/* * Freescale GPMI NAND Flash Driver * * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. * Copyright (C) 2008 Embedded Alley Solutions, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include <linux/clk.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/mtd/gpmi-nand.h> #include <linux/mtd/partitions.h> #include "gpmi-nand.h" /* add our owner bbt descriptor */ static uint8_t scan_ff_pattern[] = { 0xff }; static struct nand_bbt_descr gpmi_bbt_descr = { .options = 0, .offs = 0, .len = 1, .pattern = scan_ff_pattern }; /* We will use all the (page + OOB). */ static struct nand_ecclayout gpmi_hw_ecclayout = { .eccbytes = 0, .eccpos = { 0, }, .oobfree = { {.offset = 0, .length = 0} } }; static irqreturn_t bch_irq(int irq, void *cookie) { struct gpmi_nand_data *this = cookie; gpmi_clear_bch(this); complete(&this->bch_done); return IRQ_HANDLED; } /* * Calculate the ECC strength by hand: * E : The ECC strength. * G : the length of Galois Field. * N : The chunk count of per page. * O : the oobsize of the NAND chip. * M : the metasize of per page. * * The formula is : * E * G * N * ------------ <= (O - M) * 8 * * So, we get E by: * (O - M) * 8 * E <= ------------- * G * N */ static inline int get_ecc_strength(struct gpmi_nand_data *this) { struct bch_geometry *geo = &this->bch_geometry; struct mtd_info *mtd = &this->mtd; int ecc_strength; ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) / (geo->gf_len * geo->ecc_chunk_count); /* We need the minor even number. */ return round_down(ecc_strength, 2); } int common_nfc_set_geometry(struct gpmi_nand_data *this) { struct bch_geometry *geo = &this->bch_geometry; struct mtd_info *mtd = &this->mtd; unsigned int metadata_size; unsigned int status_size; unsigned int block_mark_bit_offset; /* * The size of the metadata can be changed, though we set it to 10 * bytes now. But it can't be too large, because we have to save * enough space for BCH. */ geo->metadata_size = 10; /* The default for the length of Galois Field. */ geo->gf_len = 13; /* The default for chunk size. There is no oobsize greater then 512. */ geo->ecc_chunk_size = 512; while (geo->ecc_chunk_size < mtd->oobsize) geo->ecc_chunk_size *= 2; /* keep C >= O */ geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; /* We use the same ECC strength for all chunks. */ geo->ecc_strength = get_ecc_strength(this); if (!geo->ecc_strength) { pr_err("We get a wrong ECC strength.\n"); return -EINVAL; } geo->page_size = mtd->writesize + mtd->oobsize; geo->payload_size = mtd->writesize; /* * The auxiliary buffer contains the metadata and the ECC status. The * metadata is padded to the nearest 32-bit boundary. The ECC status * contains one byte for every ECC chunk, and is also padded to the * nearest 32-bit boundary. */ metadata_size = ALIGN(geo->metadata_size, 4); status_size = ALIGN(geo->ecc_chunk_count, 4); geo->auxiliary_size = metadata_size + status_size; geo->auxiliary_status_offset = metadata_size; if (!this->swap_block_mark) return 0; /* * We need to compute the byte and bit offsets of * the physical block mark within the ECC-based view of the page. * * NAND chip with 2K page shows below: * (Block Mark) * | | * | D | * |<---->| * V V * +---+----------+-+----------+-+----------+-+----------+-+ * | M | data |E| data |E| data |E| data |E| * +---+----------+-+----------+-+----------+-+----------+-+ * * The position of block mark moves forward in the ECC-based view * of page, and the delta is: * * E * G * (N - 1) * D = (---------------- + M) * 8 * * With the formula to compute the ECC strength, and the condition * : C >= O (C is the ecc chunk size) * * It's easy to deduce to the following result: * * E * G (O - M) C - M C - M * ----------- <= ------- <= -------- < --------- * 8 N N (N - 1) * * So, we get: * * E * G * (N - 1) * D = (---------------- + M) < C * 8 * * The above inequality means the position of block mark * within the ECC-based view of the page is still in the data chunk, * and it's NOT in the ECC bits of the chunk. * * Use the following to compute the bit position of the * physical block mark within the ECC-based view of the page: * (page_size - D) * 8 * * --Huang Shijie */ block_mark_bit_offset = mtd->writesize * 8 - (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) + geo->metadata_size * 8); geo->block_mark_byte_offset = block_mark_bit_offset / 8; geo->block_mark_bit_offset = block_mark_bit_offset % 8; return 0; } struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) { int chipnr = this->current_chip; return this->dma_chans[chipnr]; } /* Can we use the upper's buffer directly for DMA? */ void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr) { struct scatterlist *sgl = &this->data_sgl; int ret; this->direct_dma_map_ok = true; /* first try to map the upper buffer directly */ sg_init_one(sgl, this->upper_buf, this->upper_len); ret = dma_map_sg(this->dev, sgl, 1, dr); if (ret == 0) { /* We have to use our own DMA buffer. */ sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE); if (dr == DMA_TO_DEVICE) memcpy(this->data_buffer_dma, this->upper_buf, this->upper_len); ret = dma_map_sg(this->dev, sgl, 1, dr); if (ret == 0) pr_err("map failed.