/* * V4L2 SoC Camera driver for OMAP1 Camera Interface * * Copyright (C) 2010, Janusz Krzysztofik <jkrzyszt@tis.icnet.pl> * * Based on V4L2 Driver for i.MXL/i.MXL camera (CSI) host * Copyright (C) 2008, Paulius Zaleckas <paulius.zaleckas@teltonika.lt> * Copyright (C) 2009, Darius Augulis <augulis.darius@gmail.com> * * Based on PXA SoC camera driver * Copyright (C) 2006, Sascha Hauer, Pengutronix * Copyright (C) 2008, Guennadi Liakhovetski <kernel@pengutronix.de> * * Hardware specific bits initialy based on former work by Matt Callow * drivers/media/video/omap/omap1510cam.c * Copyright (C) 2006 Matt Callow * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <media/omap1_camera.h> #include <media/soc_camera.h> #include <media/soc_mediabus.h> #include <media/videobuf-dma-contig.h> #include <media/videobuf-dma-sg.h> #include <plat/dma.h> #define DRIVER_NAME "omap1-camera" #define DRIVER_VERSION "0.0.2" /* * --------------------------------------------------------------------------- * OMAP1 Camera Interface registers * --------------------------------------------------------------------------- */ #define REG_CTRLCLOCK 0x00 #define REG_IT_STATUS 0x04 #define REG_MODE 0x08 #define REG_STATUS 0x0C #define REG_CAMDATA 0x10 #define REG_GPIO 0x14 #define REG_PEAK_COUNTER 0x18 /* CTRLCLOCK bit shifts */ #define LCLK_EN BIT(7) #define DPLL_EN BIT(6) #define MCLK_EN BIT(5) #define CAMEXCLK_EN BIT(4) #define POLCLK BIT(3) #define FOSCMOD_SHIFT 0 #define FOSCMOD_MASK (0x7 << FOSCMOD_SHIFT) #define FOSCMOD_12MHz 0x0 #define FOSCMOD_6MHz 0x2 #define FOSCMOD_9_6MHz 0x4 #define FOSCMOD_24MHz 0x5 #define FOSCMOD_8MHz 0x6 /* IT_STATUS bit shifts */ #define DATA_TRANSFER BIT(5) #define FIFO_FULL BIT(4) #define H_DOWN BIT(3) #define H_UP BIT(2) #define V_DOWN BIT(1) #define V_UP BIT(0) /* MODE bit shifts */ #define RAZ_FIFO BIT(18) #define EN_FIFO_FULL BIT(17) #define EN_NIRQ BIT(16) #define THRESHOLD_SHIFT 9 #define THRESHOLD_MASK (0x7f << THRESHOLD_SHIFT) #define DMA BIT(8) #define EN_H_DOWN BIT(7) #define EN_H_UP BIT(6) #define EN_V_DOWN BIT(5) #define EN_V_UP BIT(4) #define ORDERCAMD BIT(3) #define IRQ_MASK (EN_V_UP | EN_V_DOWN | EN_H_UP | EN_H_DOWN | \ EN_NIRQ | EN_FIFO_FULL) /* STATUS bit shifts */ #define HSTATUS BIT(1) #define VSTATUS BIT(0) /* GPIO bit shifts */ #define CAM_RST BIT(0) /* end of OMAP1 Camera Interface registers */ #define SOCAM_BUS_FLAGS (V4L2_MBUS_MASTER | \ V4L2_MBUS_HSYNC_ACTIVE_HIGH | V4L2_MBUS_VSYNC_ACTIVE_HIGH | \ V4L2_MBUS_PCLK_SAMPLE_RISING | V4L2_MBUS_PCLK_SAMPLE_FALLING | \ V4L2_MBUS_DATA_ACTIVE_HIGH) #define FIFO_SIZE ((THRESHOLD_MASK >> THRESHOLD_SHIFT) + 1) #define FIFO_SHIFT __fls(FIFO_SIZE) #define DMA_BURST_SHIFT (1 + OMAP_DMA_DATA_BURST_4) #define DMA_BURST_SIZE (1 << DMA_BURST_SHIFT) #define DMA_ELEMENT_SHIFT OMAP_DMA_DATA_TYPE_S32 #define DMA_ELEMENT_SIZE (1 << DMA_ELEMENT_SHIFT) #define DMA_FRAME_SHIFT_CONTIG (FIFO_SHIFT - 1) #define DMA_FRAME_SHIFT_SG DMA_BURST_SHIFT #define DMA_FRAME_SHIFT(x) ((x) == OMAP1_CAM_DMA_CONTIG ? \ DMA_FRAME_SHIFT_CONTIG : \ DMA_FRAME_SHIFT_SG) #define DMA_FRAME_SIZE(x) (1 << DMA_FRAME_SHIFT(x)) #define DMA_SYNC OMAP_DMA_SYNC_FRAME #define THRESHOLD_LEVEL DMA_FRAME_SIZE #define MAX_VIDEO_MEM 4 /* arbitrary video memory limit in MB */ /* * Structures */ /* buffer for one video frame */ struct omap1_cam_buf { struct videobuf_buffer vb; enum v4l2_mbus_pixelcode code; int inwork; struct scatterlist *sgbuf; int sgcount; int bytes_left; enum videobuf_state result; }; struct omap1_cam_dev { struct soc_camera_host soc_host; struct soc_camera_device *icd; struct clk *clk; unsigned int irq; void __iomem *base; int dma_ch; struct omap1_cam_platform_data *pdata; struct resource *res; unsigned long pflags; unsigned long camexclk; struct list_head capture; /* lock used to protect videobuf */ spinlock_t lock; /* Pointers to DMA buffers */ struct omap1_cam_buf *active; struct omap1_cam_buf *ready; enum omap1_cam_vb_mode vb_mode; int (*mmap_mapper)(struct videobuf_queue *q, struct videobuf_buffer *buf, struct vm_area_struct *vma); u32 reg_cache[0]; }; static void cam_write(struct omap1_cam_dev *pcdev, u16 reg, u32 val) { pcdev->reg_cache[reg / sizeof(u32)] = val; __raw_writel(val, pcdev->base + reg); } static u32 cam_read(struct omap1_cam_dev *pcdev, u16 reg, bool from_cache) { return !from_cache ? __raw_readl(pcdev->base + reg) : pcdev->reg_cache[reg / sizeof(u32)]; } #define CAM_READ(pcdev, reg) \ cam_read(pcdev, REG_##reg, false) #define CAM_WRITE(pcdev, reg, val) \ cam_write(pcdev, REG_##reg, val) #define CAM_READ_CACHE(pcdev, reg) \ cam_read(pcdev, REG_##reg, true) /* * Videobuf operations */ static int omap1_videobuf_setup(struct videobuf_queue *vq, unsigned int *count, unsigned int *size) { struct soc_camera_device *icd = vq->priv_data; int bytes_per_line = soc_mbus_bytes_per_line(icd->user_width, icd->current_fmt->host_fmt); struct soc_camera_host *ici = to_soc_camera_host(icd->parent); struct omap1_cam_dev *pcdev = ici->priv; if (bytes_per_line < 0) return bytes_per_line; *size = bytes_per_line * icd->user_height; if (!