/* * Memory subsystem support * * Written by Matt Tolentino <matthew.e.tolentino@intel.com> * Dave Hansen <haveblue@us.ibm.com> * * This file provides the necessary infrastructure to represent * a SPARSEMEM-memory-model system's physical memory in /sysfs. * All arch-independent code that assumes MEMORY_HOTPLUG requires * SPARSEMEM should be contained here, or in mm/memory_hotplug.c. */ #include <linux/module.h> #include <linux/init.h> #include <linux/topology.h> #include <linux/capability.h> #include <linux/device.h> #include <linux/memory.h> #include <linux/kobject.h> #include <linux/memory_hotplug.h> #include <linux/mm.h> #include <linux/mutex.h> #include <linux/stat.h> #include <linux/slab.h> #include <linux/atomic.h> #include <asm/uaccess.h> static DEFINE_MUTEX(mem_sysfs_mutex); #define MEMORY_CLASS_NAME "memory" static int sections_per_block; static inline int base_memory_block_id(int section_nr) { return section_nr / sections_per_block; } static struct bus_type memory_subsys = { .name = MEMORY_CLASS_NAME, .dev_name = MEMORY_CLASS_NAME, }; static BLOCKING_NOTIFIER_HEAD(memory_chain); int register_memory_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&memory_chain, nb); } EXPORT_SYMBOL(register_memory_notifier); void unregister_memory_notifier(struct notifier_block *nb) { blocking_notifier_chain_unregister(&memory_chain, nb); } EXPORT_SYMBOL(unregister_memory_notifier); static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain); int register_memory_isolate_notifier(struct notifier_block *nb) { return atomic_notifier_chain_register(&memory_isolate_chain, nb); } EXPORT_SYMBOL(register_memory_isolate_notifier); void unregister_memory_isolate_notifier(struct notifier_block *nb) { atomic_notifier_chain_unregister(&memory_isolate_chain, nb); } EXPORT_SYMBOL(unregister_memory_isolate_notifier); /* * register_memory - Setup a sysfs device for a memory block */ static int register_memory(struct memory_block *memory) { int error; memory->dev.bus = &memory_subsys; memory->dev.id = memory->start_section_nr / sections_per_block; error = device_register(&memory->dev); return error; } static void unregister_memory(struct memory_block *memory) { BUG_ON(memory->dev.bus != &memory_subsys); /* drop the ref. we got in remove_memory_block() */ kobject_put(&memory->dev.kobj); device_unregister(&memory->dev); } unsigned long __weak memory_block_size_bytes(void) { return MIN_MEMORY_BLOCK_SIZE; } static unsigned long get_memory_block_size(void) { unsigned long block_sz; block_sz = memory_block_size_bytes(); /* Validate blk_sz is a power of 2 and not less than section size */ if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) { WARN_ON(1); block_sz = MIN_MEMORY_BLOCK_SIZE; } return block_sz; } /* * use this as the physical section index that this memsection * uses. */ static ssize_t show_mem_start_phys_index(struct device *dev, struct device_attribute *attr, char *buf) { struct memory_block *mem = container_of(dev, struct memory_block, dev); unsigned long phys_index; phys_index = mem->start_section_nr / sections_per_block; return sprintf(buf, "%08lx\n", phys_index); } static ssize_t show_mem_end_phys_index(struct device *dev, struct device_attribute *attr, char *buf) { struct memory_block *mem = container_of(dev, struct memory_block, dev); unsigned long phys_index; phys_index = mem->end_section_nr / sections_per_block; return sprintf(buf, "%08lx\n", phys_index); } /* * Show whether the section of memory is likely to be hot-removable */ static ssize_t show_mem_removable(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long i, pfn; int ret = 1; struct memory_block *mem = container_of(dev, struct memory_block, dev); for (i = 0; i < sections_per_block; i++) { pfn = section_nr_to_pfn(mem->start_section_nr + i); ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION); } return sprintf(buf, "%d\n", ret); } /* * online, offline, going offline, etc. */ static ssize_t show_mem_state(struct device *dev, struct device_attribute *attr, char *buf) { struct memory_block *mem = container_of(dev, struct memory_block, dev); ssize_t len = 0; /* * We can probably put these states in a nice little array * so that they're not open-coded */ switch (mem->state) { case MEM_ONLINE: len = sprintf(buf, "online\n"); break; case MEM_OFFLINE: len = sprintf(buf, "offline\n"); break; case MEM_GOING_OFFLINE: len = sprintf(buf, "going-offline\n"); break; default: len = sprintf(buf, "ERROR-UNKNOWN-%ld\n", mem->state); WARN_ON(1); break; } return len; } int memory_notify(unsigned long val, void *v) { return blocking_notifier_call_chain(&memory_chain, val, v); } int memory_isolate_notify(unsigned long val, void *v) { return atomic_notifier_call_chain(&memory_isolate_chain, val, v); } /* * The probe routines leave the pages reserved, just as the bootmem code does. * Make sure they're still that way. */ static bool pages_correctly_reserved(unsigned long start_pfn, unsigned long nr_pages) { int i, j; struct page *page; unsigned long pfn = start_pfn; /* * memmap between sections is not contiguous except with * SPARSEMEM_VMEMMAP. We lookup the page once per section * and assume memmap is contiguous within each section */ for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) { if (WARN_ON_ONCE(!pfn_valid(pfn))) return false; page = pfn_to_page(pfn); for (j = 0; j < PAGES_PER_SECTION; j++) { if (PageReserved(page + j)) continue; printk(KERN_WARNING "section number %ld page number %d " "not reserved, was it already online?\n", pfn_to_section_nr(pfn), j); return false; } } return true; } /* * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is * OK to have direct references to sparsemem variables in here. */ static int memory_block_action(unsigned long phys_index, unsigned long action) { unsigned long start_pfn, start_paddr; unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; struct page *first_page; int ret; first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT); switch (action) { case MEM_ONLINE: start_pfn = page_to_pfn(first_page); if (!pages_correctly_reserved(start_pfn, nr_pages)) return -EBUSY; ret = online_pages(start_pfn, nr_pages); break; case MEM_OFFLINE: start_paddr = page_to_pfn(first_page) << PAGE_SHIFT; ret = remove_memory(start_paddr, nr_pages << PAGE_SHIFT); break; default: WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: " "%ld\n", __func__, phys_index, action, action); ret = -EINVAL; } return ret; } static int memory_block_change_state(struct memory_block *mem, unsigned long to_state, unsigned long from_state_req) { int ret = 0; mutex_lock(&mem->state_mutex); if (mem->state != from_state_req) { ret = -EINVAL; goto out; } if (to_state == MEM_OFFLINE) mem->state = MEM_GOING_OFFLINE; ret = memory_block_action(mem->start_section_nr, to_state); if (ret) { mem->state = from_state_req; goto out; } mem->state = to_state; switch (mem->state) { case MEM_OFFLINE: kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE); break; case MEM_ONLINE: kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE); break; default: break; } out: mutex_unlock(&mem->state_mutex); return ret; } static ssize_t store_mem_state(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct memory_block *mem; int ret = -EINVAL; mem = container_of(dev, struct memory_block, dev); if (!strncmp(buf, "online", min((int)count, 6))) ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE); else if(!strncmp(buf, "offline", min((int)count, 7))) ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE); if (ret) return ret; return count; } /* * phys_device is a bad name for this. What I really want * is a way to differentiate between memory ranges that * are part of physical devices that constitute * a complete removable unit or fru. * i.e. do these ranges belong to the same physical device, * s.t. if I offline all of these sections I can then * remove the physical device? */ static ssize_t show_phys_device(struct device *dev, struct device_attribute *attr, char *buf) { struct memory_block *mem = container_of(dev, struct memory_block, dev); return