\n"); this->direct_dma_map_ok = false; } } /* This will be called after the DMA operation is finished. */ static void dma_irq_callback(void *param) { struct gpmi_nand_data *this = param; struct completion *dma_c = &this->dma_done; complete(dma_c); switch (this->dma_type) { case DMA_FOR_COMMAND: dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE); break; case DMA_FOR_READ_DATA: dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE); if (this->direct_dma_map_ok == false) memcpy(this->upper_buf, this->data_buffer_dma, this->upper_len); break; case DMA_FOR_WRITE_DATA: dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE); break; case DMA_FOR_READ_ECC_PAGE: case DMA_FOR_WRITE_ECC_PAGE: /* We have to wait the BCH interrupt to finish. */ break; default: pr_err("in wrong DMA operation.\n"); } } int start_dma_without_bch_irq(struct gpmi_nand_data *this, struct dma_async_tx_descriptor *desc) { struct completion *dma_c = &this->dma_done; int err; init_completion(dma_c); desc->callback = dma_irq_callback; desc->callback_param = this; dmaengine_submit(desc); /* Wait for the interrupt from the DMA block. */ err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000)); if (!err) { pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type); gpmi_dump_info(this); return -ETIMEDOUT; } return 0; } /* * This function is used in BCH reading or BCH writing pages. * It will wait for the BCH interrupt as long as ONE second. * Actually, we must wait for two interrupts : * [1] firstly the DMA interrupt and * [2] secondly the BCH interrupt. */ int start_dma_with_bch_irq(struct gpmi_nand_data *this, struct dma_async_tx_descriptor *desc) { struct completion *bch_c = &this->bch_done; int err; /* Prepare to receive an interrupt from the BCH block. */ init_completion(bch_c); /* start the DMA */ start_dma_without_bch_irq(this, desc); /* Wait for the interrupt from the BCH block. */ err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000)); if (!err) { pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type); gpmi_dump_info(this); return -ETIMEDOUT; } return 0; } static int __devinit acquire_register_block(struct gpmi_nand_data *this, const char *res_name) { struct platform_device *pdev = this->pdev; struct resources *res = &this->resources; struct resource *r; void *p; r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); if (!r) { pr_err("Can't get resource for %s\n", res_name); return -ENXIO; } p = ioremap(r->start, resource_size(r)); if (!p) { pr_err("Can't remap %s\n", res_name); return -ENOMEM; } if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) res->gpmi_regs = p; else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) res->bch_regs = p; else pr_err("unknown resource name : %s\n", res_name); return 0; } static void release_register_block(struct gpmi_nand_data *this) { struct resources *res = &this->resources; if (res->gpmi_regs) iounmap(res->gpmi_regs); if (res->bch_regs) iounmap(res->bch_regs); res->gpmi_regs = NULL; res->bch_regs = NULL; } static int __devinit acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) { struct platform_device *pdev = this->pdev; struct resources *res = &this->resources; const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; struct resource *r; int err; r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); if (!r) { pr_err("Can't get resource for %s\n", res_name); return -ENXIO; } err = request_irq(r->start, irq_h, 0, res_name, this); if (err) { pr_err("Can't own %s\n", res_name); return err; } res->bch_low_interrupt = r->start; res->bch_high_interrupt = r->end; return 0; } static void release_bch_irq(struct gpmi_nand_data *this) { struct resources *res = &this->resources; int i = res->bch_low_interrupt; for (; i <= res->bch_high_interrupt; i++) free_irq(i, this); } static bool gpmi_dma_filter(struct dma_chan *chan, void *param) { struct gpmi_nand_data *this = param; struct resource *r = this->private; if (!mxs_dma_is_apbh(chan)) return false; /* * only catch the GPMI dma channels : * for mx23 : MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3 * (These four channels share the same IRQ!) * * for mx28 : MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7 * (These eight channels share the same IRQ!) */ if (r->start <= chan->chan_id && chan->chan_id <= r->end) { chan->private = &this->dma_data; return true; } return false; } static void release_dma_channels(struct gpmi_nand_data *this) { unsigned int i; for (i = 0; i < DMA_CHANS; i++) if (this->dma_chans[i]) { dma_release_channel(this->dma_chans[i]); this->dma_chans[i] = NULL; } } static int __devinit acquire_dma_channels(struct gpmi_nand_data *this) { struct platform_device *pdev = this->pdev; struct gpmi_nand_platform_data *pdata = this->pdata; struct resources *res = &this->resources; struct resource *r, *r_dma; unsigned int i; r = platform_get_resource_byname(pdev, IORESOURCE_DMA, GPMI_NAND_DMA_CHANNELS_RES_NAME); r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ, GPMI_NAND_DMA_INTERRUPT_RES_NAME); if (!r || !r_dma) { pr_err("Can't