/* * DHD Bus Module for SDIO * * Copyright (C) 1999-2012, Broadcom Corporation * * Unless you and Broadcom execute a separate written software license * agreement governing use of this software, this software is licensed to you * under the terms of the GNU General Public License version 2 (the "GPL"), * available at http://www.broadcom.com/licenses/GPLv2.php, with the * following added to such license: * * As a special exception, the copyright holders of this software give you * permission to link this software with independent modules, and to copy and * distribute the resulting executable under terms of your choice, provided that * you also meet, for each linked independent module, the terms and conditions of * the license of that module. An independent module is a module which is not * derived from this software. The special exception does not apply to any * modifications of the software. * * Notwithstanding the above, under no circumstances may you combine this * software in any way with any other Broadcom software provided under a license * other than the GPL, without Broadcom's express prior written consent. * * $Id: dhd_sdio.c 309548 2012-01-20 01:13:08Z $ */ #include <typedefs.h> #include <osl.h> #include <bcmsdh.h> #ifdef BCMEMBEDIMAGE #include BCMEMBEDIMAGE #endif /* BCMEMBEDIMAGE */ #include <bcmdefs.h> #include <bcmutils.h> #include <bcmendian.h> #include <bcmdevs.h> #include <siutils.h> #include <hndpmu.h> #include <hndsoc.h> #include <bcmsdpcm.h> #if defined(DHD_DEBUG) #include <hndrte_armtrap.h> #include <hndrte_cons.h> #endif /* defined(DHD_DEBUG) */ #include <sbchipc.h> #include <sbhnddma.h> #include <sdio.h> #include <sbsdio.h> #include <sbsdpcmdev.h> #include <bcmsdpcm.h> #include <bcmsdbus.h> #include <proto/ethernet.h> #include <proto/802.1d.h> #include <proto/802.11.h> #include <dngl_stats.h> #include <dhd.h> #include <dhd_bus.h> #include <dhd_proto.h> #include <dhd_dbg.h> #include <dhdioctl.h> #include <sdiovar.h> #ifndef DHDSDIO_MEM_DUMP_FNAME #define DHDSDIO_MEM_DUMP_FNAME "mem_dump" #endif #define QLEN 256 /* bulk rx and tx queue lengths */ #define FCHI (QLEN - 10) #define FCLOW (FCHI / 2) #define PRIOMASK 7 #define TXRETRIES 2 /* # of retries for tx frames */ #define DHD_RXBOUND 50 /* Default for max rx frames in one scheduling */ #define DHD_TXBOUND 20 /* Default for max tx frames in one scheduling */ #define DHD_TXMINMAX 1 /* Max tx frames if rx still pending */ #define MEMBLOCK 2048 /* Block size used for downloading of dongle image */ #define MAX_NVRAMBUF_SIZE 4096 /* max nvram buf size */ #define MAX_DATA_BUF (32 * 1024) /* Must be large enough to hold biggest possible glom */ #ifndef DHD_FIRSTREAD #define DHD_FIRSTREAD 32 #endif #if !ISPOWEROF2(DHD_FIRSTREAD) #error DHD_FIRSTREAD is not a power of 2! #endif /* Total length of frame header for dongle protocol */ #define SDPCM_HDRLEN (SDPCM_FRAMETAG_LEN + SDPCM_SWHEADER_LEN) #ifdef SDTEST #define SDPCM_RESERVE (SDPCM_HDRLEN + SDPCM_TEST_HDRLEN + DHD_SDALIGN) #else #define SDPCM_RESERVE (SDPCM_HDRLEN + DHD_SDALIGN) #endif /* Space for header read, limit for data packets */ #ifndef MAX_HDR_READ #define MAX_HDR_READ 32 #endif #if !ISPOWEROF2(MAX_HDR_READ) #error MAX_HDR_READ is not a power of 2! #endif #define MAX_RX_DATASZ 2048 /* Maximum milliseconds to wait for F2 to come up */ #define DHD_WAIT_F2RDY 3000 /* Bump up limit on waiting for HT to account for first startup; * if the image is doing a CRC calculation before programming the PMU * for HT availability, it could take a couple hundred ms more, so * max out at a 1 second (1000000us). */ #if (PMU_MAX_TRANSITION_DLY <= 1000000) #undef PMU_MAX_TRANSITION_DLY #define PMU_MAX_TRANSITION_DLY 1000000 #endif /* Value for ChipClockCSR during initial setup */ #define DHD_INIT_CLKCTL1 (SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ) #define DHD_INIT_CLKCTL2 (SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_FORCE_ALP) /* Flags for SDH calls */ #define F2SYNC (SDIO_REQ_4BYTE | SDIO_REQ_FIXED) /* Packet free applicable unconditionally for sdio and sdspi. Conditional if * bufpool was present for gspi bus. */ #define PKTFREE2() if ((bus->bus != SPI_BUS) || bus->usebufpool) \ PKTFREE(bus->dhd->osh, pkt, FALSE); DHD_SPINWAIT_SLEEP_INIT(sdioh_spinwait_sleep); #if defined(OOB_INTR_ONLY) extern void bcmsdh_set_irq(int flag); #endif /* defined(OOB_INTR_ONLY) */ #ifdef PROP_TXSTATUS extern void dhd_wlfc_txcomplete(dhd_pub_t *dhd, void *txp, bool success); #endif #ifdef DHD_DEBUG /* Device console log buffer state */ #define CONSOLE_LINE_MAX 192 #define CONSOLE_BUFFER_MAX 2024 typedef struct dhd_console { uint count; /* Poll interval msec counter */ uint log_addr; /* Log struct address (fixed) */ hndrte_log_t log; /* Log struct (host copy) */ uint bufsize; /* Size of log buffer */ uint8 *buf; /* Log buffer (host copy) */ uint last; /* Last buffer read index */ } dhd_console_t; #endif /* DHD_DEBUG */ #define REMAP_ENAB(bus) ((bus)->remap) #define REMAP_ISADDR(bus, a) (((a) >= ((bus)->orig_ramsize)) && ((a) < ((bus)->ramsize))) #define