sprintf(buf, "%d\n", mem->phys_device); } static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL); static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL); static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state); static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL); static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL); #define mem_create_simple_file(mem, attr_name) \ device_create_file(&mem->dev, &dev_attr_##attr_name) #define mem_remove_simple_file(mem, attr_name) \ device_remove_file(&mem->dev, &dev_attr_##attr_name) /* * Block size attribute stuff */ static ssize_t print_block_size(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%lx\n", get_memory_block_size()); } static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL); static int block_size_init(void) { return device_create_file(memory_subsys.dev_root, &dev_attr_block_size_bytes); } /* * Some architectures will have custom drivers to do this, and * will not need to do it from userspace. The fake hot-add code * as well as ppc64 will do all of their discovery in userspace * and will require this interface. */ #ifdef CONFIG_ARCH_MEMORY_PROBE static ssize_t memory_probe_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { u64 phys_addr; int nid; int i, ret; unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block; phys_addr = simple_strtoull(buf, NULL, 0); if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1)) return -EINVAL; for (i = 0; i < sections_per_block; i++) { nid = memory_add_physaddr_to_nid(phys_addr); ret = add_memory(nid, phys_addr, PAGES_PER_SECTION << PAGE_SHIFT); if (ret) goto out; phys_addr += MIN_MEMORY_BLOCK_SIZE; } ret = count; out: return ret; } static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store); static int memory_probe_init(void) { return device_create_file(memory_subsys.dev_root, &dev_attr_probe); } #else static inline int memory_probe_init(void) { return 0; } #endif #ifdef CONFIG_MEMORY_FAILURE /* * Support for offlining pages of memory */ /* Soft offline a page */ static ssize_t store_soft_offline_page(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; u64 pfn; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (strict_strtoull(buf, 0, &pfn) < 0) return -EINVAL; pfn >>= PAGE_SHIFT; if (!pfn_valid(pfn)) return -ENXIO; ret = soft_offline_page(pfn_to_page(pfn), 0); return ret == 0 ? count : ret; } /* Forcibly offline a page, including killing processes. */ static ssize_t store_hard_offline_page(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; u64 pfn; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (strict_strtoull(buf, 0, &pfn) < 0) return -EINVAL; pfn >>= PAGE_SHIFT; ret = __memory_failure(pfn, 0, 0); return ret ? ret : count; } static DEVICE_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page); static DEVICE_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page); static __init int memory_fail_init(void) { int err; err = device_create_file(memory_subsys.dev_root, &dev_attr_soft_offline_page); if (!err) err = device_create_file(memory_subsys.dev_root, &dev_attr_hard_offline_page); return err; } #else static inline int memory_fail_init(void) { return 0; } #endif /* * Note that phys_device is optional. It is here to allow for * differentiation between which *physical* devices each * section belongs to... */ int __weak arch_get_memory_phys_device(unsigned long start_pfn) { return 0; } /* * A reference for the returned object is held and the reference for the * hinted object is released. */ struct memory_block *find_memory_block_hinted(struct mem_section *section, struct memory_block *hint) { int block_id = base_memory_block_id(__section_nr(section)); struct device *hintdev = hint ? &hint->dev : NULL; struct device *dev; dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev); if (hint) put_device(&hint->dev); if (!dev) return NULL; return container_of(dev, struct memory_block, dev); } /* * For now, we have a linear search to go find the appropriate * memory_block corresponding to a particular phys_index. If * this gets to