/* adm1021.c - Part of lm_sensors, Linux kernel modules for hardware monitoring Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl> and Philip Edelbrock <phil@netroedge.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/mutex.h> /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x4c, 0x4d, 0x4e, I2C_CLIENT_END }; enum chips { adm1021, adm1023, max1617, max1617a, thmc10, lm84, gl523sm, mc1066 }; /* adm1021 constants specified below */ /* The adm1021 registers */ /* Read-only */ /* For nr in 0-1 */ #define ADM1021_REG_TEMP(nr) (nr) #define ADM1021_REG_STATUS 0x02 /* 0x41 = AD, 0x49 = TI, 0x4D = Maxim, 0x23 = Genesys , 0x54 = Onsemi */ #define ADM1021_REG_MAN_ID 0xFE /* ADM1021 = 0x0X, ADM1023 = 0x3X */ #define ADM1021_REG_DEV_ID 0xFF /* These use different addresses for reading/writing */ #define ADM1021_REG_CONFIG_R 0x03 #define ADM1021_REG_CONFIG_W 0x09 #define ADM1021_REG_CONV_RATE_R 0x04 #define ADM1021_REG_CONV_RATE_W 0x0A /* These are for the ADM1023's additional precision on the remote temp sensor */ #define ADM1023_REG_REM_TEMP_PREC 0x10 #define ADM1023_REG_REM_OFFSET 0x11 #define ADM1023_REG_REM_OFFSET_PREC 0x12 #define ADM1023_REG_REM_TOS_PREC 0x13 #define ADM1023_REG_REM_THYST_PREC 0x14 /* limits */ /* For nr in 0-1 */ #define ADM1021_REG_TOS_R(nr) (0x05 + 2 * (nr)) #define ADM1021_REG_TOS_W(nr) (0x0B + 2 * (nr)) #define ADM1021_REG_THYST_R(nr) (0x06 + 2 * (nr)) #define ADM1021_REG_THYST_W(nr) (0x0C + 2 * (nr)) /* write-only */ #define ADM1021_REG_ONESHOT 0x0F /* Initial values */ /* Note: Even though I left the low and high limits named os and hyst, they don't quite work like a thermostat the way the LM75 does. I.e., a lower temp than THYST actually triggers an alarm instead of clearing it. Weird, ey? --Phil */ /* Each client has this additional data */ struct adm1021_data { struct device *hwmon_dev; enum chips type; struct mutex update_lock; char valid; /* !=0 if following fields are valid */ char low_power; /* !=0 if device in low power mode */ unsigned long last_updated; /* In jiffies */ int temp_max[2]; /* Register values */ int temp_min[2]; int temp[2]; u8 alarms; /* Special values for ADM1023 only */ u8 remote_temp_offset; u8 remote_temp_offset_prec; }; static int adm1021_probe(struct i2c_client *client, const struct i2c_device_id *id); static int adm1021_detect(struct i2c_client *client, struct i2c_board_info *info); static void adm1021_init_client(struct i2c_client *client); static int adm1021_remove(struct i2c_client *client); static struct adm1021_data *adm1021_update_device(struct device *dev); /* (amalysh) read only mode, otherwise any limit's writing confuse BIOS */ static bool read_only; static const struct i2c_device_id adm1021_id[] = { { "adm1021", adm1021 }, { "adm1023", adm1023 }, { "max1617", max1617 }, { "max1617a", max1617a }, { "thmc10", thmc10 }, { "lm84", lm84 }, { "gl523sm", gl523sm }, { "mc1066", mc1066 }, { } }; MODULE_DEVICE_TABLE(i2c, adm1021_id); /* This is the driver that will be inserted */ static struct i2c_driver adm1021_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "adm1021", }, .probe = adm1021_probe, .remove = adm1021_remove, .id_table = adm1021_id, .detect = adm1021_detect, .address_list = normal_i2c, }; static ssize_t show_temp(struct device *dev, struct device_attribute *devattr, char *buf) { int index = to_sensor_dev_attr(devattr)->index; struct adm1021_data *data = adm1021_update_device(dev); return sprintf(buf, "%d\n", data->temp[index]); } static ssize_t show_temp_max(struct device *dev, struct device_attribute *devattr, char *buf) { int index = to_sensor_dev_attr(devattr)->index; struct adm1021_data *data = adm1021_update_device(dev); return sprintf(buf, "%d\n", data->temp_max[index]); } static ssize_t show_temp_min(struct device *dev, struct device_attribute *devattr, char *buf) { int index = to_sensor_dev_attr(devattr)->index; struct adm1021_data *data = adm1021_update_device(dev); return sprintf(buf, "%d\n", data->temp_min[index]); } static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, char *buf) { int index = to_sensor_dev_attr(attr)->index; struct adm1021_data *data = adm1021_update_device(dev); return sprintf(buf, "%u\n", (data->alarms >> index) & 1); } static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1021_data *data = adm1021_update_device(dev); return sprintf(buf, "%u\n", data->alarms); } static ssize_t set_temp_max(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int index = to_sensor_dev_attr(devattr)->index; struct i2c_client *client = to_i2c_client(dev); struct adm1021_data *data = i2c_get_clientdata(client); long temp = simple_strtol(buf, NULL, 10) / 1000; mutex_lock(&data->update_lock); data->temp_max[index] = SENSORS_LIMIT(temp, -128, 127); if (!read_only) i2c_smbus_write_byte_data(client, ADM1021_REG_TOS_W(index), data->temp_max[index]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_temp_min(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int index = to_sensor_dev_attr(devattr)->index; struct i2c_client *client = to_i2c_client(dev); struct adm1021_data *data = i2c_get_clientdata(client); long temp = simple_strtol(buf, NULL, 10) / 1000; mutex_lock(&data->update_lock); data->temp_min[index] = SENSORS_LIMIT(temp, -128, 127); if (!read_only) i2c_smbus_write_byte_data(client, ADM1021_REG_THYST_W(index), data->temp_min[index]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_low_power(struct device *dev, struct device_attribute *devattr, char *buf) { struct adm1021_data *data = adm1021_update_device(dev); return sprintf(buf, "%d\n", data->low_power); } static ssize_t set_low_power(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct adm1021_data *data = i2c_get_clientdata(client); int low_power = simple_strtol(buf, NULL, 10) != 0; mutex_lock(&data->update_lock); if (low_power != data->low_power) { int config = i2c_smbus_read_byte_data( client, ADM1021_REG_CONFIG_R); data->low_power = low_power; i2c_smbus_write_byte_data(client, ADM1021_REG_CONFIG_W, (config & 0xBF) | (low_power << 6)); } mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0); static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp_max, set_temp_max, 0); static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp_min, set_temp_min, 0); static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 1); static SENSOR_DEVICE_ATTR(temp2_max, S_IWUSR | S_IRUGO, show_temp_max, set_temp_max, 1); static SENSOR_DEVICE_ATTR(temp2_min, S_IWUSR | S_IRUGO, show_temp_min, set_temp_min, 1); static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6); static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 5); static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 4); static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3); static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 2); static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); static DEVICE_ATTR(low_power, S_IWUSR | S_IRUGO, show_low_power, set_low_power); static struct attribute *adm1021_attributes[] = { &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_min.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, &sensor_dev_attr_temp1_min_alarm.dev_attr.attr, &sensor_dev_attr_temp2_max_alarm.dev_attr.attr, &sensor_dev_attr_temp2_min_alarm.dev_attr.attr, &sensor_dev_attr_temp2_fault.dev_attr.attr, &dev_attr_alarms.attr, &dev_attr_low_power.attr, NULL }; static const struct attribute_group adm1021_group = { .attrs = adm1021_attributes, }; /* Return 0 if detection is successful, -ENODEV otherwise */ static int adm1021_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; const char *type_name; int conv_rate, status, config, man_id, dev_id; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { pr_debug("adm1021: detect failed, " "smbus byte data not supported!\n"); return -ENODEV; } status = i2c_smbus_read_byte_data(client, ADM1021_REG_STATUS); conv_rate = i2c_smbus_read_byte_data(client, ADM1021_REG_CONV_RATE_R); config = i2c_smbus_read_byte_data(client, ADM1021_REG_CONFIG_R); /* Check unused bits */ if ((status & 0x03) || (config & 0x3F) || (conv_rate & 0xF8)) { pr_debug("adm1021: detect failed, chip not detected!