*count || *count < OMAP1_CAMERA_MIN_BUF_COUNT(pcdev->vb_mode)) *count = OMAP1_CAMERA_MIN_BUF_COUNT(pcdev->vb_mode); if (*size * *count > MAX_VIDEO_MEM * 1024 * 1024) *count = (MAX_VIDEO_MEM * 1024 * 1024) / *size; dev_dbg(icd->parent, "%s: count=%d, size=%d\n", __func__, *count, *size); return 0; } static void free_buffer(struct videobuf_queue *vq, struct omap1_cam_buf *buf, enum omap1_cam_vb_mode vb_mode) { struct videobuf_buffer *vb = &buf->vb; BUG_ON(in_interrupt()); videobuf_waiton(vq, vb, 0, 0); if (vb_mode == OMAP1_CAM_DMA_CONTIG) { videobuf_dma_contig_free(vq, vb); } else { struct soc_camera_device *icd = vq->priv_data; struct device *dev = icd->parent; struct videobuf_dmabuf *dma = videobuf_to_dma(vb); videobuf_dma_unmap(dev, dma); videobuf_dma_free(dma); } vb->state = VIDEOBUF_NEEDS_INIT; } static int omap1_videobuf_prepare(struct videobuf_queue *vq, struct videobuf_buffer *vb, enum v4l2_field field) { struct soc_camera_device *icd = vq->priv_data; struct omap1_cam_buf *buf = container_of(vb, struct omap1_cam_buf, vb); int bytes_per_line = soc_mbus_bytes_per_line(icd->user_width, icd->current_fmt->host_fmt); struct soc_camera_host *ici = to_soc_camera_host(icd->parent); struct omap1_cam_dev *pcdev = ici->priv; int ret; if (bytes_per_line < 0) return bytes_per_line; WARN_ON(!list_empty(&vb->queue)); BUG_ON(NULL == icd->current_fmt); buf->inwork = 1; if (buf->code != icd->current_fmt->code || vb->field != field || vb->width != icd->user_width || vb->height != icd->user_height) { buf->code = icd->current_fmt->code; vb->width = icd->user_width; vb->height = icd->user_height; vb->field = field; vb->state = VIDEOBUF_NEEDS_INIT; } vb->size = bytes_per_line * vb->height; if (vb->baddr && vb->bsize < vb->size) { ret = -EINVAL; goto out; } if (vb->state == VIDEOBUF_NEEDS_INIT) { ret = videobuf_iolock(vq, vb, NULL); if (ret) goto fail; vb->state = VIDEOBUF_PREPARED; } buf->inwork = 0; return 0; fail: free_buffer(vq, buf, pcdev->vb_mode); out: buf->inwork = 0; return ret; } static void set_dma_dest_params(int dma_ch, struct omap1_cam_buf *buf, enum omap1_cam_vb_mode vb_mode) { dma_addr_t dma_addr; unsigned int block_size; if (vb_mode == OMAP1_CAM_DMA_CONTIG) { dma_addr = videobuf_to_dma_contig(&buf->vb); block_size = buf->vb.size; } else { if (WARN_ON(!buf->sgbuf)) { buf->result = VIDEOBUF_ERROR; return; } dma_addr = sg_dma_address(buf->sgbuf); if (WARN_ON(!dma_addr)) { buf->sgbuf = NULL; buf->result = VIDEOBUF_ERROR; return; } block_size = sg_dma_len(buf->sgbuf); if (WARN_ON(!block_size)) { buf->sgbuf = NULL; buf->result = VIDEOBUF_ERROR; return; } if (unlikely(buf->bytes_left < block_size)) block_size = buf->bytes_left; if (WARN_ON(dma_addr & (DMA_FRAME_SIZE(vb_mode) * DMA_ELEMENT_SIZE - 1))) { dma_addr = ALIGN(dma_addr, DMA_FRAME_SIZE(vb_mode) * DMA_ELEMENT_SIZE); block_size &= ~(DMA_FRAME_SIZE(vb_mode) * DMA_ELEMENT_SIZE - 1); } buf->bytes_left -= block_size; buf->sgcount++; } omap_set_dma_dest_params(dma_ch, OMAP_DMA_PORT_EMIFF, OMAP_DMA_AMODE_POST_INC, dma_addr, 0, 0); omap_set_dma_transfer_params(dma_ch, OMAP_DMA_DATA_TYPE_S32, DMA_FRAME_SIZE(vb_mode), block_size >> (DMA_FRAME_SHIFT(vb_mode) + DMA_ELEMENT_SHIFT), DMA_SYNC, 0, 0); } static struct omap1_cam_buf *prepare_next_vb(struct omap1_cam_dev *pcdev) { struct omap1_cam_buf *buf; /* * If there is already a buffer pointed out by the pcdev->ready, * (re)use it, otherwise try to fetch and configure a new one. */ buf = pcdev->ready; if (!buf) { if (list_empty(&pcdev->capture)) return buf; buf = list_entry(pcdev->capture.next, struct omap1_cam_buf, vb.queue); buf->vb.state = VIDEOBUF_ACTIVE; pcdev->ready = buf; list_del_init(&buf->vb.queue); } if (pcdev->vb_mode == OMAP1_CAM_DMA_CONTIG) { /* * In CONTIG mode, we can safely enter next buffer parameters * into the DMA programming register set after the DMA * has already been activated on the previous buffer */ set_dma_dest_params(pcdev->dma_ch, buf, pcdev->vb_mode); } else { /* * In SG mode, the above is not safe since there are probably * a bunch of sgbufs from previous sglist still pending. * Instead, mark the sglist fresh for the upcoming * try_next_sgbuf(). */ buf->sgbuf = NULL; } return buf; } static struct scatterlist *try_next_sgbuf(int dma_ch, struct omap1_cam_buf *buf) { struct scatterlist *sgbuf; if (likely(buf->sgbuf)) { /* current sglist is active */ if (unlikely(!buf->bytes_left)) { /* indicate sglist complete */ sgbuf = NULL; } else { /* process next sgbuf */ sgbuf = sg_next(buf->sgbuf); if (WARN_ON(!sgbuf)) { buf->result = VIDEOBUF_ERROR; } else if (WARN_ON(!sg_dma_len(sgbuf))) { sgbuf = NULL; buf->result = VIDEOBUF_ERROR; } } buf->sgbuf = sgbuf; } else { /* sglist is fresh, initialize it before using */ struct videobuf_dmabuf *dma = videobuf_to_dma(&buf->vb); sgbuf = dma->sglist; if (!