/* * DMA controller driver for CSR SiRFprimaII * * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company. * * Licensed under GPLv2 or later. */ #include <linux/module.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/of_irq.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/of_platform.h> #include <linux/sirfsoc_dma.h> #define SIRFSOC_DMA_DESCRIPTORS 16 #define SIRFSOC_DMA_CHANNELS 16 #define SIRFSOC_DMA_CH_ADDR 0x00 #define SIRFSOC_DMA_CH_XLEN 0x04 #define SIRFSOC_DMA_CH_YLEN 0x08 #define SIRFSOC_DMA_CH_CTRL 0x0C #define SIRFSOC_DMA_WIDTH_0 0x100 #define SIRFSOC_DMA_CH_VALID 0x140 #define SIRFSOC_DMA_CH_INT 0x144 #define SIRFSOC_DMA_INT_EN 0x148 #define SIRFSOC_DMA_CH_LOOP_CTRL 0x150 #define SIRFSOC_DMA_MODE_CTRL_BIT 4 #define SIRFSOC_DMA_DIR_CTRL_BIT 5 /* xlen and dma_width register is in 4 bytes boundary */ #define SIRFSOC_DMA_WORD_LEN 4 struct sirfsoc_dma_desc { struct dma_async_tx_descriptor desc; struct list_head node; /* SiRFprimaII 2D-DMA parameters */ int xlen; /* DMA xlen */ int ylen; /* DMA ylen */ int width; /* DMA width */ int dir; bool cyclic; /* is loop DMA? */ u32 addr; /* DMA buffer address */ }; struct sirfsoc_dma_chan { struct dma_chan chan; struct list_head free; struct list_head prepared; struct list_head queued; struct list_head active; struct list_head completed; dma_cookie_t completed_cookie; unsigned long happened_cyclic; unsigned long completed_cyclic; /* Lock for this structure */ spinlock_t lock; int mode; }; struct sirfsoc_dma { struct dma_device dma; struct tasklet_struct tasklet; struct sirfsoc_dma_chan channels[SIRFSOC_DMA_CHANNELS]; void __iomem *base; int irq; }; #define DRV_NAME "sirfsoc_dma" /* Convert struct dma_chan to struct sirfsoc_dma_chan */ static inline struct sirfsoc_dma_chan *dma_chan_to_sirfsoc_dma_chan(struct dma_chan *c) { return container_of(c, struct sirfsoc_dma_chan, chan); } /* Convert struct dma_chan to struct sirfsoc_dma */ static inline struct sirfsoc_dma *dma_chan_to_sirfsoc_dma(struct dma_chan *c) { struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(c); return container_of(schan, struct sirfsoc_dma, channels[c->chan_id]); } /* Execute all queued DMA descriptors */ static void sirfsoc_dma_execute(struct sirfsoc_dma_chan *schan) { struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan); int cid = schan->chan.chan_id; struct sirfsoc_dma_desc *sdesc = NULL; /* * lock has been held by functions calling this, so we don't hold * lock again */ sdesc = list_first_entry(&schan->queued, struct sirfsoc_dma_desc, node); /* Move the first queued descriptor to active list */ list_move_tail(&schan->queued, &schan->active); /* Start the DMA transfer */ writel_relaxed(sdesc->width, sdma->base + SIRFSOC_DMA_WIDTH_0 + cid * 4); writel_relaxed(cid | (schan->mode << SIRFSOC_DMA_MODE_CTRL_BIT) | (sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT), sdma->base + cid * 0x10 + SIRFSOC_DMA_CH_CTRL); writel_relaxed(sdesc->xlen, sdma->base + cid * 0x10 + SIRFSOC_DMA_CH_XLEN); writel_relaxed(sdesc->ylen, sdma->base + cid * 0x10 + SIRFSOC_DMA_CH_YLEN); writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_INT_EN) | (1 << cid), sdma->base + SIRFSOC_DMA_INT_EN); /* * writel has an implict memory write barrier to make sure data is * flushed into memory before starting DMA */ writel(sdesc->addr >> 2, sdma->base + cid * 0x10 + SIRFSOC_DMA_CH_ADDR); if (sdesc->cyclic) { writel((1 << cid) | 1 << (cid + 16) | readl_relaxed(sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL), sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL); schan->happened_cyclic = schan->completed_cyclic = 0; } } /* Interrupt handler */ static irqreturn_t sirfsoc_dma_irq(int irq, void *data) { struct sirfsoc_dma *sdma = data; struct sirfsoc_dma_chan *schan; struct sirfsoc_dma_desc *sdesc = NULL; u32 is; int ch; is = readl(sdma->base + SIRFSOC_DMA_CH_INT); while ((ch = fls(is) - 1) >= 0) { is &= ~(1 << ch); writel_relaxed(1 << ch, sdma->base + SIRFSOC_DMA_CH_INT); schan = &sdma->channels[ch]; spin_lock(&schan->lock); sdesc = list_first_entry(&schan->active, struct sirfsoc_dma_desc, node); if (!sdesc->cyclic) { /* Execute queued descriptors */ list_splice_tail_init(&schan->active, &schan->completed); if (!list_empty(&schan->queued)) sirfsoc_dma_execute(schan); } else schan->happened_cyclic++; spin_unlock(&schan->lock); } /* Schedule tasklet */ tasklet_schedule(&sdma->tasklet); return IRQ_HANDLED; } /* process completed descriptors */ static void sirfsoc_dma_process_completed(struct sirfsoc_dma *sdma) { dma_cookie_t last_cookie = 0; struct sirfsoc_dma_chan *schan; struct sirfsoc_dma_desc *sdesc; struct dma_async_tx_descriptor *desc; unsigned long flags; unsigned long happened_cyclic; LIST_HEAD(list); int i; for (i = 0; i < sdma->dma.chancnt; i++) { schan = &sdma->channels[i]; /* Get all completed descriptors */ spin_lock_irqsave(&schan->lock, flags); if (!list_empty(&schan->completed)) { list_splice_tail_init(&schan->completed, &list); spin_unlock_irqrestore(&schan->lock, flags); /* Execute callbacks and run dependencies */ list_for_each_entry(sdesc, &list, node) { desc = &sdesc->desc; if (desc->callback) desc->callback(desc->callback_param); last_cookie = desc->cookie; dma_run_dependencies(desc); } /* Free descriptors */ spin_lock_irqsave(&schan->lock, flags); list_splice_tail_init(&list, &schan->free); schan->completed_cookie = last_cookie; spin_unlock_irqrestore(&schan->lock, flags); } else { /* for cyclic channel, desc is always in active list */ sdesc = list_first_entry(&schan->active, struct sirfsoc_dma_desc, node); if (!sdesc || (sdesc && !sdesc->cyclic)) { /* without active cyclic DMA */ spin_unlock_irqrestore(&schan->lock, flags); continue; } /* cyclic DMA */ happened_cyclic = schan->happened_cyclic; spin_unlock_irqrestore(&schan->lock, flags); desc = &sdesc->desc; while (happened_cyclic != schan->completed_cyclic) { if (desc->callback) desc->callback(desc->callback_param); schan->completed_cyclic++; } } } } /* DMA Tasklet */ static void sirfsoc_dma_tasklet(unsigned long data) { struct sirfsoc_dma *sdma = (void *)data; sirfsoc_dma_process_completed(sdma); } /* Submit descriptor to hardware */ static dma_cookie_t sirfsoc_dma_tx_submit(struct dma_async_tx_descriptor *txd) { struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(txd->chan); struct sirfsoc_dma_desc *sdesc; unsigned long flags; dma_cookie_t cookie; sdesc = container_of(txd, struct sirfsoc_dma_desc, desc); spin_lock_irqsave(&schan->lock, flags); /* Move descriptor to queue */ list_move_tail(&sdesc->node, &schan->queued); /* Update cookie */ cookie = schan->chan.cookie + 1; if (cookie <= 0) cookie = 1; schan->chan.cookie = cookie; sdesc->desc.cookie = cookie; spin_unlock_irqrestore(&schan->lock, flags); return cookie; } static int sirfsoc_dma_slave_config(struct sirfsoc_dma_chan *schan, struct dma_slave_config *config) { unsigned long flags; if ((config->src_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES) || (config->dst_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES)) return -EINVAL; spin_lock_irqsave(&schan->lock, flags); schan->mode = (config->src_maxburst == 4 ? 