get resource for DMA\n"); return -ENXIO; } /* used in gpmi_dma_filter() */ this->private = r; for (i = r->start; i <= r->end; i++) { struct dma_chan *dma_chan; dma_cap_mask_t mask; if (i - r->start >= pdata->max_chip_count) break; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); /* get the DMA interrupt */ if (r_dma->start == r_dma->end) { /* only register the first. */ if (i == r->start) this->dma_data.chan_irq = r_dma->start; else this->dma_data.chan_irq = NO_IRQ; } else this->dma_data.chan_irq = r_dma->start + (i - r->start); dma_chan = dma_request_channel(mask, gpmi_dma_filter, this); if (!dma_chan) goto acquire_err; /* fill the first empty item */ this->dma_chans[i - r->start] = dma_chan; } res->dma_low_channel = r->start; res->dma_high_channel = i; return 0; acquire_err: pr_err("Can't acquire DMA channel %u\n", i); release_dma_channels(this); return -EINVAL; } static int __devinit acquire_resources(struct gpmi_nand_data *this) { struct resources *res = &this->resources; int ret; ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); if (ret) goto exit_regs; ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); if (ret) goto exit_regs; ret = acquire_bch_irq(this, bch_irq); if (ret) goto exit_regs; ret = acquire_dma_channels(this); if (ret) goto exit_dma_channels; res->clock = clk_get(&this->pdev->dev, NULL); if (IS_ERR(res->clock)) { pr_err("can not get the clock\n"); ret = -ENOENT; goto exit_clock; } return 0; exit_clock: release_dma_channels(this); exit_dma_channels: release_bch_irq(this); exit_regs: release_register_block(this); return ret; } static void release_resources(struct gpmi_nand_data *this) { struct resources *r = &this->resources; clk_put(r->clock); release_register_block(this); release_bch_irq(this); release_dma_channels(this); } static int __devinit init_hardware(struct gpmi_nand_data *this) { int ret; /* * This structure contains the "safe" GPMI timing that should succeed * with any NAND Flash device * (although, with less-than-optimal performance). */ struct nand_timing safe_timing = { .data_setup_in_ns = 80, .data_hold_in_ns = 60, .address_setup_in_ns = 25, .gpmi_sample_delay_in_ns = 6, .tREA_in_ns = -1, .tRLOH_in_ns = -1, .tRHOH_in_ns = -1, }; /* Initialize the hardwares. */ ret = gpmi_init(this); if (ret) return ret; this->timing = safe_timing; return 0; } static int read_page_prepare(struct gpmi_nand_data *this, void *destination, unsigned length, void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, void **use_virt, dma_addr_t *use_phys) { struct device *dev = this->dev; if (virt_addr_valid(destination)) { dma_addr_t dest_phys; dest_phys = dma_map_single(dev, destination, length, DMA_FROM_DEVICE); if (dma_mapping_error(dev, dest_phys)) { if (alt_size < length) { pr_err("Alternate buffer is too small\n"); return -ENOMEM; } goto map_failed; } *use_virt = destination; *use_phys = dest_phys; this->direct_dma_map_ok = true; return 0; } map_failed: *use_virt = alt_virt; *use_phys = alt_phys; this->direct_dma_map_ok = false; return 0; } static inline void read_page_end(struct gpmi_nand_data *this, void *destination, unsigned length, void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, void *used_virt, dma_addr_t used_phys) { if (this->direct_dma_map_ok) dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE); } static inline void read_page_swap_end(struct gpmi_nand_data *this, void *destination, unsigned length, void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, void *used_virt, dma_addr_t used_phys) { if (!this->direct_dma_map_ok) memcpy(destination, alt_virt, length); } static int send_page_prepare(struct gpmi_nand_data *this, const void *source, unsigned length, void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, const void **use_virt, dma_addr_t *use_phys) { struct device *dev = this->dev; if (virt_addr_valid(source)) { dma_addr_t source_phys; source_phys = dma_map_single(dev, (void *)source, length, DMA_TO_DEVICE); if (dma_mapping_error(dev, source_phys)) { if (alt_size < length) { pr_err("Alternate buffer is too small\n"); return -ENOMEM; } goto map_failed; } *use_virt = source; *use_phys = source_phys; return 0; } map_failed: /* * Copy the content of the source buffer into the alternate * buffer and set up the return values accordingly. */ memcpy(alt_virt, source, length); *use_virt = alt_virt; *use_phys = alt_phys; return 0; } static void send_page_end(struct gpmi_nand_data *this, const void *source, unsigned length, void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, const void *used_virt, dma_addr_t used_phys) { struct device *dev = this->dev; if (used_virt == source) dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE); } static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) { struct device *dev = this->dev; if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt)) dma_free_coherent(dev, this->page_buffer_size, this->page_buffer_virt, this->page_buffer_phys); kfree(this->cmd_buffer); kfree(this->data_buffer_dma); this->cmd_buffer = NULL; this->data_buffer_dma = NULL; this->page_buffer_virt = NULL; this->page_buffer_size = 0; } /* Allocate the DMA buffers */ static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) { struct bch_geometry *geo = &this->bch_geometry; struct device *dev = this->dev; /* [1] Allocate a command buffer. PAGE_SIZE is enough. */ this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA); if (this->cmd_buffer == NULL) goto error_alloc; /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */ this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA); if (this->data_buffer_dma == NULL) goto error_alloc; /* * [3] Allocate the page buffer. * * Both the payload buffer and the auxiliary buffer must appear on * 32-bit boundaries. We presume the size of the payload buffer is a * power of two and is much larger than four, which guarantees the * auxiliary buffer will appear on a 32-bit boundary. */ this->page_buffer_size = geo->payload_size + geo->auxiliary_size; this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size, &this->page_buffer_phys, GFP_DMA); if (!this->page_buffer_virt) goto error_alloc; /* Slice up the page buffer. */ this->payload_virt = this->page_buffer_virt; this->payload_phys = this->page_buffer_phys; this->auxiliary_virt = this->payload_virt + geo->payload_size; this->auxiliary_phys = this->payload_phys + geo->payload_size; return 0; error_alloc: gpmi_free_dma_buffer(this); pr_err("allocate DMA buffer ret!!\n"); return -ENOMEM; } static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) { struct nand_chip *chip = mtd->priv; struct gpmi_nand_data *this = chip->priv; int ret; /* * Every operation begins with a command byte and a series of zero or * more address bytes. These are distinguished by either the Address * Latch Enable (ALE) or Command Latch Enable (CLE) signals being * asserted. When MTD is ready to execute the command, it will deassert * both latch enables. * * Rather than run a separate DMA operation for every single byte, we * queue them up and run a single DMA operation for the entire series * of command and data bytes. NAND_CMD_NONE means the END of the queue. */ if ((ctrl & (NAND_ALE | NAND_CLE))) { if (data != NAND_CMD_NONE) this->cmd_buffer[this->command_length++] = data; return; } if (!this->command_length) return; ret = gpmi_send_command(this); if (ret) pr_err("Chip: %u, Error %d\n", this->current_chip, ret); this->command_length = 0; } static int gpmi_dev_ready(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct gpmi_nand_data *this = chip->priv; return gpmi_is_ready(this, this->current_chip); } static void gpmi_select_chip(struct mtd_info *mtd, int chipnr) { struct nand_chip *chip = mtd->priv; struct gpmi_nand_data *this = chip->priv; if ((this->current_chip < 0) && (chipnr >= 0)) gpmi_begin(this); else if ((this->current_chip >= 0) && (chipnr < 0)) gpmi_end(this); this->current_chip = chipnr; } static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct nand_chip *chip = mtd->priv; struct gpmi_nand_data *this = chip->priv; pr_debug("len is %d\n", len); this->upper_buf = buf; this->upper_len = len; gpmi_read_data(this); } static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct nand_chip *chip = mtd->priv; struct gpmi_nand_data *this = chip->priv; pr_debug("len is %d\n", len); this->upper_buf = (uint8_t *)buf; this->upper_len = len; gpmi_send_data(this); } static uint8_t gpmi_read_byte(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct gpmi_nand_data *this = chip->priv; uint8_t *buf = this->data_buffer_dma; gpmi_read_buf(mtd, buf, 1); return buf[0]; } /* * Handles block mark swapping. * It can be called in swapping the block mark, or swapping it back, * because the the operations are the same. */ static void block_mark_swapping(struct gpmi_nand_data *this, void *payload, void *auxiliary) { struct bch_geometry *nfc_geo = &this->bch_geometry; unsigned char *p; unsigned char *a; unsigned int bit; unsigned char mask; unsigned char from_data; unsigned char from_oob; if (!this->swap_block_mark) return; /* * If control arrives here, we're swapping. Make some convenience * variables. */ bit = nfc_geo->block_mark_bit_offset; p = payload + nfc_geo->block_mark_byte_offset; a = auxiliary; /* * Get the byte from the data area that overlays the block mark. Since * the ECC engine applies its own view to the bits in the page, the * physical block mark won't (in general) appear on a byte boundary in * the data. */ from_data = (p[0] >> bit) | (p[1] << (8 - bit)); /* Get the byte from the OOB. */ from_oob = a[0]; /* Swap them. */ a[0] = from_data; mask = (0x1 << bit) - 1; p[0] = (p[0] & mask) | (from_oob << bit); mask = ~0 << bit; p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); } static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { struct gpmi_nand_data *this = chip->priv; struct bch_geometry *nfc_geo = &this->bch_geometry; void *payload_virt; dma_addr_t payload_phys; void *auxiliary_virt; dma_addr_t auxiliary_phys; unsigned int i; unsigned char *status; unsigned int failed; unsigned int corrected; int ret; pr_debug("page number is : %d\n", page); ret = read_page_prepare(this, buf, mtd->writesize, this->payload_virt, this->payload_phys, nfc_geo->payload_size, &payload_virt, &payload_phys); if (ret) { pr_err("Inadequate DMA buffer\n"); ret = -ENOMEM; return ret; } auxiliary_virt = this->auxiliary_virt; auxiliary_phys = this->auxiliary_phys; /* go! */ ret = gpmi_read_page(this, payload_phys, auxiliary_phys); read_page_end(this, buf, mtd->writesize, this->payload_virt, this->payload_phys, nfc_geo->payload_size, payload_virt, payload_phys); if (ret) { pr_err("Error in ECC-based read: %d\n", ret); goto exit_nfc; } /* handle the block mark swapping */ block_mark_swapping(this, payload_virt, auxiliary_virt); /* Loop over status bytes, accumulating ECC status. */ failed = 0; corrected = 0; status = auxiliary_virt + nfc_geo->auxiliary_status_offset; for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) { if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) continue; if (*status == STATUS_UNCORRECTABLE) { failed++; continue; } corrected += *status; } /* * Propagate ECC status to the owning MTD only when failed or * corrected times nearly reaches our ECC correction threshold. */ if (failed || corrected >= (nfc_geo->ecc_strength - 1)) { mtd->ecc_stats.failed += failed; mtd->ecc_stats.corrected += corrected; } /* * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() for * details about our policy for delivering the OOB. * * We fill the caller's buffer with set bits, and then copy the block * mark to th caller's buffer. Note that, if block mark swapping was * necessary, it has already been done, so we can rely on the first * byte of the auxiliary buffer to contain the block mark. */ memset(chip->oob_poi, ~0, mtd->oobsize); chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0]; read_page_swap_end(this, buf, mtd->writesize, this->payload_virt, this->payload_phys, nfc_geo->payload_size, payload_virt, payload_phys); exit_nfc: return ret; } static void gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { struct gpmi_nand_data *this = chip->priv; struct bch_geometry *nfc_geo = &this->bch_geometry; const void *payload_virt; dma_addr_t payload_phys; const void *auxiliary_virt; dma_addr_t auxiliary_phys; int ret; pr_debug("ecc write page.\n"); if (this->swap_block_mark) { /* * If control arrives here, we're doing block mark swapping. * Since we can't modify the caller's buffers, we must copy them * into our own. */ memcpy(this->payload_virt, buf, mtd->writesize); payload_virt = this->payload_virt; payload_phys = this->payload_phys; memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size); auxiliary_virt = this->auxiliary_virt; auxiliary_phys = this->auxiliary_phys; /* Handle block mark swapping. */ block_mark_swapping(this, (void *) payload_virt, (void *) auxiliary_virt); } else { /* * If control arrives here, we're not doing block mark swapping, * so we can to try and use the caller's buffers. */ ret = send_page_prepare(this, buf, mtd->writesize, this->payload_virt, this->payload_phys, nfc_geo->payload_size, &payload_virt, &payload_phys); if (ret) { pr_err("Inadequate payload DMA buffer\n"); return; } ret = send_page_prepare(this, chip->oob_poi, mtd->oobsize, this->auxiliary_virt, this->auxiliary_phys, nfc_geo->auxiliary_size, &auxiliary_virt, &auxiliary_phys); if (ret) { pr_err("Inadequate auxiliary DMA buffer\n"); goto exit_auxiliary; } } /* Ask the NFC. */ ret = gpmi_send_page(this, payload_phys, auxiliary_phys); if (ret) pr_err("Error in ECC-based write: %d\n", ret); if (!this->swap_block_mark) { send_page_end(this, chip->oob_poi, mtd->oobsize, this->auxiliary_virt, this->auxiliary_phys, nfc_geo->auxiliary_size, auxiliary_virt, auxiliary_phys); exit_auxiliary: send_page_end(this, buf, mtd->writesize, this->payload_virt, this->payload_phys, nfc_geo->payload_size, payload_virt, payload_phys); } } /* * There are several places in this driver where we have to handle the OOB and * block marks. This is the function where things are the most complicated, so * this is where we try to explain it all. All the other places refer back to * here. * * These are the rules, in order of decreasing importance: * * 1) Nothing the caller does can be allowed to imperil the block mark. * * 2) In read operations, the first byte of the OOB we return must reflect the * true state of the block mark, no matter where that block mark appears in * the physical page. * * 3) ECC-based read operations return an OOB full of set bits (since we never * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads * return). * * 4) "Raw" read operations return a direct view of the physical bytes in the * page, using the conventional definition of which bytes are data and which * are OOB. This gives the caller a way to see the actual, physical bytes * in the page, without the distortions applied by our ECC engine. * * * What we do for this specific read operation depends on two questions: * * 1) Are we doing a "raw" read, or an ECC-based read? * * 2) Are we using block mark swapping or transcription? * * There are four cases, illustrated by the following Karnaugh map: * * | Raw | ECC-based | * -------------+-------------------------+-------------------------+ * | Read