(WARN_ON(!sgbuf))) { buf->sgbuf = sgbuf; buf->sgcount = 0; buf->bytes_left = buf->vb.size; buf->result = VIDEOBUF_DONE; } } if (sgbuf) /* * Put our next sgbuf parameters (address, size) * into the DMA programming register set. */ set_dma_dest_params(dma_ch, buf, OMAP1_CAM_DMA_SG); return sgbuf; } static void start_capture(struct omap1_cam_dev *pcdev) { struct omap1_cam_buf *buf = pcdev->active; u32 ctrlclock = CAM_READ_CACHE(pcdev, CTRLCLOCK); u32 mode = CAM_READ_CACHE(pcdev, MODE) & ~EN_V_DOWN; if (WARN_ON(!buf)) return; /* * Enable start of frame interrupt, which we will use for activating * our end of frame watchdog when capture actually starts. */ mode |= EN_V_UP; if (unlikely(ctrlclock & LCLK_EN)) /* stop pixel clock before FIFO reset */ CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock & ~LCLK_EN); /* reset FIFO */ CAM_WRITE(pcdev, MODE, mode | RAZ_FIFO); omap_start_dma(pcdev->dma_ch); if (pcdev->vb_mode == OMAP1_CAM_DMA_SG) { /* * In SG mode, it's a good moment for fetching next sgbuf * from the current sglist and, if available, already putting * its parameters into the DMA programming register set. */ try_next_sgbuf(pcdev->dma_ch, buf); } /* (re)enable pixel clock */ CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock | LCLK_EN); /* release FIFO reset */ CAM_WRITE(pcdev, MODE, mode); } static void suspend_capture(struct omap1_cam_dev *pcdev) { u32 ctrlclock = CAM_READ_CACHE(pcdev, CTRLCLOCK); CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock & ~LCLK_EN); omap_stop_dma(pcdev->dma_ch); } static void disable_capture(struct omap1_cam_dev *pcdev) { u32 mode = CAM_READ_CACHE(pcdev, MODE); CAM_WRITE(pcdev, MODE, mode & ~(IRQ_MASK | DMA)); } static void omap1_videobuf_queue(struct videobuf_queue *vq, struct videobuf_buffer *vb) { struct soc_camera_device *icd = vq->priv_data; struct soc_camera_host *ici = to_soc_camera_host(icd->parent); struct omap1_cam_dev *pcdev = ici->priv; struct omap1_cam_buf *buf; u32 mode; list_add_tail(&vb->queue, &pcdev->capture); vb->state = VIDEOBUF_QUEUED; if (pcdev->active) { /* * Capture in progress, so don't touch pcdev->ready even if * empty. Since the transfer of the DMA programming register set * content to the DMA working register set is done automatically * by the DMA hardware, this can pretty well happen while we * are keeping the lock here. Leave fetching it from the queue * to be done when a next DMA interrupt occures instead. */ return; } WARN_ON(pcdev->ready); buf = prepare_next_vb(pcdev); if (WARN_ON(!buf)) return; pcdev->active = buf; pcdev->ready = NULL; dev_dbg(icd->parent, "%s: capture not active, setup FIFO, start DMA\n", __func__); mode = CAM_READ_CACHE(pcdev, MODE) & ~THRESHOLD_MASK; mode |= THRESHOLD_LEVEL(pcdev->vb_mode) << THRESHOLD_SHIFT; CAM_WRITE(pcdev, MODE, mode | EN_FIFO_FULL | DMA); if (pcdev->vb_mode == OMAP1_CAM_DMA_SG) { /* * In SG mode, the above prepare_next_vb() didn't actually * put anything into the DMA programming register set, * so we have to do it now, before activating DMA. */ try_next_sgbuf(pcdev->dma_ch, buf); } start_capture(pcdev); } static void omap1_videobuf_release(struct videobuf_queue *vq, struct videobuf_buffer *vb) { struct omap1_cam_buf *buf = container_of(vb, struct omap1_cam_buf, vb); struct soc_camera_device *icd = vq->priv_data; struct device *dev = icd->parent; struct soc_camera_host *ici = to_soc_camera_host(dev); struct omap1_cam_dev *pcdev = ici->priv; switch (vb->state) { case VIDEOBUF_DONE: dev_dbg(dev, "%s (done)\n", __func__); break; case VIDEOBUF_ACTIVE: dev_dbg(dev, "%s (active)\n", __func__); break; case VIDEOBUF_QUEUED: dev_dbg(dev, "%s (queued)\n", __func__); break; case VIDEOBUF_PREPARED: dev_dbg(dev, "%s (prepared)\n", __func__); break; default: dev_dbg(dev, "%s (unknown %d)\n", __func__, vb->state); break; } free_buffer(vq, buf, pcdev->vb_mode); } static void videobuf_done(struct omap1_cam_dev *pcdev, enum videobuf_state result) { struct omap1_cam_buf *buf = pcdev->active; struct videobuf_buffer *vb; struct device *dev = pcdev->icd->parent; if (WARN_ON(!buf)) { suspend_capture(pcdev); disable_capture(pcdev); return; } if (result == VIDEOBUF_ERROR) suspend_capture(pcdev); vb = &buf->vb; if (waitqueue_active(&vb->done)) { if (!pcdev->ready && result != VIDEOBUF_ERROR) { /* * No next buffer has been entered into the DMA * programming register set on time (could be done only * while the previous DMA interurpt was processed, not * later), so the last DMA block, be it a whole buffer * if in CONTIG or its last sgbuf if in SG mode, is * about to be reused by the just autoreinitialized DMA * engine, and overwritten with next frame data. Best we * can do is stopping the capture as soon as possible, * hopefully before the next frame start. */ suspend_capture(pcdev); } vb->state = result; do_gettimeofday(&vb->ts); if (result != VIDEOBUF_ERROR) vb->field_count++; wake_up(&vb->done); /* shift in next buffer */ buf = pcdev->ready; pcdev->active = buf; pcdev->ready = NULL; if (!buf) { /* * No next buffer was ready on time (see above), so * indicate error condition to force capture restart or * stop, depending on next buffer already queued or not. */ result = VIDEOBUF_ERROR; prepare_next_vb(pcdev); buf = pcdev->ready; pcdev->active = buf; pcdev->ready = NULL; } } else if (pcdev->ready) { /* * In both CONTIG and SG mode, the DMA engine has possibly * been already autoreinitialized with the preprogrammed * pcdev->ready buffer. We can either accept this fact * and just swap the buffers, or provoke an error condition * and restart capture. The former seems less intrusive. */ dev_dbg(dev, "%s: nobody waiting on videobuf, swap with next\n", __func__); pcdev->active = pcdev->ready; if (pcdev->vb_mode == OMAP1_CAM_DMA_SG) { /* * In SG mode, we have to make sure that the buffer we * are putting back into the pcdev->ready is marked * fresh. */ buf->sgbuf = NULL; } pcdev->ready = buf; buf = pcdev->active; } else { /* * No next buffer has been entered into * the DMA programming register set on time. */ if (pcdev->vb_mode == OMAP1_CAM_DMA_CONTIG) { /* * In CONTIG mode, the DMA engine has already been * reinitialized with the current buffer. Best we can do * is not touching it. */ dev_dbg(dev, "%s: nobody waiting on videobuf, reuse it\n", __func__); } else { /* * In SG mode, the DMA engine has just been * autoreinitialized with the last sgbuf from the * current list. Restart capture in order to transfer * next frame start into the first sgbuf, not the last * one. */ if (result != VIDEOBUF_ERROR) { suspend_capture(pcdev); result = VIDEOBUF_ERROR; } } } if (!buf) { dev_dbg(dev, "%s: no more videobufs, stop capture\n", __func__); disable_capture(pcdev); return; } if (pcdev->vb_mode == OMAP1_CAM_DMA_CONTIG) { /* * In CONTIG mode, the current buffer parameters had already * been entered into the DMA programming register set while the * buffer was fetched with prepare_next_vb(), they may have also * been transferred into the runtime set and already active if * the DMA still running. */ } else { /* In SG mode, extra steps are required */ if (result == VIDEOBUF_ERROR) /* make sure we (re)use sglist from start on error */ buf->sgbuf = NULL; /* * In any case, enter the next sgbuf parameters into the DMA * programming register set. They will be used either during * nearest DMA autoreinitialization or, in case of an error, * on DMA startup below. */ try_next_sgbuf(pcdev->dma_ch, buf); } if (result == VIDEOBUF_ERROR) { dev_dbg(dev, "%s: videobuf error; reset FIFO, restart DMA\n", __func__); start_capture(pcdev); /* * In SG mode, the above also resulted in the next sgbuf * parameters being entered into the DMA programming register * set, making them ready for next DMA autoreinitialization. */ } /* * Finally, try fetching next buffer. * In CONTIG mode, it will also enter it into the DMA programming * register set, making it ready for next DMA autoreinitialization. */ prepare_next_vb(pcdev); } static void dma_isr(int channel, unsigned short status, void *data) { struct omap1_cam_dev *pcdev = data; struct omap1_cam_buf *buf = pcdev->active; unsigned long flags; spin_lock_irqsave(&pcdev->lock, flags); if (WARN_ON(!buf)) { suspend_capture(pcdev); disable_capture(pcdev); goto out; } if (pcdev->vb_mode == OMAP1_CAM_DMA_CONTIG) { /* * In CONTIG mode, assume we have just managed to collect the * whole frame, hopefully before our end of frame watchdog is * triggered. Then, all we have to do is disabling the watchdog * for this frame, and calling videobuf_done() with success * indicated. */ CAM_WRITE(pcdev, MODE, CAM_READ_CACHE(pcdev, MODE) & ~EN_V_DOWN); videobuf_done(pcdev, VIDEOBUF_DONE); } else { /* * In SG mode, we have to process every sgbuf from the current * sglist, one after another. */ if (buf->sgbuf) { /* * Current sglist not completed yet, try fetching next * sgbuf, hopefully putting it into the DMA programming * register set, making it ready for next DMA * autoreinitialization. */ try_next_sgbuf(pcdev->dma_ch, buf); if (buf->sgbuf) goto out; /* * No more sgbufs left in the current sglist. This * doesn't mean that the whole videobuffer is already * complete, but only that the last sgbuf from the * current sglist is about to be filled. It will be * ready on next DMA interrupt, signalled with the * buf->sgbuf set back to NULL. */ if (buf->result != VIDEOBUF_ERROR) { /* * Video frame collected without errors so far, * we can prepare for collecting a next one * as soon as DMA gets autoreinitialized * after the current (last) sgbuf is completed. */ buf = prepare_next_vb(pcdev); if (!buf) goto out; try_next_sgbuf(pcdev->dma_ch, buf); goto out; } } /* end of videobuf */ videobuf_done(pcdev, buf->result); } out: spin_unlock_irqrestore(&pcdev->lock, flags); } static irqreturn_t cam_isr(int irq, void *data) { struct omap1_cam_dev *pcdev = data; struct device *dev = pcdev->icd->parent; struct omap1_cam_buf *buf = pcdev->active; u32 it_status; unsigned long flags; it_status = CAM_READ(pcdev, IT_STATUS); if (!it_status) return IRQ_NONE; spin_lock_irqsave(&pcdev->lock, flags); if (WARN_ON(!buf)) { dev_warn(dev, "%s: unhandled camera interrupt, status == %#x\n", __func__, it_status); suspend_capture(pcdev); disable_capture(pcdev); goto out; } if (unlikely(it_status & FIFO_FULL)) { dev_warn(dev, "%s: FIFO overflow\n", __func__); } else if (it_status & V_DOWN) { /* end of video frame watchdog */ if (pcdev->vb_mode == OMAP1_CAM_DMA_CONTIG) { /* * In CONTIG mode, the watchdog is disabled with * successful DMA end of block interrupt, and reenabled * on next frame start. If we get here, there is nothing * to check, we must be out of sync. */ } else { if (buf->sgcount == 2) { /* * If exactly 2 sgbufs from the next sglist have * been programmed into the DMA engine (the * first one already transferred into the DMA * runtime register set, the second one still * in the programming set), then we are in sync. */ goto out; } } dev_notice(dev, "%s: unexpected end of video frame\n", __func__); } else if (it_status & V_UP) { u32 mode; if (pcdev->vb_mode == OMAP1_CAM_DMA_CONTIG) { /* * In CONTIG mode, we need this interrupt every frame * in oredr to reenable our end of frame watchdog. */ mode = CAM_READ_CACHE(pcdev, MODE); } else { /* * In SG mode, the below enabled end of frame watchdog * is kept on permanently, so we can turn this one shot * setup off. */ mode = CAM_READ_CACHE(pcdev, MODE) & ~EN_V_UP; } if (!