KSO_ENAB(bus) ((bus)->kso) #define SLPAUTO_ENAB(bus) ((bus)->_slpauto) #define OOB_WAKEUP_ENAB(bus) ((bus)->_oobwakeup) #define GPIO_DEV_SRSTATE 16 /* Host gpio17 mapped to device gpio0 SR state */ #define GPIO_DEV_SRSTATE_TIMEOUT 320000 /* 320ms */ #define GPIO_DEV_WAKEUP 17 /* Host gpio17 mapped to device gpio1 wakeup */ #define CC_CHIPCTRL2_GPIO1_WAKEUP (1 << 0) /* Private data for SDIO bus interaction */ typedef struct dhd_bus { dhd_pub_t *dhd; bcmsdh_info_t *sdh; /* Handle for BCMSDH calls */ si_t *sih; /* Handle for SI calls */ char *vars; /* Variables (from CIS and/or other) */ uint varsz; /* Size of variables buffer */ uint32 sbaddr; /* Current SB window pointer (-1, invalid) */ sdpcmd_regs_t *regs; /* Registers for SDIO core */ uint sdpcmrev; /* SDIO core revision */ uint armrev; /* CPU core revision */ uint ramrev; /* SOCRAM core revision */ uint32 ramsize; /* Size of RAM in SOCRAM (bytes) */ uint32 orig_ramsize; /* Size of RAM in SOCRAM (bytes) */ uint32 bus; /* gSPI or SDIO bus */ uint32 hostintmask; /* Copy of Host Interrupt Mask */ uint32 intstatus; /* Intstatus bits (events) pending */ bool dpc_sched; /* Indicates DPC schedule (intrpt rcvd) */ bool fcstate; /* State of dongle flow-control */ uint16 cl_devid; /* cached devid for dhdsdio_probe_attach() */ char *fw_path; /* module_param: path to firmware image */ char *nv_path; /* module_param: path to nvram vars file */ const char *nvram_params; /* user specified nvram params. */ uint blocksize; /* Block size of SDIO transfers */ uint roundup; /* Max roundup limit */ struct pktq txq; /* Queue length used for flow-control */ uint8 flowcontrol; /* per prio flow control bitmask */ uint8 tx_seq; /* Transmit sequence number (next) */ uint8 tx_max; /* Maximum transmit sequence allowed */ uint8 hdrbuf[MAX_HDR_READ + DHD_SDALIGN]; uint8 *rxhdr; /* Header of current rx frame (in hdrbuf) */ uint16 nextlen; /* Next Read Len from last header */ uint8 rx_seq; /* Receive sequence number (expected) */ bool rxskip; /* Skip receive (awaiting NAK ACK) */ void *glomd; /* Packet containing glomming descriptor */ void *glom; /* Packet chain for glommed superframe */ uint glomerr; /* Glom packet read errors */ uint8 *rxbuf; /* Buffer for receiving control packets */ uint rxblen; /* Allocated length of rxbuf */ uint8 *rxctl; /* Aligned pointer into rxbuf */ uint8 *databuf; /* Buffer for receiving big glom packet */ uint8 *dataptr; /* Aligned pointer into databuf */ uint rxlen; /* Length of valid data in buffer */ uint8 sdpcm_ver; /* Bus protocol reported by dongle */ bool intr; /* Use interrupts */ bool poll; /* Use polling */ bool ipend; /* Device interrupt is pending */ bool intdis; /* Interrupts disabled by isr */ uint intrcount; /* Count of device interrupt callbacks */ uint lastintrs; /* Count as of last watchdog timer */ uint spurious; /* Count of spurious interrupts */ uint pollrate; /* Ticks between device polls */ uint polltick; /* Tick counter */ uint pollcnt; /* Count of active polls */ #ifdef DHD_DEBUG dhd_console_t console; /* Console output polling support */ uint console_addr; /* Console address from shared struct */ #endif /* DHD_DEBUG */ uint regfails; /* Count of R_REG/W_REG failures */ uint clkstate; /* State of sd and backplane clock(s) */ bool activity; /* Activity flag for clock down */ int32 idletime; /* Control for activity timeout */ int32 idlecount; /* Activity timeout counter */ int32 idleclock; /* How to set bus driver when idle */ int32 sd_divisor; /* Speed control to bus driver */ int32 sd_mode; /* Mode control to bus driver */ int32 sd_rxchain; /* If bcmsdh api accepts PKT chains */ bool use_rxchain; /* If dhd should use PKT chains */ bool sleeping; /* Is SDIO bus sleeping? */ uint rxflow_mode; /* Rx flow control mode */ bool rxflow; /* Is rx flow control on */ uint prev_rxlim_hit; /* Is prev rx limit exceeded (per dpc schedule) */ bool alp_only; /* Don't use HT clock (ALP only) */ /* Field to decide if rx of control frames happen in rxbuf or lb-pool */ bool usebufpool; #ifdef SDTEST /* external loopback */ bool ext_loop; uint8 loopid; /* pktgen configuration */ uint pktgen_freq; /* Ticks between bursts */ uint pktgen_count; /* Packets to send each burst */ uint pktgen_print; /* Bursts between count displays */ uint pktgen_total; /* Stop after this many */ uint pktgen_minlen; /* Minimum packet data len */ uint pktgen_maxlen; /* Maximum packet data len */ uint pktgen_mode; /* Configured mode: tx, rx, or echo */ uint pktgen_stop; /* Number of tx failures causing stop */ /* active pktgen fields */ uint pktgen_tick; /* Tick counter for bursts */ uint pktgen_ptick; /* Burst counter for printing */ uint pktgen_sent; /* Number of test packets generated */ uint pktgen_rcvd; /* Number of test packets received */ uint pktgen_fail; /* Number of failed send attempts */ uint16 pktgen_len; /* Length of next packet to send */ #define PKTGEN_RCV_IDLE (0) #define PKTGEN_RCV_ONGOING (1) uint16 pktgen_rcv_state; /* receive state */ uint pktgen_rcvd_rcvsession; /* test pkts rcvd per rcv session. */ #endif /* SDTEST */ /* Some additional counters */ uint tx_sderrs; /* Count of tx attempts with sd errors */ uint fcqueued; /* Tx packets that got queued */ uint rxrtx; /* Count of rtx requests (NAK to dongle) */ uint rx_toolong; /* Receive frames too long to receive */ uint rxc_errors; /* SDIO errors when reading control frames */ uint rx_hdrfail; /* SDIO errors on header reads */ uint rx_badhdr; /* Bad received headers (roosync?) */ uint rx_badseq; /* Mismatched rx sequence number */ uint fc_rcvd; /* Number of flow-control events received */ uint fc_xoff; /* Number which turned on flow-control */ uint fc_xon; /* Number which turned off flow-control */ uint rxglomfail; /* Failed deglom attempts */ uint rxglomframes; /* Number of glom frames (superframes) */ uint rxglompkts; /* Number of packets from glom frames */ uint f2rxhdrs; /* Number of header reads */ uint f2rxdata; /* Number of frame data reads */ uint f2txdata; /* Number of f2 frame writes */ uint f1regdata; /* Number of f1 register accesses */ uint8 *ctrl_frame_buf; uint32 ctrl_frame_len; bool ctrl_frame_stat; uint32 rxint_mode; /* rx interrupt mode */ bool remap; /* Contiguous 1MB RAM: 512K socram + 512K devram * Available with socram rev 16 * Remap region not DMA-able */ bool kso; bool _slpauto; bool _oobwakeup; } dhd_bus_t; /* clkstate */ #define CLK_NONE 0 #define CLK_SDONLY 1 #define CLK_PENDING 2 /* Not used yet */ #define CLK_AVAIL 3 #define DHD_NOPMU(dhd) (FALSE) #ifdef DHD_DEBUG static int qcount[NUMPRIO]; static int tx_packets[NUMPRIO]; #endif /* DHD_DEBUG */ /* Deferred transmit */ const uint dhd_deferred_tx = 1; extern uint dhd_watchdog_ms; extern void dhd_os_wd_timer(void *bus, uint wdtick); /* Tx/Rx bounds */ uint dhd_txbound; uint dhd_rxbound; uint dhd_txminmax = DHD_TXMINMAX; /* override the RAM size if possible */ #define DONGLE_MIN_MEMSIZE (128 *1024) int dhd_dongle_memsize; static bool dhd_doflow; static bool dhd_alignctl; static bool sd1idle; static bool retrydata; #define RETRYCHAN(chan) (((chan) == SDPCM_EVENT_CHANNEL) || retrydata) static const uint watermark = 8; static const uint mesbusyctrl = 0; static const uint firstread = DHD_FIRSTREAD; #define HDATLEN (firstread - (SDPCM_HDRLEN)) /* Retry count for register access failures */ static const uint retry_limit = 2; /* Force even SD lengths (some host controllers mess up on odd bytes) */ static bool forcealign; /* Flag to indicate if we should download firmware on driver load */ uint dhd_download_fw_on_driverload = TRUE; #define ALIGNMENT 4 #if defined(OOB_INTR_ONLY) && defined(HW_OOB) extern void bcmsdh_enable_hw_oob_intr(void *sdh, bool enable); #endif #if defined(OOB_INTR_ONLY) && defined(SDIO_ISR_THREAD) #error OOB_INTR_ONLY is NOT working with SDIO_ISR_THREAD #endif /* defined(OOB_INTR_ONLY) && defined(SDIO_ISR_THREAD) */ #define PKTALIGN(osh, p, len, align) \ do { \ uint datalign; \ datalign = (uintptr)PKTDATA((osh), (p)); \ datalign = ROUNDUP(datalign, (align)) - datalign; \ ASSERT(datalign < (align)); \ ASSERT(PKTLEN((osh), (p)) >= ((len) + datalign)); \ if (datalign) \ PKTPULL((osh), (p), datalign); \ PKTSETLEN((osh), (p), (len)); \ } while (0) /* Limit on rounding up frames */ static const uint max_roundup = 512; /* Try doing readahead */ static bool dhd_readahead; /* To check if there's window offered */ #define DATAOK(bus) \ (((uint8)(bus->tx_max - bus->tx_seq) > 1) && \ (((uint8)(bus->tx_max - bus->tx_seq) & 0x80) == 0)) /* To check if there's window offered for ctrl frame */ #define TXCTLOK(bus) \ (((uint8)(bus->tx_max - bus->tx_seq) != 0) && \ (((uint8)(bus->tx_max - bus->tx_seq) & 0x80) == 0)) /* Macros to get register read/write status */ /* NOTE: these assume a local dhdsdio_bus_t *bus! */ #define R_SDREG(regvar, regaddr, retryvar) \ do { \ retryvar = 0; \ do { \ regvar = R_REG(bus->dhd->osh, regaddr); \ } while (bcmsdh_regfail(bus->sdh) && (++retryvar <= retry_limit)); \ if (retryvar) { \ bus->regfails += (retryvar-1); \ if (retryvar > retry_limit) { \ DHD_ERROR(("%s: FAILED" #regvar "READ, LINE %d\n", \ __FUNCTION__, __LINE__)); \ regvar = 0; \ } \ } \ } while (0) #define W_SDREG(regval, regaddr, retryvar) \ do { \ retryvar = 0; \ do { \ W_REG(bus->dhd->osh, regaddr, regval); \ } while (bcmsdh_regfail(bus->sdh) && (++retryvar <= retry_limit)); \ if (retryvar) { \ bus->regfails += (retryvar-1); \ if (retryvar > retry_limit) \ DHD_ERROR(("%s: FAILED REGISTER WRITE, LINE %d\n", \ __FUNCTION__, __LINE__)); \ } \ } while (0) #define BUS_WAKE(bus) \ do { \ if ((bus)->sleeping) \ dhdsdio_bussleep((bus), FALSE); \ } while (0); /* * pktavail interrupts from dongle to host can be managed in 3 different ways * whenever there is a packet available in dongle to transmit to host. * * Mode 0: Dongle writes the software host mailbox and host is interrupted. * Mode 1: (sdiod core rev >= 4) * Device sets a new bit in the intstatus whenever there is a packet * available in fifo. Host can't clear this specific status bit until all the * packets are read from the FIFO. No need to ack dongle intstatus. * Mode 2: (sdiod core rev >= 