1 : 0); spin_unlock_irqrestore(&schan->lock, flags); return 0; } static int sirfsoc_dma_terminate_all(struct sirfsoc_dma_chan *schan) { struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan); int cid = schan->chan.chan_id; unsigned long flags; writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_INT_EN) & ~(1 << cid), sdma->base + SIRFSOC_DMA_INT_EN); writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_CH_VALID); writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL) & ~((1 << cid) | 1 << (cid + 16)), sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL); spin_lock_irqsave(&schan->lock, flags); list_splice_tail_init(&schan->active, &schan->free); list_splice_tail_init(&schan->queued, &schan->free); spin_unlock_irqrestore(&schan->lock, flags); return 0; } static int sirfsoc_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) { struct dma_slave_config *config; struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan); switch (cmd) { case DMA_TERMINATE_ALL: return sirfsoc_dma_terminate_all(schan); case DMA_SLAVE_CONFIG: config = (struct dma_slave_config *)arg; return sirfsoc_dma_slave_config(schan, config); default: break; } return -ENOSYS; } /* Alloc channel resources */ static int sirfsoc_dma_alloc_chan_resources(struct dma_chan *chan) { struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan); struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan); struct sirfsoc_dma_desc *sdesc; unsigned long flags; LIST_HEAD(descs); int i; /* Alloc descriptors for this channel */ for (i = 0; i < SIRFSOC_DMA_DESCRIPTORS; i++) { sdesc = kzalloc(sizeof(*sdesc), GFP_KERNEL); if (!sdesc) { dev_notice(sdma->dma.dev, "Memory allocation error. " "Allocated only %u descriptors\n", i); break; } dma_async_tx_descriptor_init(&sdesc->desc, chan); sdesc->desc.flags = DMA_CTRL_ACK; sdesc->desc.tx_submit = sirfsoc_dma_tx_submit; list_add_tail(&sdesc->node, &descs); } /* Return error only if no descriptors were allocated */ if (i == 0) return -ENOMEM; spin_lock_irqsave(&schan->lock, flags); list_splice_tail_init(&descs, &schan->free); spin_unlock_irqrestore(&schan->lock, flags); return i; } /* Free channel resources */ static void sirfsoc_dma_free_chan_resources(struct dma_chan *chan) { struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan); struct sirfsoc_dma_desc *sdesc, *tmp; unsigned long flags; LIST_HEAD(descs); spin_lock_irqsave(&schan->lock, flags); /* Channel must be idle */ BUG_ON(!list_empty(&schan->prepared)); BUG_ON(!list_empty(&schan->queued)); BUG_ON(!list_empty(&schan->active)); BUG_ON(!list_empty(&schan->completed)); /* Move data */ list_splice_tail_init(&schan->free, &descs); spin_unlock_irqrestore(&schan->lock, flags); /* Free descriptors */ list_for_each_entry_safe(sdesc, tmp, &descs, node) kfree(sdesc); } /* Send pending descriptor to hardware */ static void sirfsoc_dma_issue_pending(struct dma_chan *chan) { struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan); unsigned long flags; spin_lock_irqsave(&schan->lock, flags); if (list_empty(&schan->active) && !list_empty(&schan->queued)) sirfsoc_dma_execute(schan); spin_unlock_irqrestore(&schan->lock, flags); } /* Check request completion status */ static enum dma_status sirfsoc_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan); unsigned long flags; dma_cookie_t last_used; dma_cookie_t last_complete; spin_lock_irqsave(&schan->lock, flags); last_used = schan->chan.cookie; last_complete = schan->completed_cookie; spin_unlock_irqrestore(&schan->lock, flags); dma_set_tx_state(txstate, last_complete, last_used, 