/* * SuperH IrDA Driver * * Copyright (C) 2010 Renesas Solutions Corp. * Kuninori Morimoto <kuninori.morimoto.gx@renesas.com> * * Based on sh_sir.c * Copyright (C) 2009 Renesas Solutions Corp. * Copyright 2006-2009 Analog Devices Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ /* * CAUTION * * This driver is very simple. * So, it doesn't have below support now * - MIR/FIR support * - DMA transfer support * - FIFO mode support */ #include <linux/io.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/clk.h> #include <net/irda/wrapper.h> #include <net/irda/irda_device.h> #define DRIVER_NAME "sh_irda" #if defined(CONFIG_ARCH_SH7367) || defined(CONFIG_ARCH_SH7377) #define __IRDARAM_LEN 0x13FF #else #define __IRDARAM_LEN 0x1039 #endif #define IRTMR 0x1F00 /* Transfer mode */ #define IRCFR 0x1F02 /* Configuration */ #define IRCTR 0x1F04 /* IR control */ #define IRTFLR 0x1F20 /* Transmit frame length */ #define IRTCTR 0x1F22 /* Transmit control */ #define IRRFLR 0x1F40 /* Receive frame length */ #define IRRCTR 0x1F42 /* Receive control */ #define SIRISR 0x1F60 /* SIR-UART mode interrupt source */ #define SIRIMR 0x1F62 /* SIR-UART mode interrupt mask */ #define SIRICR 0x1F64 /* SIR-UART mode interrupt clear */ #define SIRBCR 0x1F68 /* SIR-UART mode baud rate count */ #define MFIRISR 0x1F70 /* MIR/FIR mode interrupt source */ #define MFIRIMR 0x1F72 /* MIR/FIR mode interrupt mask */ #define MFIRICR 0x1F74 /* MIR/FIR mode interrupt clear */ #define CRCCTR 0x1F80 /* CRC engine control */ #define CRCIR 0x1F86 /* CRC engine input data */ #define CRCCR 0x1F8A /* CRC engine calculation */ #define CRCOR 0x1F8E /* CRC engine output data */ #define FIFOCP 0x1FC0 /* FIFO current pointer */ #define FIFOFP 0x1FC2 /* FIFO follow pointer */ #define FIFORSMSK 0x1FC4 /* FIFO receive status mask */ #define FIFORSOR 0x1FC6 /* FIFO receive status OR */ #define FIFOSEL 0x1FC8 /* FIFO select */ #define FIFORS 0x1FCA /* FIFO receive status */ #define FIFORFL 0x1FCC /* FIFO receive frame length */ #define FIFORAMCP 0x1FCE /* FIFO RAM current pointer */ #define FIFORAMFP 0x1FD0 /* FIFO RAM follow pointer */ #define BIFCTL 0x1FD2 /* BUS interface control */ #define IRDARAM 0x0000 /* IrDA buffer RAM */ #define IRDARAM_LEN __IRDARAM_LEN /* - 8/16/32 (read-only for 32) */ /* IRTMR */ #define TMD_MASK (0x3 << 14) /* Transfer Mode */ #define TMD_SIR (0x0 << 14) #define TMD_MIR (0x3 << 14) #define TMD_FIR (0x2 << 14) #define FIFORIM (1 << 8) /* FIFO receive interrupt mask */ #define MIM (1 << 4) /* MIR/FIR Interrupt Mask */ #define SIM (1 << 0) /* SIR Interrupt Mask */ #define xIM_MASK (FIFORIM | MIM | SIM) /* IRCFR */ #define RTO_SHIFT 8 /* shift for Receive Timeout */ #define RTO (0x3 << RTO_SHIFT) /* IRTCTR */ #define ARMOD (1 << 15) /* Auto-Receive Mode */ #define TE (1 << 0) /* Transmit Enable */ /* IRRFLR */ #define RFL_MASK (0x1FFF) /* mask for Receive Frame Length */ /* IRRCTR */ #define RE (1 << 0) /* Receive Enable */ /* * SIRISR, SIRIMR, SIRICR, * MFIRISR, MFIRIMR, MFIRICR */ #define FRE (1 << 15) /* Frame Receive End */ #define TROV (1 << 11) /* Transfer Area Overflow */ #define xIR_9 (1 << 9) #define TOT xIR_9 /* for SIR Timeout */ #define ABTD xIR_9 /* for MIR/FIR Abort Detection */ #define xIR_8 (1 << 8) #define FER xIR_8 /* for SIR Framing Error */ #define CRCER xIR_8 /* for MIR/FIR CRC error */ #define FTE (1 << 7) /* Frame Transmit End */ #define xIR_MASK (FRE | TROV | xIR_9 | xIR_8 | FTE) /* SIRBCR */ #define BRC_MASK (0x3F) /* mask for Baud Rate Count */ /* CRCCTR */ #define CRC_RST (1 << 15) /* CRC Engine Reset */ #define CRC_CT_MASK 0x0FFF /* mask for CRC Engine Input Data Count */ /* CRCIR */ #define CRC_IN_MASK 0x0FFF /* mask for CRC Engine Input Data */ /************************************************************************ enum / structure ************************************************************************/ enum sh_irda_mode { SH_IRDA_NONE = 0, SH_IRDA_SIR, SH_IRDA_MIR, SH_IRDA_FIR, }; struct sh_irda_self; struct sh_irda_xir_func { int (*xir_fre) (struct sh_irda_self *self); int (*xir_trov) (struct sh_irda_self *self); int (*xir_9) (struct sh_irda_self *self); int (*xir_8) (struct sh_irda_self *self); int (*xir_fte) (struct sh_irda_self *self); }; struct sh_irda_self { void __iomem *membase; unsigned int irq; struct platform_device *pdev; struct net_device *ndev; struct irlap_cb *irlap; struct qos_info qos; iobuff_t tx_buff; iobuff_t rx_buff; enum sh_irda_mode mode; spinlock_t lock; struct sh_irda_xir_func *xir_func; }; /************************************************************************ common function ************************************************************************/ static void sh_irda_write(struct sh_irda_self *self, u32 offset, u16 data) { unsigned long flags; spin_lock_irqsave(&self->lock, flags); iowrite16(data, self->membase + offset); spin_unlock_irqrestore(&self->lock, flags); } static u16 sh_irda_read(struct sh_irda_self *self, u32 offset) { unsigned long flags; u16 ret; spin_lock_irqsave(&self->lock, flags); ret = ioread16(self->membase + offset); spin_unlock_irqrestore(&self->lock, flags); return ret; } static void sh_irda_update_bits(struct sh_irda_self *self, u32 offset, u16 mask, u16 data) { unsigned long flags; u16 old, new; spin_lock_irqsave(&self->lock, flags); old = ioread16(self->membase + offset); new = (old & ~mask) | data; if (old != new) iowrite16(data, self->membase + offset); spin_unlock_irqrestore(&self->lock, flags); } /************************************************************************ mode function ************************************************************************/ /*===================================== * * common * *=====================================*/ static void sh_irda_rcv_ctrl(struct sh_irda_self *self, int enable) { struct device *dev = &self->ndev->dev; sh_irda_update_bits(self, IRRCTR, RE, enable ? RE : 0); dev_dbg(dev, "recv %s\n", enable ? "enable" : "disable"); } static int sh_irda_set_timeout(struct sh_irda_self *self, int interval) { struct device *dev = &self->ndev->dev; if (SH_IRDA_SIR != self->mode) interval = 0; if (interval < 0 || interval > 2) { dev_err(dev, "unsupported timeout interval\n"); return -EINVAL; } sh_irda_update_bits(self, IRCFR, RTO, interval << RTO_SHIFT); return 0; } static int sh_irda_set_baudrate(struct sh_irda_self *self, int baudrate) { struct device *dev = &self->ndev->dev; u16 val; if (baudrate < 0) return 0; if (SH_IRDA_SIR != self->mode) { dev_err(dev, "it is not SIR mode\n"); return -EINVAL; } /* * Baud rate (bits/s) = * (48 MHz / 26) / (baud rate counter value + 1) x 16 */ val = (48000000 / 26 / 16 / baudrate) - 1; dev_dbg(dev, "baudrate = %d, val = 0x%02x\n", baudrate, val); sh_irda_update_bits(self, SIRBCR, BRC_MASK, val); return 0; } static int sh_irda_get_rcv_length(struct sh_irda_self *self) { return RFL_MASK & sh_irda_read(self, IRRFLR); } /*===================================== * * NONE MODE * *=====================================*/ static int sh_irda_xir_fre(struct sh_irda_self *self) { struct device *dev = &self->ndev->dev; dev_err(dev, "none mode: frame recv\n"); return 0; } static int sh_irda_xir_trov(struct sh_irda_self *self) { struct device *dev = &self->ndev->dev; dev_err(dev, "none mode: buffer ram over\n"); return 0; } static int sh_irda_xir_9(struct sh_irda_self *self) { struct device *dev = &self->ndev->dev; dev_err(dev, "none mode: time over\n"); return 0; } static int sh_irda_xir_8(struct sh_irda_self *self) { struct device *dev = &self->ndev->dev; dev_err(dev, "none mode: framing error\n"); return 0; } static int sh_irda_xir_fte(struct sh_irda_self *self) { struct device *dev = &self->ndev->dev; dev_err(dev, "none mode: frame transmit end\n"); return 0; } static struct sh_irda_xir_func sh_irda_xir_func = { .xir_fre = sh_irda_xir_fre, .xir_trov = sh_irda_xir_trov, .xir_9 = sh_irda_xir_9, .xir_8 = sh_irda_xir_8, .xir_fte = sh_irda_xir_fte, }; /*===================================== * * MIR/FIR MODE * * MIR/FIR are not supported now *=====================================*/ static struct sh_irda_xir_func sh_irda_mfir_func = { .xir_fre = sh_irda_xir_fre, .xir_trov = sh_irda_xir_trov, .xir_9 = sh_irda_xir_9, .xir_8 = sh_irda_xir_8, .xir_fte = sh_irda_xir_fte, }; /*===================================== * * SIR MODE * *=====================================*/ static int sh_irda_sir_fre(struct sh_irda_self *self) { struct device *dev = &self->ndev->dev; u16 data16; u8 *data = (u8 *)&data16; int len = sh_irda_get_rcv_length(self); int i, j; if (len > IRDARAM_LEN) len = IRDARAM_LEN; dev_dbg(dev, "frame recv length = %d\n", len); for (i = 0; i < len; i++) { j = i % 2; if (!j) data16 = sh_irda_read(self, IRDARAM + i); async_unwrap_char(self->ndev, &self->ndev->stats, &self->rx_buff, data[j]); } self->ndev->last_rx = jiffies; sh_irda_rcv_ctrl(self, 1); return 0; } static int sh_irda_sir_trov(struct sh_irda_self *self) { struct device *dev = &self->ndev->dev; dev_err(dev, "buffer ram over\n"); sh_irda_rcv_ctrl(self, 1); return 0; } static int sh_irda_sir_tot(struct sh_irda_self *self) { struct device *dev = &self->ndev->dev; dev_err(dev, "time over\n"); sh_irda_set_baudrate(self, 9600); sh_irda_rcv_ctrl(self, 1); return 0; } static int sh_irda_sir_fer(struct sh_irda_self *self) { struct device *dev = &self->ndev->dev; dev_err(dev, "framing error\n"); sh_irda_rcv_ctrl(self, 1); return 0; } static int sh_irda_sir_fte(struct sh_irda_self *self) { struct device *dev = &self->ndev->dev; dev_dbg(dev, "frame transmit end\n"); netif_wake_queue(self->ndev); return 0; } static