be a real problem, we can always use a radix * tree or something here. * * This could be made generic for all device subsystems. */ struct memory_block *find_memory_block(struct mem_section *section) { return find_memory_block_hinted(section, NULL); } static int init_memory_block(struct memory_block **memory, struct mem_section *section, unsigned long state) { struct memory_block *mem; unsigned long start_pfn; int scn_nr; int ret = 0; mem = kzalloc(sizeof(*mem), GFP_KERNEL); if (!mem) return -ENOMEM; scn_nr = __section_nr(section); mem->start_section_nr = base_memory_block_id(scn_nr) * sections_per_block; mem->end_section_nr = mem->start_section_nr + sections_per_block - 1; mem->state = state; mem->section_count++; mutex_init(&mem->state_mutex); start_pfn = section_nr_to_pfn(mem->start_section_nr); mem->phys_device = arch_get_memory_phys_device(start_pfn); ret = register_memory(mem); if (!ret) ret = mem_create_simple_file(mem, phys_index); if (!ret) ret = mem_create_simple_file(mem, end_phys_index); if (!ret) ret = mem_create_simple_file(mem, state); if (!ret) ret = mem_create_simple_file(mem, phys_device); if (!ret) ret = mem_create_simple_file(mem, removable); *memory = mem; return ret; } static int add_memory_section(int nid, struct mem_section *section, struct memory_block **mem_p, unsigned long state, enum mem_add_context context) { struct memory_block *mem = NULL; int scn_nr = __section_nr(section); int ret = 0; mutex_lock(&mem_sysfs_mutex); if (context == BOOT) { /* same memory block ? */ if (mem_p && *mem_p) if (scn_nr >= (*mem_p)->start_section_nr && scn_nr <= (*mem_p)->end_section_nr) { mem = *mem_p; kobject_get(&mem->dev.kobj); } } else mem = find_memory_block(section); if (mem) { mem->section_count++; kobject_put(&mem->dev.kobj); } else { ret = init_memory_block(&mem, section, state); /* store memory_block pointer for next loop */ if (!ret && context == BOOT) if (mem_p) *mem_p = mem; } if (!ret) { if (context == HOTPLUG && mem->section_count == sections_per_block) ret = register_mem_sect_under_node(mem, nid); } mutex_unlock(&mem_sysfs_mutex); return ret; } int remove_memory_block(unsigned long node_id, struct mem_section *section, int phys_device) { struct memory_block *mem; mutex_lock(&mem_sysfs_mutex); mem = find_memory_block(section); unregister_mem_sect_under_nodes(mem, __section_nr(section)); mem->section_count--; if (mem->section_count == 0) { mem_remove_simple_file(mem, phys_index); mem_remove_simple_file(mem, end_phys_index); mem_remove_simple_file(mem, state); mem_remove_simple_file(mem, phys_device); mem_remove_simple_file(mem, removable); unregister_memory(mem); kfree(mem); } else kobject_put(&mem->dev.kobj); mutex_unlock(&mem_sysfs_mutex); return 0; } /* * need an interface for the VM to add new memory regions, * but without onlining it. */ int register_new_memory(int nid, struct mem_section *section) { return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG); } int unregister_memory_section(struct mem_section *section) { if (!present_section(section)) return -EINVAL; return remove_memory_block(0, section, 0); } /* * Initialize the sysfs support for memory devices... */ int __init memory_dev_init(void) { unsigned int i; int ret; int err; unsigned long block_sz; struct memory_block *mem = NULL; ret = subsys_system_register(&memory_subsys, NULL); if (ret) goto out; block_sz = get_memory_block_size(); sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE; /* * Create entries for memory sections that were found * during boot and have been initialized */ for (i = 0; i < NR_MEM_SECTIONS; i++) { if (!present_section_nr(i)) continue; /* don't need to reuse memory_block if only one per block */ err = add_memory_section(0, __nr_to_section(i), (sections_per_block == 1) ? NULL : &mem, MEM_ONLINE, BOOT); if (!ret) ret = err; } err = memory_probe_init(); if (!ret) ret = err; err = memory_fail_init(); if (!ret) ret = err; err = block_size_init(); if (!ret) ret = err; out: if (ret) printk(KERN_ERR "%s() failed: %d\n", __func__, ret); return ret; }