0); return dma_async_is_complete(cookie, last_complete, last_used); } static struct dma_async_tx_descriptor *sirfsoc_dma_prep_interleaved( struct dma_chan *chan, struct dma_interleaved_template *xt, unsigned long flags) { struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan); struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan); struct sirfsoc_dma_desc *sdesc = NULL; unsigned long iflags; int ret; if ((xt->dir != DMA_MEM_TO_DEV) || (xt->dir != DMA_DEV_TO_MEM)) { ret = -EINVAL; goto err_dir; } /* Get free descriptor */ spin_lock_irqsave(&schan->lock, iflags); if (!list_empty(&schan->free)) { sdesc = list_first_entry(&schan->free, struct sirfsoc_dma_desc, node); list_del(&sdesc->node); } spin_unlock_irqrestore(&schan->lock, iflags); if (!sdesc) { /* try to free completed descriptors */ sirfsoc_dma_process_completed(sdma); ret = 0; goto no_desc; } /* Place descriptor in prepared list */ spin_lock_irqsave(&schan->lock, iflags); /* * Number of chunks in a frame can only be 1 for prima2 * and ylen (number of frame - 1) must be at least 0 */ if ((xt->frame_size == 1) && (xt->numf > 0)) { sdesc->cyclic = 0; sdesc->xlen = xt->sgl[0].size / SIRFSOC_DMA_WORD_LEN; sdesc->width = (xt->sgl[0].size + xt->sgl[0].icg) / SIRFSOC_DMA_WORD_LEN; sdesc->ylen = xt->numf - 1; if (xt->dir == DMA_MEM_TO_DEV) { sdesc->addr = xt->src_start; sdesc->dir = 1; } else { sdesc->addr = xt->dst_start; sdesc->dir = 0; } list_add_tail(&sdesc->node, &schan->prepared); } else { pr_err("sirfsoc DMA Invalid xfer\n"); ret = -EINVAL; goto err_xfer; } spin_unlock_irqrestore(&schan->lock, iflags); return &sdesc->desc; err_xfer: spin_unlock_irqrestore(&schan->lock, iflags); no_desc: err_dir: return ERR_PTR(ret); } static struct dma_async_tx_descriptor * sirfsoc_dma_prep_cyclic(struct dma_chan *chan, dma_addr_t addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction) { struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan); struct sirfsoc_dma_desc *sdesc = NULL; unsigned long iflags; /* * we only support cycle transfer with 2 period * If the X-length is set to 0, it would be the loop mode. * The DMA address keeps increasing until reaching the end of a loop * area whose size is defined by (DMA_WIDTH x (Y_LENGTH + 1)). Then * the DMA address goes back to the beginning of this area. * In loop mode, the DMA data region is divided into two parts, BUFA * and BUFB. DMA controller generates interrupts twice in each loop: * when the DMA address reaches the end of BUFA or the end of the * BUFB */ if (buf_len != 2 * period_len) return ERR_PTR(-EINVAL); /* Get free descriptor */ spin_lock_irqsave(&schan->lock, iflags); if (!list_empty(&schan->free)) { sdesc = list_first_entry(&schan->free, struct sirfsoc_dma_desc, node); list_del(&sdesc->node); } spin_unlock_irqrestore(&schan->lock, iflags); if (!sdesc) return 0; /* Place descriptor in prepared list */ spin_lock_irqsave(&schan->lock, iflags); sdesc->addr = addr; sdesc->cyclic = 1; sdesc->xlen = 0; sdesc->ylen = buf_len / SIRFSOC_DMA_WORD_LEN - 1; sdesc->width = 1; list_add_tail(&sdesc->node, &schan->prepared); spin_unlock_irqrestore(&schan->lock, iflags); return &sdesc->desc; } /* * The DMA controller consists of 16 independent DMA channels. * Each channel is allocated to a different function */ bool sirfsoc_dma_filter_id(struct dma_chan *chan, void *chan_id) { unsigned int ch_nr = (unsigned int) chan_id; if (ch_nr == chan->chan_id + chan->device->dev_id * SIRFSOC_DMA_CHANNELS) return true; return false; } EXPORT_SYMBOL(sirfsoc_dma_filter_id); static int __devinit sirfsoc_dma_probe(struct platform_device *op) { struct device_node *dn = op->dev.of_node; struct device *dev = &op->dev; struct dma_device *dma; struct sirfsoc_dma *sdma; struct sirfsoc_dma_chan *schan; struct resource res; ulong regs_start, regs_size; u32 id; int ret, i; sdma = devm_kzalloc(dev, sizeof(*sdma), GFP_KERNEL); if (!sdma) { dev_err(dev, "Memory exhausted!