the conventional | | * | OOB at the end of the | | * Swapping | page and return it. It | | * | contains exactly what | | * | we want. | Read the block mark and | * -------------+-------------------------+ return it in a buffer | * | Read the conventional | full of set bits. | * | OOB at the end of the | | * | page and also the block | | * Transcribing | mark in the metadata. | | * | Copy the block mark | | * | into the first byte of | | * | the OOB. | | * -------------+-------------------------+-------------------------+ * * Note that we break rule #4 in the Transcribing/Raw case because we're not * giving an accurate view of the actual, physical bytes in the page (we're * overwriting the block mark). That's OK because it's more important to follow * rule #2. * * It turns out that knowing whether we want an "ECC-based" or "raw" read is not * easy. When reading a page, for example, the NAND Flash MTD code calls our * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an * ECC-based or raw view of the page is implicit in which function it calls * (there is a similar pair of ECC-based/raw functions for writing). * * Since MTD assumes the OOB is not covered by ECC, there is no pair of * ECC-based/raw functions for reading or or writing the OOB. The fact that the * caller wants an ECC-based or raw view of the page is not propagated down to * this driver. */ static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, int page, int sndcmd) { struct gpmi_nand_data *this = chip->priv; pr_debug("page number is %d\n", page); /* clear the OOB buffer */ memset(chip->oob_poi, ~0, mtd->oobsize); /* Read out the conventional OOB. */ chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); /* * Now, we want to make sure the block mark is correct. In the * Swapping/Raw case, we already have it. Otherwise, we need to * explicitly read it. */ if (!this->swap_block_mark) { /* Read the block mark into the first byte of the OOB buffer. */ chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); chip->oob_poi[0] = chip->read_byte(mtd); } /* * Return true, indicating that the next call to this function must send * a command. */ return true; } static int gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { /* * The BCH will use all the (page + oob). * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob. * But it can not stop some ioctls such MEMWRITEOOB which uses * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit * these ioctls too. */ return -EPERM; } static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct nand_chip *chip = mtd->priv; struct gpmi_nand_data *this = chip->priv; int block, ret = 0; uint8_t *block_mark; int column, page, status, chipnr; /* Get block number */ block = (int)(ofs >> chip->bbt_erase_shift); if (chip->bbt) chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); /* Do we have a flash based bad block table ? */ if (chip->options & NAND_BBT_USE_FLASH) ret = nand_update_bbt(mtd, ofs); else { chipnr = (int)(ofs >> chip->chip_shift); chip->select_chip(mtd, chipnr); column = this->swap_block_mark ? mtd->writesize : 0; /* Write the block mark. */ block_mark = this->data_buffer_dma; block_mark[0] = 0; /* bad block marker */ /* Shift to get page */ page = (int)(ofs >> chip->page_shift); chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page); chip->write_buf(mtd, block_mark, 1); chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); status = chip->waitfunc(mtd, chip); if (status & NAND_STATUS_FAIL) ret = -EIO; chip->select_chip(mtd, -1); } if (!ret) mtd->ecc_stats.badblocks++; return ret; } static int __devinit nand_boot_set_geometry(struct gpmi_nand_data *this) { struct boot_rom_geometry *geometry = &this->rom_geometry; /* * Set the boot block stride size. * * In principle, we should be reading this from the OTP bits, since * that's where the ROM is going to get it. In fact, we don't have any * way to read the OTP bits, so we go with the default and hope for the * best. */ geometry->stride_size_in_pages = 64; /* * Set the search area stride exponent. * * In principle, we should be reading this from the OTP bits, since * that's where the ROM is going to get it. In fact, we don't have any * way to read the OTP bits, so we go with the default and hope for the * best. */ geometry->search_area_stride_exponent = 2; return 0; } static const char *fingerprint = "STMP"; static int __devinit mx23_check_transcription_stamp(struct gpmi_nand_data *this) { struct boot_rom_geometry *rom_geo = &this->rom_geometry; struct device *dev = this->dev; struct mtd_info *mtd = &this->mtd; struct nand_chip *chip = &this->nand; unsigned int search_area_size_in_strides; unsigned int stride; unsigned int page; loff_t byte; uint8_t *buffer = chip->buffers->databuf; int saved_chip_number; int found_an_ncb_fingerprint = false; /* Compute the number of strides in a search area. */ search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; saved_chip_number = this->current_chip; chip->select_chip(mtd, 0); /* * Loop through the first search area, looking for the NCB fingerprint. */ dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); for (stride = 0; stride < search_area_size_in_strides; stride++) { /* Compute the page and byte addresses. */ page = stride * rom_geo->stride_size_in_pages; byte = page * mtd->writesize; dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); /* * Read the NCB fingerprint. The fingerprint is four bytes long * and starts in the 12th byte of the page. */ chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page); chip->read_buf(mtd, buffer, strlen(fingerprint)); /* Look for the fingerprint. */ if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { found_an_ncb_fingerprint = true; break; } } chip->select_chip(mtd, saved_chip_number); if (found_an_ncb_fingerprint) dev_dbg(dev, "\tFound a fingerprint\n"); else dev_dbg(dev, "\tNo fingerprint found\n"); return found_an_ncb_fingerprint; } /* Writes a transcription stamp. */ static int __devinit mx23_write_transcription_stamp(struct gpmi_nand_data *this) { struct device *dev = this->dev; struct boot_rom_geometry *rom_geo = &this->rom_geometry; struct mtd_info *mtd = &this->mtd; struct nand_chip *chip = &this->nand; unsigned int block_size_in_pages; unsigned int search_area_size_in_strides; unsigned int search_area_size_in_pages; unsigned int search_area_size_in_blocks; unsigned int block; unsigned int stride; unsigned int page; loff_t byte; uint8_t *buffer = chip->buffers->databuf; int saved_chip_number; int status; /* Compute the search area geometry. */ block_size_in_pages = mtd->erasesize / mtd->writesize; search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; search_area_size_in_pages = search_area_size_in_strides * rom_geo->stride_size_in_pages; search_area_size_in_blocks = (search_area_size_in_pages + (block_size_in_pages - 1)) / block_size_in_pages; dev_dbg(dev, "Search Area Geometry :\n"); dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); /* Select chip 0. */ saved_chip_number = this->current_chip; chip->select_chip(mtd, 0); /* Loop over blocks in the first search area, erasing them. */ dev_dbg(dev, "Erasing the search area...\n"); for (block = 0; block < search_area_size_in_blocks; block++) { /* Compute the page address. */ page = block * block_size_in_pages; /* Erase this block. */ dev_dbg(dev, "\tErasing block 0x%x\n", block); chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); /* Wait for the erase to finish. */ status = chip->waitfunc(mtd, chip); if (status & NAND_STATUS_FAIL) dev_err(dev, "[%s] Erase failed.\n", __func__); } /* Write the NCB fingerprint into the page buffer. */ memset(buffer, ~0, mtd->writesize); memset(chip->oob_poi, ~0, mtd->oobsize); memcpy(buffer + 12, fingerprint, strlen(fingerprint)); /* Loop through the first search area, writing NCB fingerprints. */ dev_dbg(dev, "Writing NCB fingerprints...\n"); for (stride = 0; stride < search_area_size_in_strides; stride++) { /* Compute the page and byte addresses. */ page = stride * rom_geo->stride_size_in_pages; byte = page * mtd->writesize; /* Write the first page of the current stride. */ dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); chip->ecc.write_page_raw(mtd, chip, buffer); chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); /* Wait for the write to finish. */ status = chip->waitfunc(mtd, chip); if (status & NAND_STATUS_FAIL) dev_err(dev, "[%s] Write failed.\n", __func__); } /* Deselect chip 0. */ chip->select_chip(mtd, saved_chip_number); return 0; } static int __devinit mx23_boot_init(struct gpmi_nand_data *this) { struct device *dev = this->dev; struct nand_chip *chip = &this->nand; struct mtd_info *mtd = &this->mtd; unsigned int block_count; unsigned int block; int chipnr; int page; loff_t byte; uint8_t block_mark; int ret = 0; /* * If control arrives here, we can't use block mark swapping, which * means we're forced to use transcription. First, scan for the * transcription stamp. If we find it, then we don't have to do * anything -- the block marks are already transcribed. */ if (mx23_check_transcription_stamp(this)) return 0; /* * If control arrives here, we couldn't find a transcription stamp, so * so we presume the block marks are in the conventional location. */ dev_dbg(dev, "Transcribing bad block marks...\n"); /* Compute the number of blocks in the entire medium. */ block_count = chip->chipsize >> chip->phys_erase_shift; /* * Loop over all the blocks in the medium, transcribing block marks as * we go. */ for (block = 0; block < block_count; block++) { /* * Compute the chip, page and byte addresses for this block's * conventional mark. */ chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); page = block << (chip->phys_erase_shift - chip->page_shift); byte = block << chip->phys_erase_shift; /* Send the command to read the conventional block mark. */ chip->select_chip(mtd, chipnr); chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); block_mark = chip->read_byte(mtd); chip->select_chip(mtd, -1); /* * Check if the block is marked bad. If so, we need to mark it * again, but this time the result will be a mark in the * location where we transcribe block marks. */ if (block_mark != 0xff) { dev_dbg(dev, "Transcribing