(mode & EN_V_DOWN)) { /* (re)enable end of frame watchdog interrupt */ mode |= EN_V_DOWN; } CAM_WRITE(pcdev, MODE, mode); goto out; } else { dev_warn(dev, "%s: unhandled camera interrupt, status == %#x\n", __func__, it_status); goto out; } videobuf_done(pcdev, VIDEOBUF_ERROR); out: spin_unlock_irqrestore(&pcdev->lock, flags); return IRQ_HANDLED; } static struct videobuf_queue_ops omap1_videobuf_ops = { .buf_setup = omap1_videobuf_setup, .buf_prepare = omap1_videobuf_prepare, .buf_queue = omap1_videobuf_queue, .buf_release = omap1_videobuf_release, }; /* * SOC Camera host operations */ static void sensor_reset(struct omap1_cam_dev *pcdev, bool reset) { /* apply/release camera sensor reset if requested by platform data */ if (pcdev->pflags & OMAP1_CAMERA_RST_HIGH) CAM_WRITE(pcdev, GPIO, reset); else if (pcdev->pflags & OMAP1_CAMERA_RST_LOW) CAM_WRITE(pcdev, GPIO, !reset); } /* * The following two functions absolutely depend on the fact, that * there can be only one camera on OMAP1 camera sensor interface */ static int omap1_cam_add_device(struct soc_camera_device *icd) { struct soc_camera_host *ici = to_soc_camera_host(icd->parent); struct omap1_cam_dev *pcdev = ici->priv; u32 ctrlclock; if (pcdev->icd) return -EBUSY; clk_enable(pcdev->clk); /* setup sensor clock */ ctrlclock = CAM_READ(pcdev, CTRLCLOCK); ctrlclock &= ~(CAMEXCLK_EN | MCLK_EN | DPLL_EN); CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock); ctrlclock &= ~FOSCMOD_MASK; switch (pcdev->camexclk) { case 6000000: ctrlclock |= CAMEXCLK_EN | FOSCMOD_6MHz; break; case 8000000: ctrlclock |= CAMEXCLK_EN | FOSCMOD_8MHz | DPLL_EN; break; case 9600000: ctrlclock |= CAMEXCLK_EN | FOSCMOD_9_6MHz | DPLL_EN; break; case 12000000: ctrlclock |= CAMEXCLK_EN | FOSCMOD_12MHz; break; case 24000000: ctrlclock |= CAMEXCLK_EN | FOSCMOD_24MHz | DPLL_EN; default: break; } CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock & ~DPLL_EN); /* enable internal clock */ ctrlclock |= MCLK_EN; CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock); sensor_reset(pcdev, false); pcdev->icd = icd; dev_dbg(icd->parent, "OMAP1 Camera driver attached to camera %d\n", icd->devnum); return 0; } static void omap1_cam_remove_device(struct soc_camera_device *icd) { struct soc_camera_host *ici = to_soc_camera_host(icd->parent); struct omap1_cam_dev *pcdev = ici->priv; u32 ctrlclock; BUG_ON(icd != pcdev->icd); suspend_capture(pcdev); disable_capture(pcdev); sensor_reset(pcdev, true); /* disable and release system clocks */ ctrlclock = CAM_READ_CACHE(pcdev, CTRLCLOCK); ctrlclock &= ~(MCLK_EN | DPLL_EN | CAMEXCLK_EN); CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock); ctrlclock = (ctrlclock & ~FOSCMOD_MASK) | FOSCMOD_12MHz; CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock); CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock | MCLK_EN); CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock & ~MCLK_EN); clk_disable(pcdev->clk); pcdev->icd = NULL; dev_dbg(icd->parent, "OMAP1 Camera driver detached from camera %d\n", icd->devnum); } /* Duplicate standard formats based on host capability of byte swapping */ static const struct soc_mbus_lookup omap1_cam_formats[] = { { .code = V4L2_MBUS_FMT_UYVY8_2X8, .fmt = { .fourcc = V4L2_PIX_FMT_YUYV, .name = "YUYV", .bits_per_sample = 8, .packing = SOC_MBUS_PACKING_2X8_PADHI, .order = SOC_MBUS_ORDER_BE, }, }, { .code = V4L2_MBUS_FMT_VYUY8_2X8, .fmt = { .fourcc = V4L2_PIX_FMT_YVYU, .name = "YVYU", .bits_per_sample = 8, .packing = SOC_MBUS_PACKING_2X8_PADHI, .order = SOC_MBUS_ORDER_BE, }, }, { .code = V4L2_MBUS_FMT_YUYV8_2X8, .fmt = { .fourcc = V4L2_PIX_FMT_UYVY, .name = "UYVY", .bits_per_sample = 8, .packing = SOC_MBUS_PACKING_2X8_PADHI, .order = SOC_MBUS_ORDER_BE, }, }, { .code = V4L2_MBUS_FMT_YVYU8_2X8, .fmt = { .fourcc = V4L2_PIX_FMT_VYUY, .name = "VYUY", .bits_per_sample = 8, .packing = SOC_MBUS_PACKING_2X8_PADHI, .order = SOC_MBUS_ORDER_BE, }, }, { .code = V4L2_MBUS_FMT_RGB555_2X8_PADHI_BE, .fmt = { .fourcc = V4L2_PIX_FMT_RGB555, .name = "RGB555", .bits_per_sample = 8, .packing = SOC_MBUS_PACKING_2X8_PADHI, .order = SOC_MBUS_ORDER_BE, }, }, { .code = V4L2_MBUS_FMT_RGB555_2X8_PADHI_LE, .fmt = { .fourcc = V4L2_PIX_FMT_RGB555X, .name = "RGB555X", .bits_per_sample = 8, .packing = SOC_MBUS_PACKING_2X8_PADHI, .order = SOC_MBUS_ORDER_BE, }, }, { .code = V4L2_MBUS_FMT_RGB565_2X8_BE, .fmt = { .fourcc = V4L2_PIX_FMT_RGB565, .name = "RGB565", .bits_per_sample = 8, .packing = SOC_MBUS_PACKING_2X8_PADHI, .order = SOC_MBUS_ORDER_BE, }, }, { .code = V4L2_MBUS_FMT_RGB565_2X8_LE, .fmt = { .fourcc = V4L2_PIX_FMT_RGB565X, .name = "RGB565X", .bits_per_sample = 8, .packing = SOC_MBUS_PACKING_2X8_PADHI, .order = SOC_MBUS_ORDER_BE, }, }, }; static int omap1_cam_get_formats(struct soc_camera_device *icd, unsigned int idx, struct soc_camera_format_xlate *xlate) { struct v4l2_subdev *sd = soc_camera_to_subdev(icd); struct device *dev = icd->parent; int formats = 0, ret; enum v4l2_mbus_pixelcode code; const struct soc_mbus_pixelfmt *fmt; ret = v4l2_subdev_call(sd, video, enum_mbus_fmt, idx, &code); if (ret < 0) /* No more formats */ return 0; fmt = soc_mbus_get_fmtdesc(code); if (!fmt) { dev_warn(dev, "%s: unsupported format code #%d: %d\n", __func__, idx, code); return 0; } /* Check support