/* * hwmon-vid.c - VID/VRM/VRD voltage conversions * * Copyright (c) 2004 Rudolf Marek <r.marek@assembler.cz> * * Partly imported from i2c-vid.h of the lm_sensors project * Copyright (c) 2002 Mark D. Studebaker <mdsxyz123@yahoo.com> * With assistance from Trent Piepho <xyzzy@speakeasy.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/kernel.h> #include <linux/hwmon-vid.h> /* * Common code for decoding VID pins. * * References: * * For VRM 8.4 to 9.1, "VRM x.y DC-DC Converter Design Guidelines", * available at http://developer.intel.com/. * * For VRD 10.0 and up, "VRD x.y Design Guide", * available at http://developer.intel.com/. * * AMD Athlon 64 and AMD Opteron Processors, AMD Publication 26094, * http://support.amd.com/us/Processor_TechDocs/26094.PDF * Table 74. VID Code Voltages * This corresponds to an arbitrary VRM code of 24 in the functions below. * These CPU models (K8 revision <= E) have 5 VID pins. See also: * Revision Guide for AMD Athlon 64 and AMD Opteron Processors, AMD Publication 25759, * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25759.pdf * * AMD NPT Family 0Fh Processors, AMD Publication 32559, * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/32559.pdf * Table 71. VID Code Voltages * This corresponds to an arbitrary VRM code of 25 in the functions below. * These CPU models (K8 revision >= F) have 6 VID pins. See also: * Revision Guide for AMD NPT Family 0Fh Processors, AMD Publication 33610, * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf * * The 17 specification is in fact Intel Mobile Voltage Positioning - * (IMVP-II). You can find more information in the datasheet of Max1718 * http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2452 * * The 13 specification corresponds to the Intel Pentium M series. There * doesn't seem to be any named specification for these. The conversion * tables are detailed directly in the various Pentium M datasheets: * http://www.intel.com/design/intarch/pentiumm/docs_pentiumm.htm * * The 14 specification corresponds to Intel Core series. There * doesn't seem to be any named specification for these. The conversion * tables are detailed directly in the various Pentium Core datasheets: * http://www.intel.com/design/mobile/datashts/309221.htm * * The 110 (VRM 11) specification corresponds to Intel Conroe based series. * http://www.intel.com/design/processor/applnots/313214.htm */ /* * vrm is the VRM/VRD document version multiplied by 10. * val is the 4-bit or more VID code. * Returned value is in mV to avoid floating point in the kernel. * Some VID have some bits in uV scale, this is rounded to mV. */ int vid_from_reg(int val, u8 vrm) { int vid; switch(vrm) { case 100: /* VRD 10.0 */ /* compute in uV, round to mV */ val &= 0x3f; if((val & 0x1f) == 0x1f) return 0; if((val & 0x1f) <= 0x09 || val == 0x0a) vid = 1087500 - (val & 0x1f) * 25000; else vid = 1862500 - (val & 0x1f) * 25000; if(val & 0x20) vid -= 12500; return((vid + 500) / 1000); case 110: /* Intel Conroe */ /* compute in uV, round to mV */ val &= 0xff; if (val < 0x02 || val > 0xb2) return 0; return((1600000 - (val - 2) * 6250 + 500) / 1000); case 24: /* Athlon64 & Opteron */ val &= 0x1f; if (val == 0x1f) return 0; /* fall through */ case 25: /* AMD NPT 0Fh */ val &= 0x3f; return (val < 32) ? 1550 - 25 * val : 775 - (25 * (val - 31)) / 2; case 91: /* VRM 9.1 */ case 90: /* VRM 9.0 */ val &= 0x1f; return(val == 0x1f ? 0 : 1850 - val * 25); case 85: /* VRM 8.5 */ val &= 0x1f; return((val & 0x10 ? 25 : 0) + ((val & 0x0f) > 0x04 ? 2050 : 1250) - ((val & 0x0f) * 50)); case 84: /* VRM 8.4 */ val &= 0x0f; /* fall through */ case 82: /* VRM 8.2 */ val &= 0x1f; return(val == 0x1f ? 0 : val & 0x10 ? 5100 - (val) * 100 : 2050 - (val) * 50); case 17: /* Intel IMVP-II */ val &= 0x1f; return(val & 0x10 ? 975 - (val & 0xF) * 25 : 1750 - val * 50); case 13: case 131: val &= 0x3f; /* Exception for Eden ULV 500 MHz */ if (vrm == 131 && val == 0x3f) val++; return(1708 - val * 16); case 14: /* Intel Core */ /* compute in uV, round to mV */ val &= 0x7f; return(val > 0x77 ? 