mark in block %u\n", block); ret = chip->block_markbad(mtd, byte); if (ret) dev_err(dev, "Failed to mark block bad with " "ret %d\n", ret); } } /* Write the stamp that indicates we've transcribed the block marks. */ mx23_write_transcription_stamp(this); return 0; } static int __devinit nand_boot_init(struct gpmi_nand_data *this) { nand_boot_set_geometry(this); /* This is ROM arch-specific initilization before the BBT scanning. */ if (GPMI_IS_MX23(this)) return mx23_boot_init(this); return 0; } static int __devinit gpmi_set_geometry(struct gpmi_nand_data *this) { int ret; /* Free the temporary DMA memory for reading ID. */ gpmi_free_dma_buffer(this); /* Set up the NFC geometry which is used by BCH. */ ret = bch_set_geometry(this); if (ret) { pr_err("set geometry ret : %d\n", ret); return ret; } /* Alloc the new DMA buffers according to the pagesize and oobsize */ return gpmi_alloc_dma_buffer(this); } static int gpmi_pre_bbt_scan(struct gpmi_nand_data *this) { int ret; /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ if (GPMI_IS_MX23(this)) this->swap_block_mark = false; else this->swap_block_mark = true; /* Set up the medium geometry */ ret = gpmi_set_geometry(this); if (ret) return ret; /* NAND boot init, depends on the gpmi_set_geometry(). */ return nand_boot_init(this); } static int gpmi_scan_bbt(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct gpmi_nand_data *this = chip->priv; int ret; /* Prepare for the BBT scan. */ ret = gpmi_pre_bbt_scan(this); if (ret) return ret; /* use the default BBT implementation */ return nand_default_bbt(mtd); } void gpmi_nfc_exit(struct gpmi_nand_data *this) { nand_release(&this->mtd); gpmi_free_dma_buffer(this); } static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this) { struct gpmi_nand_platform_data *pdata = this->pdata; struct mtd_info *mtd = &this->mtd; struct nand_chip *chip = &this->nand; int ret; /* init current chip */ this->current_chip = -1; /* init the MTD data structures */ mtd->priv = chip; mtd->name = "gpmi-nand"; mtd->owner = THIS_MODULE; /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ chip->priv = this; chip->select_chip = gpmi_select_chip; chip->cmd_ctrl = gpmi_cmd_ctrl; chip->dev_ready = gpmi_dev_ready; chip->read_byte = gpmi_read_byte; chip->read_buf = gpmi_read_buf; chip->write_buf = gpmi_write_buf; chip->ecc.read_page = gpmi_ecc_read_page; chip->ecc.write_page = gpmi_ecc_write_page; chip->ecc.read_oob = gpmi_ecc_read_oob; chip->ecc.write_oob = gpmi_ecc_write_oob; chip->scan_bbt = gpmi_scan_bbt; chip->badblock_pattern = &gpmi_bbt_descr; chip->block_markbad = gpmi_block_markbad; chip->options |= NAND_NO_SUBPAGE_WRITE; chip->ecc.mode = NAND_ECC_HW; chip->ecc.size = 1; chip->ecc.layout = &gpmi_hw_ecclayout; /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */ this->bch_geometry.payload_size = 1024; this->bch_geometry.auxiliary_size = 128; ret = gpmi_alloc_dma_buffer(this); if (ret) goto err_out; ret = nand_scan(mtd, pdata->max_chip_count); if (ret) { pr_err("Chip scan failed\n"); goto err_out; } ret = mtd_device_parse_register(mtd, NULL, NULL, pdata->partitions, pdata->partition_count); if (ret) goto err_out; return 0; err_out: gpmi_nfc_exit(this); return ret; } static int __devinit gpmi_nand_probe(struct platform_device *pdev) { struct gpmi_nand_platform_data *pdata = pdev->dev.platform_data; struct gpmi_nand_data *this; int ret; this = kzalloc(sizeof(*this), GFP_KERNEL); if (!this) { pr_err("Failed to allocate per-device memory\n"); return -ENOMEM; } platform_set_drvdata(pdev, this); this->pdev = pdev; this->dev = &pdev->dev; this->pdata = pdata; if (pdata->platform_init) { ret = pdata->platform_init(); if (ret) goto platform_init_error; } ret = acquire_resources(this); if (ret) goto exit_acquire_resources; ret = init_hardware(this); if (ret) goto exit_nfc_init; ret = gpmi_nfc_init(this); if (ret) goto exit_nfc_init; return 0; exit_nfc_init: release_resources(this); platform_init_error: exit_acquire_resources: platform_set_drvdata(pdev, NULL); kfree(this); return ret; } static int __exit gpmi_nand_remove(struct platform_device *pdev) { struct gpmi_nand_data *this = platform_get_drvdata(pdev); gpmi_nfc_exit(this); release_resources(this); platform_set_drvdata(pdev, NULL); kfree(this); return 0; } static const struct platform_device_id gpmi_ids[] = { { .name = "imx23-gpmi-nand", .driver_data = IS_MX23, }, { .name = "imx28-gpmi-nand", .driver_data = IS_MX28, }, {}, }; static struct platform_driver gpmi_nand_driver = { .driver = { .name = "gpmi-nand", }, .probe = gpmi_nand_probe, .remove = __exit_p(gpmi_nand_remove), .id_table = gpmi_ids, }; static int __init gpmi_nand_init(void) { int err; err = platform_driver_register(&gpmi_nand_driver); if (err == 0) printk(KERN_INFO "GPMI NAND driver registered. (IMX)\n"); else pr_err("i.MX GPMI NAND driver registration failed\n"); return err; } static void __exit gpmi_nand_exit(void) { platform_driver_unregister(&gpmi_nand_driver); } module_init(gpmi_nand_init); module_exit(gpmi_nand_exit); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); MODULE_LICENSE("GPL");