for the requested bits-per-sample */ if (fmt->bits_per_sample != 8) return 0; switch (code) { case V4L2_MBUS_FMT_YUYV8_2X8: case V4L2_MBUS_FMT_YVYU8_2X8: case V4L2_MBUS_FMT_UYVY8_2X8: case V4L2_MBUS_FMT_VYUY8_2X8: case V4L2_MBUS_FMT_RGB555_2X8_PADHI_BE: case V4L2_MBUS_FMT_RGB555_2X8_PADHI_LE: case V4L2_MBUS_FMT_RGB565_2X8_BE: case V4L2_MBUS_FMT_RGB565_2X8_LE: formats++; if (xlate) { xlate->host_fmt = soc_mbus_find_fmtdesc(code, omap1_cam_formats, ARRAY_SIZE(omap1_cam_formats)); xlate->code = code; xlate++; dev_dbg(dev, "%s: providing format %s as byte swapped code #%d\n", __func__, xlate->host_fmt->name, code); } default: if (xlate) dev_dbg(dev, "%s: providing format %s in pass-through mode\n", __func__, fmt->name); } formats++; if (xlate) { xlate->host_fmt = fmt; xlate->code = code; xlate++; } return formats; } static bool is_dma_aligned(s32 bytes_per_line, unsigned int height, enum omap1_cam_vb_mode vb_mode) { int size = bytes_per_line * height; return IS_ALIGNED(bytes_per_line, DMA_ELEMENT_SIZE) && IS_ALIGNED(size, DMA_FRAME_SIZE(vb_mode) * DMA_ELEMENT_SIZE); } static int dma_align(int *width, int *height, const struct soc_mbus_pixelfmt *fmt, enum omap1_cam_vb_mode vb_mode, bool enlarge) { s32 bytes_per_line = soc_mbus_bytes_per_line(*width, fmt); if (bytes_per_line < 0) return bytes_per_line; if (!is_dma_aligned(bytes_per_line, *height, vb_mode)) { unsigned int pxalign = __fls(bytes_per_line / *width); unsigned int salign = DMA_FRAME_SHIFT(vb_mode) + DMA_ELEMENT_SHIFT - pxalign; unsigned int incr = enlarge << salign; v4l_bound_align_image(width, 1, *width + incr, 0, height, 1, *height + incr, 0, salign); return 0; } return 1; } #define subdev_call_with_sense(pcdev, dev, icd, sd, function, args...) \ ({ \ struct soc_camera_sense sense = { \ .master_clock = pcdev->camexclk, \ .pixel_clock_max = 0, \ }; \ int __ret; \ \ if (pcdev->pdata) \ sense.pixel_clock_max = pcdev->pdata->lclk_khz_max * 1000; \ icd->sense = &sense; \ __ret = v4l2_subdev_call(sd, video, function, ##args); \ icd->sense = NULL; \ \ if (sense.flags & SOCAM_SENSE_PCLK_CHANGED) { \ if (sense.pixel_clock > sense.pixel_clock_max) { \ dev_err(dev, \ "%s: pixel clock %lu set by the camera too high!\n", \ __func__, sense.pixel_clock); \ __ret = -EINVAL; \ } \ } \ __ret; \ }) static int set_mbus_format(struct omap1_cam_dev *pcdev, struct device *dev, struct soc_camera_device *icd, struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *mf, const struct soc_camera_format_xlate *xlate) { s32 bytes_per_line; int ret = subdev_call_with_sense(pcdev, dev, icd, sd, s_mbus_fmt, mf); if (ret < 0) { dev_err(dev, "%s: s_mbus_fmt failed\n", __func__); return ret; } if (mf->code != xlate->code) { dev_err(dev, "%s: unexpected pixel code change\n", __func__); return -EINVAL; } bytes_per_line = soc_mbus_bytes_per_line(mf->width, xlate->host_fmt); if (bytes_per_line < 0) { dev_err(dev, "%s: soc_mbus_bytes_per_line() failed\n", __func__); return bytes_per_line; } if (!is_dma_aligned(bytes_per_line, mf->height, pcdev->vb_mode)) { dev_err(dev, "%s: resulting geometry %ux%u not DMA aligned\n", __func__, mf->width, mf->height); return -EINVAL; } return 0; } static int omap1_cam_set_crop(struct soc_camera_device *icd, struct v4l2_crop *crop) { struct v4l2_rect *rect = &crop->c; const struct soc_camera_format_xlate *xlate = icd->current_fmt; struct v4l2_subdev *sd = soc_camera_to_subdev(icd); struct device *dev = icd->parent; struct soc_camera_host *ici = to_soc_camera_host(dev); struct omap1_cam_dev *pcdev = ici->priv; struct v4l2_mbus_framefmt mf; int ret; ret = subdev_call_with_sense(pcdev, dev, icd, sd, s_crop, crop); if (ret < 0) { dev_warn(dev, "%s: failed to crop to %ux%u@%u:%u\n", __func__, rect->width, rect->height, rect->left, rect->top); return ret; } ret = v4l2_subdev_call(sd, video, g_mbus_fmt, &mf); if (ret < 0) { dev_warn(dev, "%s: failed to fetch current format\n", __func__); return ret; } ret = dma_align(&mf.width, &mf.height, xlate->host_fmt, pcdev->vb_mode, false); if (ret < 0) { dev_err(dev, "%s: failed to align %ux%u %s with DMA\n", __func__, mf.width, mf.height, xlate->host_fmt->name); return ret; } if (!ret) { /* sensor returned geometry not DMA aligned, trying to fix */ ret = set_mbus_format(pcdev, dev, icd, sd, &mf, xlate); if (ret < 0) { dev_err(dev, "%s: failed to set format\n", __func__); return ret; } } icd->user_width = mf.width; icd->user_height = mf.height; return 0; } static int omap1_cam_set_fmt(struct soc_camera_device *icd, struct v4l2_format *f) { struct v4l2_subdev *sd = soc_camera_to_subdev(icd); const struct soc_camera_format_xlate *xlate; struct device *dev = icd->parent; struct soc_camera_host *ici = to_soc_camera_host(dev); struct omap1_cam_dev *pcdev = ici->priv; struct v4l2_pix_format *pix = &f->fmt.pix; struct v4l2_mbus_framefmt mf; int ret; xlate = soc_camera_xlate_by_fourcc(icd, pix->pixelformat); if (!xlate) { dev_warn(dev, "%s: format %#x not found\n", __func__, pix->pixelformat); return -EINVAL; } mf.width = pix->width; mf.height = pix->height; mf.field = pix->field; mf.colorspace = pix->colorspace; mf.code = xlate->code; ret = dma_align(&mf.width, &mf.height, xlate->host_fmt, pcdev->vb_mode, true); if (ret < 0) { dev_err(dev, "%s: failed to align %ux%u %s with DMA\n", __func__, pix->width, pix->height, xlate->host_fmt->name); return