4) * Device sets a bit in the intstatus, and host acks this by writing * one to this bit. Dongle won't generate anymore packet interrupts * until host reads all the packets from the dongle and reads a zero to * figure that there are no more packets. No need to disable host ints. * Need to ack the intstatus. */ #define SDIO_DEVICE_HMB_RXINT 0 /* default old way */ #define SDIO_DEVICE_RXDATAINT_MODE_0 1 /* from sdiod rev 4 */ #define SDIO_DEVICE_RXDATAINT_MODE_1 2 /* from sdiod rev 4 */ #define FRAME_AVAIL_MASK(bus) \ ((bus->rxint_mode == SDIO_DEVICE_HMB_RXINT) ? I_HMB_FRAME_IND : I_XMTDATA_AVAIL) #define DHD_BUS SDIO_BUS #define PKT_AVAILABLE(bus, intstatus) ((intstatus) & (FRAME_AVAIL_MASK(bus))) #define HOSTINTMASK (I_HMB_SW_MASK | I_CHIPACTIVE) #define GSPI_PR55150_BAILOUT #ifdef SDTEST static void dhdsdio_testrcv(dhd_bus_t *bus, void *pkt, uint seq); static void dhdsdio_sdtest_set(dhd_bus_t *bus, uint8 count); #endif #ifdef DHD_DEBUG static int dhdsdio_checkdied(dhd_bus_t *bus, char *data, uint size); static int dhd_serialconsole(dhd_bus_t *bus, bool get, bool enable, int *bcmerror); #endif /* DHD_DEBUG */ static int dhdsdio_devcap_set(dhd_bus_t *bus, uint8 cap); static int dhdsdio_download_state(dhd_bus_t *bus, bool enter); static void dhdsdio_release(dhd_bus_t *bus, osl_t *osh); static void dhdsdio_release_malloc(dhd_bus_t *bus, osl_t *osh); static void dhdsdio_disconnect(void *ptr); static bool dhdsdio_chipmatch(uint16 chipid); static bool dhdsdio_probe_attach(dhd_bus_t *bus, osl_t *osh, void *sdh, void * regsva, uint16 devid); static bool dhdsdio_probe_malloc(dhd_bus_t *bus, osl_t *osh, void *sdh); static bool dhdsdio_probe_init(dhd_bus_t *bus, osl_t *osh, void *sdh); static void dhdsdio_release_dongle(dhd_bus_t *bus, osl_t *osh, bool dongle_isolation, bool reset_flag); static void dhd_dongle_setmemsize(struct dhd_bus *bus, int mem_size); static int dhd_bcmsdh_recv_buf(dhd_bus_t *bus, uint32 addr, uint fn, uint flags, uint8 *buf, uint nbytes, void *pkt, bcmsdh_cmplt_fn_t complete, void *handle); static int dhd_bcmsdh_send_buf(dhd_bus_t *bus, uint32 addr, uint fn, uint flags, uint8 *buf, uint nbytes, void *pkt, bcmsdh_cmplt_fn_t complete, void *handle); static bool dhdsdio_download_firmware(dhd_bus_t *bus, osl_t *osh, void *sdh); static int _dhdsdio_download_firmware(dhd_bus_t *bus); static int dhdsdio_download_code_file(dhd_bus_t *bus, char *image_path); static int dhdsdio_download_nvram(dhd_bus_t *bus); #ifdef BCMEMBEDIMAGE static int dhdsdio_download_code_array(dhd_bus_t *bus); #endif static int dhdsdio_bussleep(dhd_bus_t *bus, bool sleep); static int dhdsdio_clkctl(dhd_bus_t *bus, uint target, bool pendok); static uint8 dhdsdio_sleepcsr_get(dhd_bus_t *bus); #ifdef WLMEDIA_HTSF #include <htsf.h> extern uint32 dhd_get_htsf(void *dhd, int ifidx); #endif /* WLMEDIA_HTSF */ static void dhd_dongle_setmemsize(struct dhd_bus *bus, int mem_size) { int32 min_size = DONGLE_MIN_MEMSIZE; /* Restrict the memsize to user specified limit */ DHD_ERROR(("user: Restrict the dongle ram size to %d, min accepted %d\n", dhd_dongle_memsize, min_size)); if ((dhd_dongle_memsize > min_size) && (dhd_dongle_memsize < (int32)bus->orig_ramsize)) bus->ramsize = dhd_dongle_memsize; } static int dhdsdio_set_siaddr_window(dhd_bus_t *bus, uint32 address) { int err = 0; bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRLOW, (address >> 8) & SBSDIO_SBADDRLOW_MASK, &err); if (!err) bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRMID, (address >> 16) & SBSDIO_SBADDRMID_MASK, &err); if (!err) bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRHIGH, (address >> 24) & SBSDIO_SBADDRHIGH_MASK, &err); return err; } #ifdef USE_OOB_GPIO1 static int dhdsdio_oobwakeup_init(dhd_bus_t *bus) { uint32 val, addr, data; bcmsdh_gpioouten(bus->sdh, GPIO_DEV_WAKEUP); addr = SI_ENUM_BASE + OFFSETOF(chipcregs_t, chipcontrol_addr); data = SI_ENUM_BASE + OFFSETOF(chipcregs_t, chipcontrol_data); /* Set device for gpio1 wakeup */ bcmsdh_reg_write(bus->sdh, addr, 4, 2); val = bcmsdh_reg_read(bus->sdh, data, 4); val |= CC_CHIPCTRL2_GPIO1_WAKEUP; bcmsdh_reg_write(bus->sdh, data, 4, val); bus->_oobwakeup = TRUE; return 0; } #endif /* USE_OOB_GPIO1 */ /* * FIX: Be sure KSO bit is enabled * Currently, it's defaulting to 0 which should be 1. */ static int dhdsdio_clk_kso_init(dhd_bus_t *bus) { uint8 val; int err = 0; /* set flag */ bus->kso = TRUE; /* * Enable KeepSdioOn (KSO) bit for normal operation * Default is 0 (4334A0) so set it. Fixed in B0. */ val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SLEEPCSR, NULL); if (!