0 : (1500000 - (val * 12500) + 500) / 1000); default: /* report 0 for unknown */ if (vrm) pr_warn("Requested unsupported VRM version (%u)\n", (unsigned int)vrm); return 0; } } /* * After this point is the code to automatically determine which * VRM/VRD specification should be used depending on the CPU. */ struct vrm_model { u8 vendor; u8 eff_family; u8 eff_model; u8 eff_stepping; u8 vrm_type; }; #define ANY 0xFF #ifdef CONFIG_X86 /* * The stepping parameter is highest acceptable stepping for current line. * The model match must be exact for 4-bit values. For model values 0x10 * and above (extended model), all models below the parameter will match. */ static struct vrm_model vrm_models[] = { {X86_VENDOR_AMD, 0x6, ANY, ANY, 90}, /* Athlon Duron etc */ {X86_VENDOR_AMD, 0xF, 0x3F, ANY, 24}, /* Athlon 64, Opteron */ /* In theory, all NPT family 0Fh processors have 6 VID pins and should thus use vrm 25, however in practice not all mainboards route the 6th VID pin because it is never needed. So we use the 5 VID pin variant (vrm 24) for the models which exist today. */ {X86_VENDOR_AMD, 0xF, 0x7F, ANY, 24}, /* NPT family 0Fh */ {X86_VENDOR_AMD, 0xF, ANY, ANY, 25}, /* future fam. 0Fh */ {X86_VENDOR_AMD, 0x10, ANY, ANY, 25}, /* NPT family 10h */ {X86_VENDOR_INTEL, 0x6, 0x9, ANY, 13}, /* Pentium M (130 nm) */ {X86_VENDOR_INTEL, 0x6, 0xB, ANY, 85}, /* Tualatin */ {X86_VENDOR_INTEL, 0x6, 0xD, ANY, 13}, /* Pentium M (90 nm) */ {X86_VENDOR_INTEL, 0x6, 0xE, ANY, 14}, /* Intel Core (65 nm) */ {X86_VENDOR_INTEL, 0x6, 0xF, ANY, 110}, /* Intel Conroe */ {X86_VENDOR_INTEL, 0x6, ANY, ANY, 82}, /* any P6 */ {X86_VENDOR_INTEL, 0xF, 0x0, ANY, 90}, /* P4 */ {X86_VENDOR_INTEL, 0xF, 0x1, ANY, 90}, /* P4 Willamette */ {X86_VENDOR_INTEL, 0xF, 0x2, ANY, 90}, /* P4 Northwood */ {X86_VENDOR_INTEL, 0xF, ANY, ANY, 100}, /* Prescott and above assume VRD 10 */ {X86_VENDOR_CENTAUR, 0x6, 0x7, ANY, 85}, /* Eden ESP/Ezra */ {X86_VENDOR_CENTAUR, 0x6, 0x8, 0x7, 85}, /* Ezra T */ {X86_VENDOR_CENTAUR, 0x6, 0x9, 0x7, 85}, /* Nehemiah */ {X86_VENDOR_CENTAUR, 0x6, 0x9, ANY, 17}, /* C3-M, Eden-N */ {X86_VENDOR_CENTAUR, 0x6, 0xA, 0x7, 0}, /* No information */ {X86_VENDOR_CENTAUR, 0x6, 0xA, ANY, 13}, /* C7-M, C7, Eden (Esther) */ {X86_VENDOR_CENTAUR, 0x6, 0xD, ANY, 134}, /* C7-D, C7-M, C7, Eden (Esther) */ {X86_VENDOR_UNKNOWN, ANY, ANY, ANY, 0} /* stop here */ }; /* * Special case for VIA model D: there are two different possible * VID tables, so we have to figure out first, which one must be * used. This resolves temporary drm value 134 to 14 (Intel Core * 7-bit VID), 13 (Pentium M 6-bit VID) or 131 (Pentium M 6-bit VID * + quirk for Eden ULV 500 MHz). * Note: something similar might be needed for model A, I'm not sure. */ static u8 get_via_model_d_vrm(void) { unsigned int vid, brand, dummy; static const char *brands[4] = { "C7-M", "C7", "Eden", "C7-D" }; rdmsr(0x198, dummy, vid); vid &= 0xff; rdmsr(0x1154, brand, dummy); brand = ((brand >> 4) ^ (brand >> 2)) & 0x03; if (vid > 0x3f) { pr_info("Using %d-bit VID table for VIA %s CPU\n", 7, brands[brand]); return 14; } else { pr_info("Using %d-bit VID table for VIA %s CPU\n", 6, brands[brand]); /* Enable quirk for Eden */ return brand == 2 ? 131 : 13; } } static u8 find_vrm(u8 eff_family, u8 eff_model, u8 eff_stepping, u8 vendor) { int i = 0; while (vrm_models[i].vendor!=X86_VENDOR_UNKNOWN) { if (vrm_models[i].vendor==vendor) if ((vrm_models[i].eff_family==eff_family) && ((vrm_models[i].eff_model==eff_model) || (vrm_models[i].eff_model >= 0x10 && eff_model <= vrm_models[i].eff_model) || (vrm_models[i].eff_model==ANY)) && (eff_stepping <= vrm_models[i].eff_stepping)) return vrm_models[i].vrm_type; i++; } return 0; } u8 vid_which_vrm(void) { struct cpuinfo_x86 *c = &cpu_data(0); u32 eax; u8 eff_family, eff_model, eff_stepping, vrm_ret; if (c->x86 < 6) /* Any CPU with family lower than 6 */ return 0; /* doesn't have VID and/or CPUID */ eax = cpuid_eax(1); eff_family = ((eax & 0x00000F00)>>8); eff_model = ((eax & 0x000000F0)>>4); eff_stepping = eax & 0xF; if (eff_family == 0xF) { /* use extended model & family */ eff_family += ((eax & 0x00F00000)>>20); eff_model += ((eax & 0x000F0000)>>16)<<4; } vrm_ret = find_vrm(eff_family, eff_model, eff_stepping, c->x86_vendor); if (vrm_ret == 134) vrm_ret = get_via_model_d_vrm(); if (vrm_ret == 0) pr_info("Unknown VRM version of your x86 CPU\n"); return vrm_ret; } /* and now for something completely different for the non-x86 world */ #else u8 vid_which_vrm(void) { pr_info("Unknown VRM version of your CPU\n"); return 0; } #endif EXPORT_SYMBOL(vid_from_reg); EXPORT_SYMBOL(vid_which_vrm); MODULE_AUTHOR("Rudolf Marek <r.marek@assembler.cz>"); MODULE_DESCRIPTION("hwmon-vid driver"); MODULE_LICENSE("GPL");