\n"); return -ENODEV; } /* Determine the chip type. */ man_id = i2c_smbus_read_byte_data(client, ADM1021_REG_MAN_ID); dev_id = i2c_smbus_read_byte_data(client, ADM1021_REG_DEV_ID); if (man_id == 0x4d && dev_id == 0x01) type_name = "max1617a"; else if (man_id == 0x41) { if ((dev_id & 0xF0) == 0x30) type_name = "adm1023"; else type_name = "adm1021"; } else if (man_id == 0x49) type_name = "thmc10"; else if (man_id == 0x23) type_name = "gl523sm"; else if (man_id == 0x54) type_name = "mc1066"; /* LM84 Mfr ID in a different place, and it has more unused bits */ else if (conv_rate == 0x00 && (config & 0x7F) == 0x00 && (status & 0xAB) == 0x00) type_name = "lm84"; else type_name = "max1617"; pr_debug("adm1021: Detected chip %s at adapter %d, address 0x%02x.\n", type_name, i2c_adapter_id(adapter), client->addr); strlcpy(info->type, type_name, I2C_NAME_SIZE); return 0; } static int adm1021_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct adm1021_data *data; int err; data = kzalloc(sizeof(struct adm1021_data), GFP_KERNEL); if (!data) { pr_debug("adm1021: detect failed, kzalloc failed!\n"); err = -ENOMEM; goto error0; } i2c_set_clientdata(client, data); data->type = id->driver_data; mutex_init(&data->update_lock); /* Initialize the ADM1021 chip */ if (data->type != lm84 && !read_only) adm1021_init_client(client); /* Register sysfs hooks */ if ((err = sysfs_create_group(&client->dev.kobj, &adm1021_group))) goto error1; data->hwmon_dev = hwmon_device_register(&client->dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); goto error3; } return 0; error3: sysfs_remove_group(&client->dev.kobj, &adm1021_group); error1: kfree(data); error0: return err; } static void adm1021_init_client(struct i2c_client *client) { /* Enable ADC and disable suspend mode */ i2c_smbus_write_byte_data(client, ADM1021_REG_CONFIG_W, i2c_smbus_read_byte_data(client, ADM1021_REG_CONFIG_R) & 0xBF); /* Set Conversion rate to 1/sec (this can be tinkered with) */ i2c_smbus_write_byte_data(client, ADM1021_REG_CONV_RATE_W, 0x04); } static int adm1021_remove(struct i2c_client *client) { struct adm1021_data *data = i2c_get_clientdata(client); hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&client->dev.kobj, &adm1021_group); kfree(data); return 0; } static struct adm1021_data *adm1021_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct adm1021_data *data = i2c_get_clientdata(client); mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ + HZ / 2) || !data->valid) { int i; dev_dbg(&client->dev, "Starting adm1021 update\n"); for (i = 0; i < 2; i++) { data->temp[i] = 1000 * (s8) i2c_smbus_read_byte_data( client, ADM1021_REG_TEMP(i)); data->temp_max[i] = 1000 * (s8) i2c_smbus_read_byte_data( client, ADM1021_REG_TOS_R(i)); data->temp_min[i] = 1000 * (s8) i2c_smbus_read_byte_data( client, ADM1021_REG_THYST_R(i)); } data->alarms = i2c_smbus_read_byte_data(client, ADM1021_REG_STATUS) & 0x7c; if (data->type == adm1023) { /* The ADM1023 provides 3 extra bits of precision for * the remote sensor in extra registers. */ data->temp[1] += 125 * (i2c_smbus_read_byte_data( client, ADM1023_REG_REM_TEMP_PREC) >> 5); data->temp_max[1] += 125 * (i2c_smbus_read_byte_data( client, ADM1023_REG_REM_TOS_PREC) >> 5); data->temp_min[1] += 125 * (i2c_smbus_read_byte_data( client, ADM1023_REG_REM_THYST_PREC) >> 5); data->remote_temp_offset = i2c_smbus_read_byte_data(client, ADM1023_REG_REM_OFFSET); data->remote_temp_offset_prec = i2c_smbus_read_byte_data(client, ADM1023_REG_REM_OFFSET_PREC); } data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); return data; } static int __init sensors_adm1021_init(void) { return i2c_add_driver(&adm1021_driver); } static void __exit sensors_adm1021_exit(void) { i2c_del_driver(&adm1021_driver); } MODULE_AUTHOR ("Frodo Looijaard <frodol@dds.nl> and " "Philip Edelbrock <phil@netroedge.com>"); MODULE_DESCRIPTION("adm1021 driver"); MODULE_LICENSE("GPL"); module_param(read_only, bool, 0); MODULE_PARM_DESC(read_only, "Don't set any values, read only mode"); module_init(sensors_adm1021_init) module_exit(sensors_adm1021_exit)