(val & SBSDIO_FUNC1_SLEEPCSR_KSO_MASK)) { val |= (SBSDIO_FUNC1_SLEEPCSR_KSO_EN << SBSDIO_FUNC1_SLEEPCSR_KSO_SHIFT); bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SLEEPCSR, val, &err); if (err) DHD_ERROR(("%s: SBSDIO_FUNC1_SLEEPCSR err: 0x%x\n", __FUNCTION__, err)); } return 0; } static int dhdsdio_clk_kso_enab(dhd_bus_t *bus, bool on) { uint8 val = 0; int err = 0; /* Don't read here since sdio could be off so just write only */ val |= (on << SBSDIO_FUNC1_SLEEPCSR_KSO_SHIFT); bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SLEEPCSR, val, &err); if (err) DHD_TRACE(("%s: KSO toggle %d failed: %d\n", __FUNCTION__, on, err)); return 0; } static int dhdsdio_clk_kso_iovar(dhd_bus_t *bus, bool on) { int err = 0; if (on == FALSE) { BUS_WAKE(bus); dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); DHD_ERROR(("%s: KSO disable clk: 0x%x\n", __FUNCTION__, bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err))); dhdsdio_clk_kso_enab(bus, FALSE); } else { DHD_ERROR(("%s: KSO enable\n", __FUNCTION__)); /* Make sure we have SD bus access */ if (bus->clkstate == CLK_NONE) { DHD_ERROR(("%s: Request SD clk\n", __FUNCTION__)); dhdsdio_clkctl(bus, CLK_SDONLY, FALSE); } /* Double-write to be safe in case transition of AOS */ dhdsdio_clk_kso_enab(bus, TRUE); dhdsdio_clk_kso_enab(bus, TRUE); OSL_DELAY(4000); /* Wait for device ready during transition to wake-up */ SPINWAIT(((dhdsdio_sleepcsr_get(bus)) != (SBSDIO_FUNC1_SLEEPCSR_KSO_MASK | SBSDIO_FUNC1_SLEEPCSR_DEVON_MASK)), (10000)); DHD_ERROR(("%s: sleepcsr: 0x%x\n", __FUNCTION__, dhdsdio_sleepcsr_get(bus))); } bus->kso = on; BCM_REFERENCE(err); return 0; } static uint8 dhdsdio_sleepcsr_get(dhd_bus_t *bus) { int err = 0; uint8 val = 0; val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SLEEPCSR, &err); if (err) DHD_TRACE(("Failed to read SLEEPCSR: %d\n", err)); return val; } uint8 dhdsdio_devcap_get(dhd_bus_t *bus) { return bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_BRCM_CARDCAP, NULL); } static int dhdsdio_devcap_set(dhd_bus_t *bus, uint8 cap) { int err = 0; bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_BRCM_CARDCAP, cap, &err); if (err) DHD_ERROR(("%s: devcap set err: 0x%x\n", __FUNCTION__, err)); return 0; } static int dhdsdio_clk_devsleep_iovar(dhd_bus_t *bus, bool on) { int err = 0, retry; uint8 val; retry = 0; if (on == TRUE) { /* Enter Sleep */ /* Be sure we request clk before going to sleep * so we can wake-up with clk request already set * else device can go back to sleep immediately */ if (!SLPAUTO_ENAB(bus)) dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); else { val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err); if ((val & SBSDIO_CSR_MASK) == 0) { DHD_ERROR(("%s: No clock before enter sleep:0x%x\n", __FUNCTION__, val)); /* Reset clock request */ bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, SBSDIO_ALP_AVAIL_REQ, &err); DHD_ERROR(("%s: clock before sleep:0x%x\n", __FUNCTION__, bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err))); } } DHD_TRACE(("%s: clk before sleep: 0x%x\n", __FUNCTION__, bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err))); #ifdef USE_CMD14 err = bcmsdh_sleep(bus->sdh, TRUE); #else err = dhdsdio_clk_kso_enab(bus, FALSE); if (OOB_WAKEUP_ENAB(bus)) err = bcmsdh_gpioout(bus->sdh, GPIO_DEV_WAKEUP, FALSE); /* GPIO_1 is off */ #endif } else { /* Exit Sleep */ /* Make sure we have SD bus access */ if (bus->clkstate == CLK_NONE) { DHD_TRACE(("%s: Request SD clk\n", __FUNCTION__)); dhdsdio_clkctl(bus, CLK_SDONLY, FALSE); } if ((bus->sih->chip == BCM4334_CHIP_ID) && (bus->sih->chiprev == 2)) { SPINWAIT((bcmsdh_gpioin(bus->sdh, GPIO_DEV_SRSTATE) != TRUE), GPIO_DEV_SRSTATE_TIMEOUT); if (bcmsdh_gpioin(bus->sdh, GPIO_DEV_SRSTATE) == FALSE) { DHD_ERROR(("ERROR: GPIO_DEV_SRSTATE still low!\n")); } } #ifdef USE_CMD14 err = bcmsdh_sleep(bus->sdh, FALSE); if (SLPAUTO_ENAB(bus) && (err != 0)) { OSL_DELAY(10000); DHD_TRACE(("%s: Resync device sleep\n", __FUNCTION__)); /* Toggle sleep to resync with host and device */ err = bcmsdh_sleep(bus->sdh, TRUE); OSL_DELAY(10000); err = bcmsdh_sleep(bus->sdh, FALSE); if (err) { OSL_DELAY(10000); DHD_ERROR(("%s: CMD14 exit failed again!\n", __FUNCTION__)); /* Toggle sleep to resync with host and device */ err = bcmsdh_sleep(bus->sdh, TRUE); OSL_DELAY(10000); err = bcmsdh_sleep(bus->sdh, FALSE); if (err) { DHD_ERROR(("%s: CMD14 exit failed twice!\n", __FUNCTION__)); DHD_ERROR(("%s: FATAL: Device non-response!\n", __FUNCTION__)); err = 0; } } } #else if (OOB_WAKEUP_ENAB(bus)) err = bcmsdh_gpioout(bus->sdh, GPIO_DEV_WAKEUP, TRUE); /* GPIO_1 is on */ do { err = dhdsdio_clk_kso_enab(bus, TRUE); OSL_DELAY(10000); } while ((err != 0) && (++retry < 3)); if (err != 0) { DHD_ERROR(("ERROR: kso set failed retry: %d\n", retry)); err = 0; /* continue anyway */ } #endif /* !USE_CMD14 */ if (err == 0) { uint8 csr; /* Wait for device ready during transition to wake-up */ SPINWAIT((((csr = dhdsdio_sleepcsr_get(bus)) & SBSDIO_FUNC1_SLEEPCSR_DEVON_MASK) != (SBSDIO_FUNC1_SLEEPCSR_DEVON_MASK)), (10000)); DHD_TRACE(("%s: ExitSleep sleepcsr: 0x%x\n", __FUNCTION__, csr)); if (!(csr & SBSDIO_FUNC1_SLEEPCSR_DEVON_MASK)) { DHD_ERROR(("%s:ERROR: ExitSleep device NOT Ready! 