ERR(name)) return ERR_PTR(err); inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); if (!inst) return ERR_PTR(-ENOMEM); spawn = crypto_instance_ctx(inst); /* Ignore async algorithms if necessary. */ mask |= crypto_requires_sync(algt->type, algt->mask); crypto_set_skcipher_spawn(spawn, inst); err = crypto_grab_nivcipher(spawn, name, type, mask); if (err) goto err_free_inst; alg = crypto_skcipher_spawn_alg(spawn); if ((alg->cra_flags & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_BLKCIPHER) { balg.ivsize = alg->cra_blkcipher.ivsize; balg.min_keysize = alg->cra_blkcipher.min_keysize; balg.max_keysize = alg->cra_blkcipher.max_keysize; balg.setkey = async_setkey; balg.encrypt = async_encrypt; balg.decrypt = async_decrypt; balg.geniv = alg->cra_blkcipher.geniv; } else { balg.ivsize = alg->cra_ablkcipher.ivsize; balg.min_keysize = alg->cra_ablkcipher.min_keysize; balg.max_keysize = alg->cra_ablkcipher.max_keysize; balg.setkey = alg->cra_ablkcipher.setkey; balg.encrypt = alg->cra_ablkcipher.encrypt; balg.decrypt = alg->cra_ablkcipher.decrypt; balg.geniv = alg->cra_ablkcipher.geniv; } err = -EINVAL; if (!balg.ivsize) goto err_drop_alg; /* * This is only true if we're constructing an algorithm with its * default IV generator. For the default generator we elide the * template name and double-check the IV generator. */ if (algt->mask & CRYPTO_ALG_GENIV) { if (!balg.geniv) balg.geniv = crypto_default_geniv(alg); err = -EAGAIN; if (strcmp(tmpl->name, balg.geniv)) goto err_drop_alg; memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME); memcpy(inst->alg.cra_driver_name, alg->cra_driver_name, CRYPTO_MAX_ALG_NAME); } else { err = -ENAMETOOLONG; if (snprintf(inst->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s(%s)", tmpl->name, alg->cra_name) >= CRYPTO_MAX_ALG_NAME) goto err_drop_alg; if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s(%s)", tmpl->name, alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) goto err_drop_alg; } inst->alg.cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER | CRYPTO_ALG_GENIV; inst->alg.cra_flags |= alg->cra_flags & CRYPTO_ALG_ASYNC; inst->alg.cra_priority = alg->cra_priority; inst->alg.cra_blocksize = alg->cra_blocksize; inst->alg.cra_alignmask = alg->cra_alignmask; inst->alg.cra_type = &crypto_givcipher_type; inst->alg.cra_ablkcipher.ivsize = balg.ivsize; inst->alg.cra_ablkcipher.min_keysize = balg.min_keysize; inst->alg.cra_ablkcipher.max_keysize = balg.max_keysize; inst->alg.cra_ablkcipher.geniv = balg.geniv; inst->alg.cra_ablkcipher.setkey = balg.setkey; inst->alg.cra_ablkcipher.encrypt = balg.encrypt; inst->alg.cra_ablkcipher.decrypt = balg.decrypt; out: return inst; err_drop_alg: crypto_drop_skcipher(spawn); err_free_inst: kfree(inst); inst = ERR_PTR(err); goto out; } EXPORT_SYMBOL_GPL(skcipher_geniv_alloc); void skcipher_geniv_free(struct crypto_instance *inst) { crypto_drop_skcipher(crypto_instance_ctx(inst)); kfree(inst); } EXPORT_SYMBOL_GPL(skcipher_geniv_free); int skcipher_geniv_init(struct crypto_tfm *tfm) { struct crypto_instance *inst = (void *)tfm->__crt_alg; struct crypto_ablkcipher *cipher; cipher = crypto_spawn_skcipher(crypto_instance_ctx(inst)); if (IS_ERR(cipher)) return PTR_ERR(cipher); tfm->crt_ablkcipher.base = cipher; tfm->crt_ablkcipher.reqsize += crypto_ablkcipher_reqsize(cipher); return 0; } EXPORT_SYMBOL_GPL(skcipher_geniv_init); void skcipher_geniv_exit(struct crypto_tfm *tfm) { crypto_free_ablkcipher(tfm->crt_ablkcipher.base); } EXPORT_SYMBOL_GPL(skcipher_geniv_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Generic block chaining cipher type");