\n"); return -ENOMEM; } if (of_property_read_u32(dn, "cell-index", &id)) { dev_err(dev, "Fail to get DMAC index\n"); ret = -ENODEV; goto free_mem; } sdma->irq = irq_of_parse_and_map(dn, 0); if (sdma->irq == NO_IRQ) { dev_err(dev, "Error mapping IRQ!\n"); ret = -EINVAL; goto free_mem; } ret = of_address_to_resource(dn, 0, &res); if (ret) { dev_err(dev, "Error parsing memory region!\n"); goto free_mem; } regs_start = res.start; regs_size = resource_size(&res); sdma->base = devm_ioremap(dev, regs_start, regs_size); if (!sdma->base) { dev_err(dev, "Error mapping memory region!\n"); ret = -ENOMEM; goto irq_dispose; } ret = devm_request_irq(dev, sdma->irq, &sirfsoc_dma_irq, 0, DRV_NAME, sdma); if (ret) { dev_err(dev, "Error requesting IRQ!\n"); ret = -EINVAL; goto unmap_mem; } dma = &sdma->dma; dma->dev = dev; dma->chancnt = SIRFSOC_DMA_CHANNELS; dma->device_alloc_chan_resources = sirfsoc_dma_alloc_chan_resources; dma->device_free_chan_resources = sirfsoc_dma_free_chan_resources; dma->device_issue_pending = sirfsoc_dma_issue_pending; dma->device_control = sirfsoc_dma_control; dma->device_tx_status = sirfsoc_dma_tx_status; dma->device_prep_interleaved_dma = sirfsoc_dma_prep_interleaved; dma->device_prep_dma_cyclic = sirfsoc_dma_prep_cyclic; INIT_LIST_HEAD(&dma->channels); dma_cap_set(DMA_SLAVE, dma->cap_mask); dma_cap_set(DMA_CYCLIC, dma->cap_mask); dma_cap_set(DMA_INTERLEAVE, dma->cap_mask); dma_cap_set(DMA_PRIVATE, dma->cap_mask); for (i = 0; i < dma->chancnt; i++) { schan = &sdma->channels[i]; schan->chan.device = dma; schan->chan.cookie = 1; schan->completed_cookie = schan->chan.cookie; INIT_LIST_HEAD(&schan->free); INIT_LIST_HEAD(&schan->prepared); INIT_LIST_HEAD(&schan->queued); INIT_LIST_HEAD(&schan->active); INIT_LIST_HEAD(&schan->completed); spin_lock_init(&schan->lock); list_add_tail(&schan->chan.device_node, &dma->channels); } tasklet_init(&sdma->tasklet, sirfsoc_dma_tasklet, (unsigned long)sdma); /* Register DMA engine */ dev_set_drvdata(dev, sdma); ret = dma_async_device_register(dma); if (ret) goto free_irq; dev_info(dev, "initialized SIRFSOC DMAC driver\n"); return 0; free_irq: devm_free_irq(dev, sdma->irq, sdma); irq_dispose: irq_dispose_mapping(sdma->irq); unmap_mem: iounmap(sdma->base); free_mem: devm_kfree(dev, sdma); return ret; } static int __devexit sirfsoc_dma_remove(struct platform_device *op) { struct device *dev = &op->dev; struct sirfsoc_dma *sdma = dev_get_drvdata(dev); dma_async_device_unregister(&sdma->dma); devm_free_irq(dev, sdma->irq, sdma); irq_dispose_mapping(sdma->irq); iounmap(sdma->base); devm_kfree(dev, sdma); return 0; } static struct of_device_id sirfsoc_dma_match[] = { { .compatible = "sirf,prima2-dmac", }, {}, }; static struct platform_driver sirfsoc_dma_driver = { .probe = sirfsoc_dma_probe, .remove = __devexit_p(sirfsoc_dma_remove), .driver = { .name = DRV_NAME, .owner = THIS_MODULE, .of_match_table = sirfsoc_dma_match, }, }; module_platform_driver(sirfsoc_dma_driver); MODULE_AUTHOR("Rongjun Ying <rongjun.ying@csr.com>, " "Barry Song <baohua.song@csr.com>"); MODULE_DESCRIPTION("SIRFSOC DMA control driver"); MODULE_LICENSE("GPL v2");