0x%x\n", __FUNCTION__, csr)); err = BCME_NODEVICE; } SPINWAIT((((csr = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err)) & SBSDIO_HT_AVAIL) != (SBSDIO_HT_AVAIL)), (10000)); } } /* Update if successful */ if (err == 0) bus->kso = on ? FALSE : TRUE; else { DHD_ERROR(("%s: Sleep request failed: on:%d err:%d\n", __FUNCTION__, on, err)); } return err; } /* Turn backplane clock on or off */ static int dhdsdio_htclk(dhd_bus_t *bus, bool on, bool pendok) { int err; uint8 clkctl, clkreq, devctl; bcmsdh_info_t *sdh; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); #if defined(OOB_INTR_ONLY) pendok = FALSE; #endif clkctl = 0; sdh = bus->sdh; if (!KSO_ENAB(bus)) return BCME_OK; if (SLPAUTO_ENAB(bus)) { bus->clkstate = (on ? CLK_AVAIL : CLK_SDONLY); return BCME_OK; } if (on) { /* Request HT Avail */ clkreq = bus->alp_only ? SBSDIO_ALP_AVAIL_REQ : SBSDIO_HT_AVAIL_REQ; bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, clkreq, &err); if (err) { DHD_ERROR(("%s: HT Avail request error: %d\n", __FUNCTION__, err)); return BCME_ERROR; } if (pendok && ((bus->sih->buscoretype == PCMCIA_CORE_ID) && (bus->sih->buscorerev == 9))) { uint32 dummy, retries; R_SDREG(dummy, &bus->regs->clockctlstatus, retries); BCM_REFERENCE(dummy); } /* Check current status */ clkctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (err) { DHD_ERROR(("%s: HT Avail read error: %d\n", __FUNCTION__, err)); return BCME_ERROR; } /* Go to pending and await interrupt if appropriate */ if (!SBSDIO_CLKAV(clkctl, bus->alp_only) && pendok) { /* Allow only clock-available interrupt */ devctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err); if (err) { DHD_ERROR(("%s: Devctl access error setting CA: %d\n", __FUNCTION__, err)); return BCME_ERROR; } devctl |= SBSDIO_DEVCTL_CA_INT_ONLY; bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, devctl, &err); DHD_INFO(("CLKCTL: set PENDING\n")); bus->clkstate = CLK_PENDING; return BCME_OK; } else if (bus->clkstate == CLK_PENDING) { /* Cancel CA-only interrupt filter */ devctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err); devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY; bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, devctl, &err); } /* Otherwise, wait here (polling) for HT Avail */ if (!SBSDIO_CLKAV(clkctl, bus->alp_only)) { SPINWAIT_SLEEP(sdioh_spinwait_sleep, ((clkctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err)), !SBSDIO_CLKAV(clkctl, bus->alp_only)), PMU_MAX_TRANSITION_DLY); } if (err) { DHD_ERROR(("%s: HT Avail request error: %d\n", __FUNCTION__, err)); return BCME_ERROR; } if (!SBSDIO_CLKAV(clkctl, bus->alp_only)) { DHD_ERROR(("%s: HT Avail timeout (%d): clkctl 0x%02x\n", __FUNCTION__, PMU_MAX_TRANSITION_DLY, clkctl)); return BCME_ERROR; } /* Mark clock available */ bus->clkstate = CLK_AVAIL; DHD_INFO(("CLKCTL: turned ON\n")); #if defined(DHD_DEBUG) if (bus->alp_only == TRUE) { #if !defined(BCMLXSDMMC) if (!SBSDIO_ALPONLY(clkctl)) { DHD_ERROR(("%s: HT Clock, when ALP Only\n", __FUNCTION__)); } #endif /* !defined(BCMLXSDMMC) */ } else { if (SBSDIO_ALPONLY(clkctl)) { DHD_ERROR(("%s: HT Clock should be on.\n", __FUNCTION__)); } } #endif /* defined (DHD_DEBUG) */ bus->activity = TRUE; } else { clkreq = 0; if (bus->clkstate == CLK_PENDING) { /* Cancel CA-only interrupt filter */ devctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err); devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY; bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, devctl, &err); } bus->clkstate = CLK_SDONLY; bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, clkreq, &err); DHD_INFO(("CLKCTL: turned OFF\n")); if (err) { DHD_ERROR(("%s: Failed access turning clock off: %d\n", __FUNCTION__, err)); return BCME_ERROR; } } return BCME_OK; } /* Change idle/active SD state */ static int dhdsdio_sdclk(dhd_bus_t *bus, bool on) { int err; int32 iovalue; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (on) { if (bus->idleclock == DHD_IDLE_STOP) { /* Turn on clock and restore mode */ iovalue = 1; err = bcmsdh_iovar_op(bus->sdh, "sd_clock", NULL, 0, &iovalue, sizeof(iovalue), TRUE); if (err) { DHD_ERROR(("%s: error enabling sd_clock: %d\n", __FUNCTION__, err)); return BCME_ERROR; } iovalue = bus->sd_mode; err = bcmsdh_iovar_op(bus->sdh, "sd_mode", NULL, 0, &iovalue, sizeof(iovalue), TRUE); if (err) { DHD_ERROR(("%s: error changing sd_mode: %d\n", __FUNCTION__, err)); return BCME_ERROR; } } else if (bus->idleclock != DHD_IDLE_ACTIVE) { /* Restore clock speed */ iovalue = bus->sd_divisor; err = bcmsdh_iovar_op(bus->sdh, "sd_divisor", NULL, 0, &iovalue, sizeof(iovalue), TRUE); if (err) { DHD_ERROR(("%s: error restoring sd_divisor: %d\n", __FUNCTION__, err)); return BCME_ERROR; } } bus->clkstate = CLK_SDONLY; } else { /* Stop or slow the SD clock itself */ if ((bus->sd_divisor == -1) || (bus->sd_mode == -1)) { DHD_TRACE(("%s: can't idle clock, divisor %d mode %d\n", __FUNCTION__, bus->sd_divisor, bus->sd_mode)); return BCME_ERROR; } if (bus->idleclock == DHD_IDLE_STOP) { if (sd1idle) { /* Change to SD1 mode and turn off clock */ iovalue = 1; err = bcmsdh_iovar_op(bus->sdh, "sd_mode", NULL, 0, &iovalue, sizeof(iovalue), TRUE); if (err) { DHD_ERROR(("%s: error changing sd_clock: %d\n", __FUNCTION__, err)); return BCME_ERROR; } } iovalue = 0; err = bcmsdh_iovar_op(bus->sdh, "sd_clock", NULL, 0, &iovalue, sizeof(iovalue), TRUE); if (err) { DHD_ERROR(("%s: error disabling sd_clock: %d\n", __FUNCTION__, err)); return BCME_ERROR; } } else if (bus->idleclock != DHD_IDLE_ACTIVE) { /* Set divisor to idle value */ iovalue = bus->idleclock; err = bcmsdh_iovar_op(bus->sdh, "sd_divisor", NULL, 0, &iovalue, sizeof(iovalue), TRUE); if (err) { DHD_ERROR(("%s: error changing sd_divisor: %d\n", __FUNCTION__, err)); return BCME_ERROR; } } bus->clkstate = CLK_NONE; } return BCME_OK; } /* Transition SD and backplane clock readiness */ static int dhdsdio_clkctl(dhd_bus_t *bus, uint target, bool pendok) { int ret = BCME_OK; #ifdef DHD_DEBUG uint oldstate = bus->clkstate; #endif /* DHD_DEBUG */ DHD_TRACE(("%s: Enter\n", __FUNCTION__)); /* Early exit if we're already there */ if (bus->clkstate == target) { if (target == CLK_AVAIL) { dhd_os_wd_timer(bus->dhd, dhd_watchdog_ms); bus->activity = TRUE; } return ret; } switch (target) { case CLK_AVAIL: /* Make sure SD clock is available */ if (bus->clkstate == CLK_NONE) dhdsdio_sdclk(bus, TRUE); /* Now request HT Avail on the backplane */ ret = dhdsdio_htclk(bus, TRUE, pendok); if (ret == BCME_OK) { dhd_os_wd_timer(bus->dhd, dhd_watchdog_ms); bus->activity = TRUE; } break; case CLK_SDONLY: /* Remove HT request, or bring up SD clock */ if (bus->clkstate == CLK_NONE) ret = dhdsdio_sdclk(bus, TRUE); else if (bus->clkstate == CLK_AVAIL) ret = dhdsdio_htclk(bus, FALSE, FALSE); else DHD_ERROR(("dhdsdio_clkctl: request for %d -> %d\n", bus->clkstate, target)); if (ret == BCME_OK) { dhd_os_wd_timer(bus->dhd, dhd_watchdog_ms); } break; case CLK_NONE: /* Make sure to remove HT request */ if (bus->clkstate == CLK_AVAIL) ret = dhdsdio_htclk(bus, FALSE, FALSE); /* Now remove the SD clock */ ret = dhdsdio_sdclk(bus, FALSE); #ifdef DHD_DEBUG if (dhd_console_ms == 0) #endif /* DHD_DEBUG */ dhd_os_wd_timer(bus->dhd, 0); break; } #ifdef DHD_DEBUG DHD_INFO(("dhdsdio_clkctl: %d -> %d\n", oldstate, bus->clkstate)); #endif /* DHD_DEBUG */ return ret; } static int dhdsdio_bussleep(dhd_bus_t *bus, bool sleep) { int err = 0; bcmsdh_info_t *sdh = bus->sdh; sdpcmd_regs_t *regs = bus->regs; uint retries = 0; DHD_INFO(("dhdsdio_bussleep: request %s (currently %s)\n", (sleep ? "SLEEP" : "WAKE"), (bus->sleeping ? "SLEEP" : "WAKE"))); /* Done if we're already in the requested state */ if (sleep == bus->sleeping) return BCME_OK; /* Going to sleep: set the alarm and turn off the lights... */ if (sleep) { /* Don't sleep if something is pending */ if (bus->dpc_sched || bus->rxskip || pktq_len(&bus->txq)) return BCME_BUSY; if (!SLPAUTO_ENAB(bus)) { /* Disable SDIO interrupts (no longer interested) */ bcmsdh_intr_disable(bus->sdh); /* Make sure the controller has the bus up */ dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); /* Tell device to start using OOB wakeup */ W_SDREG(SMB_USE_OOB, ®s->tosbmailbox, retries); if (retries > retry_limit) DHD_ERROR(("CANNOT SIGNAL CHIP, WILL NOT WAKE UP!!\n")); /* Turn off our contribution to the HT clock request */ dhdsdio_clkctl(bus, CLK_SDONLY, FALSE); bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, SBSDIO_FORCE_HW_CLKREQ_OFF, NULL); /* Isolate the bus */ if (bus->sih->chip != BCM4329_CHIP_ID && bus->sih->chip != BCM4319_CHIP_ID) { bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, SBSDIO_DEVCTL_PADS_ISO, NULL); } } else { /* Leave interrupts enabled since device can exit sleep and * interrupt host */ err = dhdsdio_clk_devsleep_iovar(bus, TRUE /* sleep */); } /* Change state */ bus->sleeping = TRUE; } else { /* Waking up: bus power up is ok, set local state */ if (!SLPAUTO_ENAB(bus)) { bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, 0, &err); /* Force pad isolation off if possible (in case power never toggled) */ bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, 0, NULL); /* Make sure the controller has the bus up */ dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); /* Send misc interrupt to indicate OOB not needed */ W_SDREG(0, ®s->tosbmailboxdata, retries); if (retries <= retry_limit) W_SDREG(SMB_DEV_INT, ®s->tosbmailbox, retries); if (retries > retry_limit) DHD_ERROR(("CANNOT SIGNAL CHIP TO CLEAR OOB!!\n")); /* Make sure we have SD bus access */ dhdsdio_clkctl(bus, CLK_SDONLY, FALSE); /* Enable interrupts again */ if (bus->intr && (bus->dhd->busstate == DHD_BUS_DATA)) { bus->intdis = FALSE; bcmsdh_intr_enable(bus->sdh); } } else { err = dhdsdio_clk_devsleep_iovar(bus, FALSE /* wake */); } if (err == 0) { /* Change state */ bus->sleeping = FALSE; } } return err; } #if defined(OOB_INTR_ONLY) void dhd_enable_oob_intr(struct dhd_bus *bus, bool enable) { #if defined(HW_OOB) bcmsdh_enable_hw_oob_intr(bus->sdh, enable); #else sdpcmd_regs_t *regs = bus->regs; uint retries = 0; dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); if (enable == TRUE) { /* Tell device to start using OOB wakeup */ W_SDREG(SMB_USE_OOB, ®s->tosbmailbox, retries); if (retries > retry_limit) DHD_ERROR(("CANNOT SIGNAL CHIP, WILL NOT WAKE UP!!