ret; } ret = set_mbus_format(pcdev, dev, icd, sd, &mf, xlate); if (ret < 0) { dev_err(dev, "%s: failed to set format\n", __func__); return ret; } pix->width = mf.width; pix->height = mf.height; pix->field = mf.field; pix->colorspace = mf.colorspace; icd->current_fmt = xlate; return 0; } static int omap1_cam_try_fmt(struct soc_camera_device *icd, struct v4l2_format *f) { struct v4l2_subdev *sd = soc_camera_to_subdev(icd); const struct soc_camera_format_xlate *xlate; struct v4l2_pix_format *pix = &f->fmt.pix; struct v4l2_mbus_framefmt mf; int ret; /* TODO: limit to mx1 hardware capabilities */ xlate = soc_camera_xlate_by_fourcc(icd, pix->pixelformat); if (!xlate) { dev_warn(icd->parent, "Format %#x not found\n", pix->pixelformat); return -EINVAL; } mf.width = pix->width; mf.height = pix->height; mf.field = pix->field; mf.colorspace = pix->colorspace; mf.code = xlate->code; /* limit to sensor capabilities */ ret = v4l2_subdev_call(sd, video, try_mbus_fmt, &mf); if (ret < 0) return ret; pix->width = mf.width; pix->height = mf.height; pix->field = mf.field; pix->colorspace = mf.colorspace; return 0; } static bool sg_mode; /* * Local mmap_mapper wrapper, * used for detecting videobuf-dma-contig buffer allocation failures * and switching to videobuf-dma-sg automatically for future attempts. */ static int omap1_cam_mmap_mapper(struct videobuf_queue *q, struct videobuf_buffer *buf, struct vm_area_struct *vma) { struct soc_camera_device *icd = q->priv_data; struct soc_camera_host *ici = to_soc_camera_host(icd->parent); struct omap1_cam_dev *pcdev = ici->priv; int ret; ret = pcdev->mmap_mapper(q, buf, vma); if (ret == -ENOMEM) sg_mode = true; return ret; } static void omap1_cam_init_videobuf(struct videobuf_queue *q, struct soc_camera_device *icd) { struct soc_camera_host *ici = to_soc_camera_host(icd->parent); struct omap1_cam_dev *pcdev = ici->priv; if (!sg_mode) videobuf_queue_dma_contig_init(q, &omap1_videobuf_ops, icd->parent, &pcdev->lock, V4L2_BUF_TYPE_VIDEO_CAPTURE, V4L2_FIELD_NONE, sizeof(struct omap1_cam_buf), icd, &icd->video_lock); else videobuf_queue_sg_init(q, &omap1_videobuf_ops, icd->parent, &pcdev->lock, V4L2_BUF_TYPE_VIDEO_CAPTURE, V4L2_FIELD_NONE, sizeof(struct omap1_cam_buf), icd, &icd->video_lock); /* use videobuf mode (auto)selected with the module parameter */ pcdev->vb_mode = sg_mode ? OMAP1_CAM_DMA_SG : OMAP1_CAM_DMA_CONTIG; /* * Ensure we substitute the videobuf-dma-contig version of the * mmap_mapper() callback with our own wrapper, used for switching * automatically to videobuf-dma-sg on buffer allocation failure. */ if (!sg_mode && q->int_ops->mmap_mapper != omap1_cam_mmap_mapper) { pcdev->mmap_mapper = q->int_ops->mmap_mapper; q->int_ops->mmap_mapper = omap1_cam_mmap_mapper; } } static int omap1_cam_reqbufs(struct soc_camera_device *icd, struct v4l2_requestbuffers *p) { int i; /* * This is for locking debugging only. I removed spinlocks and now I * check whether .prepare is ever called on a linked buffer, or whether * a dma IRQ can occur for an in-work or unlinked buffer. Until now * it hadn't triggered */ for (i = 0; i < p->count; i++) { struct omap1_cam_buf *buf = container_of(icd->vb_vidq.bufs[i], struct omap1_cam_buf, vb); buf->inwork = 0; INIT_LIST_HEAD(&buf->vb.queue); } return 0; } static int omap1_cam_querycap(struct soc_camera_host *ici, struct v4l2_capability *cap) { /* cap->name is set by the friendly caller:-> */ strlcpy(cap->card, "OMAP1 Camera", sizeof(cap->card)); cap->capabilities = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING; return 0; } static int omap1_cam_set_bus_param(struct soc_camera_device *icd) { struct v4l2_subdev *sd = soc_camera_to_subdev(icd); struct device *dev = icd->parent; struct soc_camera_host *ici = to_soc_camera_host(dev); struct omap1_cam_dev *pcdev = ici->priv; u32 pixfmt = icd->current_fmt->host_fmt->fourcc; const struct soc_camera_format_xlate *xlate; const struct soc_mbus_pixelfmt *fmt; struct v4l2_mbus_config cfg = {.type = V4L2_MBUS_PARALLEL,}; unsigned long common_flags; u32 ctrlclock, mode; int ret; ret = v4l2_subdev_call(sd, video, g_mbus_config, &cfg); if (!ret) { common_flags = soc_mbus_config_compatible(&cfg, SOCAM_BUS_FLAGS); if (!common_flags) { dev_warn(dev, "Flags incompatible: camera 0x%x, host 0x%x\n", cfg.flags, SOCAM_BUS_FLAGS); return -EINVAL; } } else if (ret != -ENOIOCTLCMD) { return ret; } else { common_flags = SOCAM_BUS_FLAGS; } /* Make choices, possibly based on platform configuration */ if ((common_flags & V4L2_MBUS_PCLK_SAMPLE_RISING) && (common_flags & V4L2_MBUS_PCLK_SAMPLE_FALLING)) { if (!pcdev->pdata || pcdev->pdata->flags & OMAP1_CAMERA_LCLK_RISING) common_flags &= ~V4L2_MBUS_PCLK_SAMPLE_FALLING; else common_flags &= ~V4L2_MBUS_PCLK_SAMPLE_RISING; } cfg.flags = common_flags; ret = v4l2_subdev_call(sd, video, s_mbus_config, &cfg); if (ret < 0 && ret != -ENOIOCTLCMD) { dev_dbg(dev, "camera s_mbus_config(0x%lx) returned %d\n", common_flags, ret); return ret; } ctrlclock = CAM_READ_CACHE(pcdev, CTRLCLOCK); if (ctrlclock & LCLK_EN) CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock & ~LCLK_EN); if (common_flags & V4L2_MBUS_PCLK_SAMPLE_RISING) { dev_dbg(dev, "CTRLCLOCK_REG |= POLCLK\n"); ctrlclock |= POLCLK; } else { dev_dbg(dev, "CTRLCLOCK_REG &= ~POLCLK\n"); ctrlclock &= ~POLCLK; } CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock & ~LCLK_EN); if (ctrlclock & LCLK_EN) CAM_WRITE(pcdev, CTRLCLOCK, ctrlclock); /* select bus endianess */ xlate = soc_camera_xlate_by_fourcc(icd, pixfmt); fmt = xlate->host_fmt; mode = CAM_READ(pcdev, MODE) & ~(RAZ_FIFO | IRQ_MASK | DMA); if (fmt->order == SOC_MBUS_ORDER_LE) { dev_dbg(dev, "MODE_REG &= ~ORDERCAMD\n"); CAM_WRITE(pcdev, MODE, mode & ~ORDERCAMD); } else { dev_dbg(dev, "MODE_REG |= ORDERCAMD\n"); CAM_WRITE(pcdev, MODE, mode | ORDERCAMD); } return 0; } static unsigned int omap1_cam_poll(struct file *file, poll_table *pt) { struct soc_camera_device *icd = file->private_data; struct omap1_cam_buf *buf; buf = list_entry(icd->vb_vidq.stream.next, struct omap1_cam_buf, vb.stream); poll_wait(file, &buf->vb.done, pt); if (buf->vb.state == VIDEOBUF_DONE || buf->vb.state == VIDEOBUF_ERROR) return POLLIN | POLLRDNORM; return 0; } static struct soc_camera_host_ops omap1_host_ops = { .owner = THIS_MODULE, .add = omap1_cam_add_device, .remove = omap1_cam_remove_device, .get_formats = omap1_cam_get_formats, .set_crop = omap1_cam_set_crop, .set_fmt = omap1_cam_set_fmt, .try_fmt = omap1_cam_try_fmt, .init_videobuf = omap1_cam_init_videobuf, .reqbufs = omap1_cam_reqbufs, .querycap = omap1_cam_querycap, .set_bus_param = omap1_cam_set_bus_param, .poll = omap1_cam_poll, }; static int __init omap1_cam_probe(struct platform_device *pdev) { struct omap1_cam_dev *pcdev; struct resource *res; struct clk *clk; void __iomem *base; unsigned int irq; int err = 0; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq = platform_get_irq(pdev, 0); if (!res || (int)irq <= 0) { err = -ENODEV; goto exit; } clk = clk_get(&pdev->dev, "armper_ck"); if (IS_ERR(clk)) { err = PTR_ERR(clk); goto exit; } pcdev = kzalloc(sizeof(*pcdev) + resource_size(res), GFP_KERNEL); if (!pcdev) { dev_err(&pdev->dev, "Could not allocate pcdev\n"); err = -ENOMEM; goto exit_put_clk; } pcdev->res = res; pcdev->clk = clk; pcdev->pdata = pdev->dev.platform_data; if (pcdev->pdata) { pcdev->pflags = pcdev->pdata->flags; pcdev->camexclk = pcdev->pdata->camexclk_khz * 1000; } switch (pcdev->camexclk) { case 6000000: case 8000000: case 9600000: case 12000000: case 24000000: break; default: /* pcdev->camexclk != 0 => pcdev->pdata != NULL */ dev_warn(&pdev->dev, "Incorrect sensor clock frequency %ld kHz, " "should be one of 0, 6, 8, 9.6, 12 or 24 MHz, " "please correct your platform data\n", pcdev->pdata->camexclk_khz); pcdev->camexclk = 0; case 0: dev_info(&pdev->dev, "Not providing sensor clock\n"); } INIT_LIST_HEAD(&pcdev->capture); spin_lock_init(&pcdev->lock); /* * Request the region. */ if (!request_mem_region(res->start, resource_size(res), DRIVER_NAME)) { err = -EBUSY; goto exit_kfree; } base = ioremap(res->start, resource_size(res)); if (!base) { err = -ENOMEM; goto exit_release; } pcdev->irq = irq; pcdev->base = base; sensor_reset(pcdev, true); err = omap_request_dma(OMAP_DMA_CAMERA_IF_RX, DRIVER_NAME, dma_isr, (void *)pcdev, &pcdev->dma_ch); if (err < 0) { dev_err(&pdev->dev, "Can't request DMA for OMAP1 Camera\n"); err = -EBUSY; goto exit_iounmap; } dev_dbg(&pdev->dev, "got DMA channel %d\n", pcdev->dma_ch); /* preconfigure DMA */ omap_set_dma_src_params(pcdev->dma_ch, OMAP_DMA_PORT_TIPB, OMAP_DMA_AMODE_CONSTANT, res->start + REG_CAMDATA, 0, 0); omap_set_dma_dest_burst_mode(pcdev->dma_ch, OMAP_DMA_DATA_BURST_4); /* setup DMA autoinitialization */ omap_dma_link_lch(pcdev->dma_ch, pcdev->dma_ch); err = request_irq(pcdev->irq, cam_isr, 0, DRIVER_NAME, pcdev); if (err) { dev_err(&pdev->dev, "Camera interrupt register failed\n"); goto exit_free_dma; } pcdev->soc_host.drv_name = DRIVER_NAME; pcdev->soc_host.ops = &omap1_host_ops; pcdev->soc_host.priv = pcdev; pcdev->soc_host.v4l2_dev.dev = &pdev->dev; pcdev->soc_host.nr = pdev->id; err = soc_camera_host_register(&pcdev->soc_host); if (err) goto exit_free_irq; dev_info(&pdev->dev, "OMAP1 Camera Interface driver loaded\n"); return 0; exit_free_irq: free_irq(pcdev->irq, pcdev); exit_free_dma: omap_free_dma(pcdev->dma_ch); exit_iounmap: iounmap(base); exit_release: release_mem_region(res->start, resource_size(res)); exit_kfree: kfree(pcdev); exit_put_clk: clk_put(clk); exit: return err; } static int __exit omap1_cam_remove(struct platform_device *pdev) { struct soc_camera_host *soc_host = to_soc_camera_host(&pdev->dev); struct omap1_cam_dev *pcdev = container_of(soc_host, struct omap1_cam_dev, soc_host); struct resource *res; free_irq(pcdev->irq, pcdev); omap_free_dma(pcdev->dma_ch); soc_camera_host_unregister(soc_host); iounmap(pcdev->base); res = pcdev->res; release_mem_region(res->start, resource_size(res)); clk_put(pcdev->clk); kfree(pcdev); dev_info(&pdev->dev, "OMAP1 Camera Interface driver unloaded\n"); return 0; } static struct platform_driver omap1_cam_driver = { .driver = { .name = DRIVER_NAME, }, .probe = omap1_cam_probe, .remove = __exit_p(omap1_cam_remove), }; module_platform_driver(omap1_cam_driver); module_param(sg_mode, bool, 0644); MODULE_PARM_DESC(sg_mode, "videobuf mode, 0: dma-contig (default), 1: dma-sg"); MODULE_DESCRIPTION("OMAP1 Camera Interface driver"); MODULE_AUTHOR("Janusz Krzysztofik <jkrzyszt@tis.icnet.pl>"); MODULE_LICENSE("GPL v2"); MODULE_VERSION(DRIVER_VERSION); MODULE_ALIAS("platform:" DRIVER_NAME);