struct sh_irda_xir_func sh_irda_sir_func = { .xir_fre = sh_irda_sir_fre, .xir_trov = sh_irda_sir_trov, .xir_9 = sh_irda_sir_tot, .xir_8 = sh_irda_sir_fer, .xir_fte = sh_irda_sir_fte, }; static void sh_irda_set_mode(struct sh_irda_self *self, enum sh_irda_mode mode) { struct device *dev = &self->ndev->dev; struct sh_irda_xir_func *func; const char *name; u16 data; switch (mode) { case SH_IRDA_SIR: name = "SIR"; data = TMD_SIR; func = &sh_irda_sir_func; break; case SH_IRDA_MIR: name = "MIR"; data = TMD_MIR; func = &sh_irda_mfir_func; break; case SH_IRDA_FIR: name = "FIR"; data = TMD_FIR; func = &sh_irda_mfir_func; break; default: name = "NONE"; data = 0; func = &sh_irda_xir_func; break; } self->mode = mode; self->xir_func = func; sh_irda_update_bits(self, IRTMR, TMD_MASK, data); dev_dbg(dev, "switch to %s mode", name); } /************************************************************************ irq function ************************************************************************/ static void sh_irda_set_irq_mask(struct sh_irda_self *self) { u16 tmr_hole; u16 xir_reg; /* set all mask */ sh_irda_update_bits(self, IRTMR, xIM_MASK, xIM_MASK); sh_irda_update_bits(self, SIRIMR, xIR_MASK, xIR_MASK); sh_irda_update_bits(self, MFIRIMR, xIR_MASK, xIR_MASK); /* clear irq */ sh_irda_update_bits(self, SIRICR, xIR_MASK, xIR_MASK); sh_irda_update_bits(self, MFIRICR, xIR_MASK, xIR_MASK); switch (self->mode) { case SH_IRDA_SIR: tmr_hole = SIM; xir_reg = SIRIMR; break; case SH_IRDA_MIR: case SH_IRDA_FIR: tmr_hole = MIM; xir_reg = MFIRIMR; break; default: tmr_hole = 0; xir_reg = 0; break; } /* open mask */ if (xir_reg) { sh_irda_update_bits(self, IRTMR, tmr_hole, 0); sh_irda_update_bits(self, xir_reg, xIR_MASK, 0); } } static irqreturn_t sh_irda_irq(int irq, void *dev_id) { struct sh_irda_self *self = dev_id; struct sh_irda_xir_func *func = self->xir_func; u16 isr = sh_irda_read(self, SIRISR); /* clear irq */ sh_irda_write(self, SIRICR, isr); if (isr & FRE) func->xir_fre(self); if (isr & TROV) func->xir_trov(self); if (isr & xIR_9) func->xir_9(self); if (isr & xIR_8) func->xir_8(self); if (isr & FTE) func->xir_fte(self); return IRQ_HANDLED; } /************************************************************************ CRC function ************************************************************************/ static void sh_irda_crc_reset(struct sh_irda_self *self) { sh_irda_write(self, CRCCTR, CRC_RST); } static void sh_irda_crc_add(struct sh_irda_self *self, u16 data) { sh_irda_write(self, CRCIR, data & CRC_IN_MASK); } static u16 sh_irda_crc_cnt(struct sh_irda_self *self) { return CRC_CT_MASK & sh_irda_read(self, CRCCTR); } static u16 sh_irda_crc_out(struct sh_irda_self *self) { return sh_irda_read(self, CRCOR); } static int sh_irda_crc_init(struct sh_irda_self *self) { struct device *dev = &self->ndev->dev; int ret = -EIO; u16 val; sh_irda_crc_reset(self); sh_irda_crc_add(self, 0xCC); sh_irda_crc_add(self, 0xF5); sh_irda_crc_add(self, 0xF1); sh_irda_crc_add(self, 0xA7); val = sh_irda_crc_cnt(self); if (4 != val) { dev_err(dev, "CRC count error %x\n", val); goto crc_init_out; } val = sh_irda_crc_out(self); if (0x51DF != val) { dev_err(dev, "CRC result error%x\n", val); goto crc_init_out; } ret = 0; crc_init_out: sh_irda_crc_reset(self); return ret; } /************************************************************************ iobuf function ************************************************************************/ static void sh_irda_remove_iobuf(struct sh_irda_self *self) { kfree(self->rx_buff.head); self->tx_buff.head = NULL; self->tx_buff.data = NULL; self->rx_buff.head = NULL; self->rx_buff.data = NULL; } static int sh_irda_init_iobuf(struct sh_irda_self *self, int rxsize, int txsize) { if (self->rx_buff.head || self->tx_buff.head) { dev_err(&self->ndev->dev, "iobuff has already existed."); return -EINVAL; } /* rx_buff */ self->rx_buff.head = kmalloc(rxsize, GFP_KERNEL); if (!self->rx_buff.head) return -ENOMEM; self->rx_buff.truesize = rxsize; self->rx_buff.in_frame = FALSE; self->rx_buff.state = OUTSIDE_FRAME; self->rx_buff.data = self->rx_buff.head; /* tx_buff */ self->tx_buff.head = self->membase + IRDARAM; self->tx_buff.truesize = IRDARAM_LEN; return 0; } /************************************************************************ net_device_ops function ************************************************************************/ static int sh_irda_hard_xmit(struct sk_buff *skb, struct net_device *ndev) { struct sh_irda_self *self = netdev_priv(ndev); struct device *dev = &self->ndev->dev; int speed = irda_get_next_speed(skb); int ret; dev_dbg(dev, "hard xmit\n"); netif_stop_queue(ndev); sh_irda_rcv_ctrl(self, 0); ret = sh_irda_set_baudrate(self, speed); if (ret < 0) goto sh_irda_hard_xmit_end; self->tx_buff.len = 0; if (skb->len) { unsigned long flags; spin_lock_irqsave(&self->lock, flags); self->tx_buff.len = async_wrap_skb(skb, self->tx_buff.head, self->tx_buff.truesize); spin_unlock_irqrestore(&self->lock, flags); if (self->tx_buff.len > self->tx_buff.truesize) self->tx_buff.len = self->tx_buff.truesize; sh_irda_write(self, IRTFLR, self->tx_buff.len); sh_irda_write(self, IRTCTR, ARMOD | TE); } else goto sh_irda_hard_xmit_end; dev_kfree_skb(skb); return 0; sh_irda_hard_xmit_end: sh_irda_set_baudrate(self, 9600); netif_wake_queue(self->ndev); sh_irda_rcv_ctrl(self, 1); dev_kfree_skb(skb); return ret; } static int sh_irda_ioctl(struct net_device *ndev, struct ifreq *ifreq, int cmd) { /* * FIXME * * This function is needed for irda framework. * But nothing to do now */ return 0; } static struct net_device_stats *sh_irda_stats(struct net_device *ndev) { struct sh_irda_self *self = netdev_priv(ndev); return &self->ndev->stats; } static int sh_irda_open(struct net_device *ndev) { struct sh_irda_self *self = netdev_priv(ndev); int err; pm_runtime_get_sync(&self->pdev->dev); err = sh_irda_crc_init(self); if (err) goto open_err; sh_irda_set_mode(self, SH_IRDA_SIR); sh_irda_set_timeout(self, 2); sh_irda_set_baudrate(self, 9600); self->irlap = irlap_open(ndev, &self->qos, DRIVER_NAME); if (!self->irlap) { err = -ENODEV; goto open_err; } netif_start_queue(ndev); sh_irda_rcv_ctrl(self, 1); sh_irda_set_irq_mask(self); dev_info(&ndev->dev, "opened\n"); return 0; open_err: pm_runtime_put_sync(&self->pdev->dev); return err; } static int sh_irda_stop(struct net_device *ndev) { struct sh_irda_self *self = netdev_priv(ndev); /* Stop IrLAP */ if (self->irlap) { irlap_close(self->irlap); self->irlap = NULL; } netif_stop_queue(ndev); pm_runtime_put_sync(&self->pdev->dev); dev_info(&ndev->dev, "stoped\n"); return 0; } static const struct net_device_ops sh_irda_ndo = { .ndo_open = sh_irda_open, .ndo_stop = sh_irda_stop, .ndo_start_xmit = sh_irda_hard_xmit, .ndo_do_ioctl = sh_irda_ioctl, .ndo_get_stats = sh_irda_stats, }; /************************************************************************ platform_driver function ************************************************************************/ static int __devinit sh_irda_probe(struct platform_device *pdev) { struct net_device *ndev; struct sh_irda_self *self; struct resource *res; int irq; int err = -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq = platform_get_irq(pdev, 0); if (!res || irq < 0) { dev_err(&pdev->dev, "Not enough platform resources.\n"); goto exit; } ndev = alloc_irdadev(sizeof(*self)); if (!ndev) goto exit; self = netdev_priv(ndev); self->membase = ioremap_nocache(res->start, resource_size(res)); if (!self->membase) { err = -ENXIO; dev_err(&pdev->dev, "Unable to ioremap.\n"); goto err_mem_1; } err = sh_irda_init_iobuf(self, IRDA_SKB_MAX_MTU, IRDA_SIR_MAX_FRAME); if (err) goto err_mem_2; self->pdev = pdev; pm_runtime_enable(&pdev->dev); irda_init_max_qos_capabilies(&self->qos); ndev->netdev_ops = &sh_irda_ndo; ndev->irq = irq; self->ndev = ndev; self->qos.baud_rate.bits &= IR_9600; /* FIXME */ self->qos.min_turn_time.bits = 1; /* 10 ms or more */ spin_lock_init(&self->lock); irda_qos_bits_to_value(&self->qos); err = register_netdev(ndev); if (err) goto err_mem_4; platform_set_drvdata(pdev, ndev); if (request_irq(irq, sh_irda_irq, IRQF_DISABLED, "sh_irda", self)) { dev_warn(&pdev->dev, "Unable to attach sh_irda interrupt\n"); goto err_mem_4; } dev_info(&pdev->dev, "SuperH IrDA probed\n"); goto exit; err_mem_4: pm_runtime_disable(&pdev->dev); sh_irda_remove_iobuf(self); err_mem_2: iounmap(self->membase); err_mem_1: free_netdev(ndev); exit: return err; } static int __devexit sh_irda_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct sh_irda_self *self = netdev_priv(ndev); if (!self) return 0; unregister_netdev(ndev); pm_runtime_disable(&pdev->dev); sh_irda_remove_iobuf(self); iounmap(self->membase); free_netdev(ndev); platform_set_drvdata(pdev, NULL); return 0; } static int sh_irda_runtime_nop(struct device *dev) { /* Runtime PM callback shared between ->runtime_suspend() * and ->runtime_resume(). Simply returns success. * * This driver re-initializes all registers after * pm_runtime_get_sync() anyway so there is no need * to save and restore registers here. */ return 0; } static const struct dev_pm_ops sh_irda_pm_ops = { .runtime_suspend = sh_irda_runtime_nop, .runtime_resume = sh_irda_runtime_nop, }; static struct platform_driver sh_irda_driver = { .probe = sh_irda_probe, .remove = __devexit_p(sh_irda_remove), .driver = { .name = DRIVER_NAME, .pm = &sh_irda_pm_ops, }, }; module_platform_driver(sh_irda_driver); MODULE_AUTHOR("Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>"); MODULE_DESCRIPTION("SuperH IrDA driver"); MODULE_LICENSE("GPL");