\n")); } else { /* Send misc interrupt to indicate OOB not needed */ W_SDREG(0, ®s->tosbmailboxdata, retries); if (retries <= retry_limit) W_SDREG(SMB_DEV_INT, ®s->tosbmailbox, retries); } /* Turn off our contribution to the HT clock request */ dhdsdio_clkctl(bus, CLK_SDONLY, FALSE); #endif /* !defined(HW_OOB) */ } #endif /* defined(OOB_INTR_ONLY) */ /* Writes a HW/SW header into the packet and sends it. */ /* Assumes: (a) header space already there, (b) caller holds lock */ static int dhdsdio_txpkt(dhd_bus_t *bus, void *pkt, uint chan, bool free_pkt) { int ret; osl_t *osh; uint8 *frame; uint16 len, pad1 = 0; uint32 swheader; uint retries = 0; bcmsdh_info_t *sdh; void *new; int i; #ifdef WLMEDIA_HTSF char *p; htsfts_t *htsf_ts; #endif DHD_TRACE(("%s: Enter\n", __FUNCTION__)); sdh = bus->sdh; osh = bus->dhd->osh; if (bus->dhd->dongle_reset) { ret = BCME_NOTREADY; goto done; } frame = (uint8*)PKTDATA(osh, pkt); #ifdef WLMEDIA_HTSF if (PKTLEN(osh, pkt) >= 100) { p = PKTDATA(osh, pkt); htsf_ts = (htsfts_t*) (p + HTSF_HOSTOFFSET + 12); if (htsf_ts->magic == HTSFMAGIC) { htsf_ts->c20 = get_cycles(); htsf_ts->t20 = dhd_get_htsf(bus->dhd->info, 0); } } #endif /* WLMEDIA_HTSF */ /* Add alignment padding, allocate new packet if needed */ if ((pad1 = ((uintptr)frame % DHD_SDALIGN))) { if (PKTHEADROOM(osh, pkt) < pad1) { DHD_INFO(("%s: insufficient headroom %d for %d pad1\n", __FUNCTION__, (int)PKTHEADROOM(osh, pkt), pad1)); bus->dhd->tx_realloc++; new = PKTGET(osh, (PKTLEN(osh, pkt) + DHD_SDALIGN), TRUE); if (!new) { DHD_ERROR(("%s: couldn't allocate new %d-byte packet\n", __FUNCTION__, PKTLEN(osh, pkt) + DHD_SDALIGN)); ret = BCME_NOMEM; goto done; } PKTALIGN(osh, new, PKTLEN(osh, pkt), DHD_SDALIGN); bcopy(PKTDATA(osh, pkt), PKTDATA(osh, new), PKTLEN(osh, pkt)); if (free_pkt) PKTFREE(osh, pkt, TRUE); /* free the pkt if canned one is not used */ free_pkt = TRUE; pkt = new; frame = (uint8*)PKTDATA(osh, pkt); ASSERT(((uintptr)frame % DHD_SDALIGN) == 0); pad1 = 0; } else { PKTPUSH(osh, pkt, pad1); frame = (uint8*)PKTDATA(osh, pkt); ASSERT((pad1 + SDPCM_HDRLEN) <= (int) PKTLEN(osh, pkt)); bzero(frame, pad1 + SDPCM_HDRLEN); } } ASSERT(pad1 < DHD_SDALIGN); /* Hardware tag: 2 byte len followed by 2 byte ~len check (all LE) */ len = (uint16)PKTLEN(osh, pkt); *(uint16*)frame = htol16(len); *(((uint16*)frame) + 1) = htol16(~len); /* Software tag: channel, sequence number, data offset */ swheader = ((chan << SDPCM_CHANNEL_SHIFT) & SDPCM_CHANNEL_MASK) | bus->tx_seq | (((pad1 + SDPCM_HDRLEN) << SDPCM_DOFFSET_SHIFT) & SDPCM_DOFFSET_MASK); htol32_ua_store(swheader, frame + SDPCM_FRAMETAG_LEN); htol32_ua_store(0, frame + SDPCM_FRAMETAG_LEN + sizeof(swheader)); #ifdef DHD_DEBUG if (PKTPRIO(pkt) < ARRAYSIZE(tx_packets)) { tx_packets[PKTPRIO(pkt)]++; } if (DHD_BYTES_ON() && (((DHD_CTL_ON() && (chan == SDPCM_CONTROL_CHANNEL)) || (DHD_DATA_ON() && (chan != SDPCM_CONTROL_CHANNEL))))) { prhex("Tx Frame", frame, len); } else if (DHD_HDRS_ON()) { prhex("TxHdr", frame, MIN(len, 16)); } #endif /* Raise len to next SDIO block to eliminate tail command */ if (bus->roundup && bus->blocksize && (len > bus->blocksize)) { uint16 pad2 = bus->blocksize - (len % bus->blocksize); if ((pad2 <= bus->roundup) && (pad2 < bus->blocksize)) #ifdef NOTUSED if (pad2 <= PKTTAILROOM(osh, pkt)) #endif /* NOTUSED */ len += pad2; } else if (len % DHD_SDALIGN) { len += DHD_SDALIGN - (len % DHD_SDALIGN); } /* Some controllers have trouble with odd bytes -- round to even */ if (forcealign && (len & (ALIGNMENT - 1))) { #ifdef NOTUSED if (PKTTAILROOM(osh, pkt)) #endif len = ROUNDUP(len, ALIGNMENT); #ifdef NOTUSED else DHD_ERROR(("%s: sending unrounded %d-byte packet\n", __FUNCTION__, len)); #endif } do { ret = dhd_bcmsdh_send_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC, frame, len, pkt, NULL, NULL); bus->f2txdata++; ASSERT(ret != BCME_PENDING); if (ret == BCME_NODEVICE) { DHD_ERROR(("%s: Device asleep already\n", __FUNCTION__)); } else if (ret < 0) { /* On failure, abort the command and terminate the frame */ DHD_INFO(("%s: sdio error %d, abort command and terminate frame.\n", __FUNCTION__, ret)); bus->tx_sderrs++; bcmsdh_abort(sdh, SDIO_FUNC_2); bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_FRAMECTRL, SFC_WF_TERM, NULL); bus->f1regdata++; for (i = 0; i < 3; i++) { uint8 hi, lo; hi = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WFRAMEBCHI, NULL); lo = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WFRAMEBCLO, NULL); bus->f1regdata += 2; if ((hi == 0) && (lo == 0)) break; } } if (ret == 0) { bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQUENCE_WRAP; } } while ((ret < 0) && retrydata && retries++ < TXRETRIES); done: /* restore pkt buffer pointer before calling tx complete routine */ PKTPULL(osh, pkt, SDPCM_HDRLEN + pad1); #ifdef PROP_TXSTATUS if (bus->dhd->wlfc_state) { dhd_os_sdunlock(bus->dhd); dhd_wlfc_txcomplete(bus->dhd, pkt, ret == 0); dhd_os_sdlock(bus->dhd); } else { #endif /* PROP_TXSTATUS */ dhd_txcomplete(bus->dhd, pkt, ret != 0); if (free_pkt) PKTFREE(osh, pkt, TRUE); #ifdef PROP_TXSTATUS } #endif return ret; } int dhd_bus_txdata(struct dhd_bus *bus, void *pkt) { int ret = BCME_ERROR; osl_t *osh; uint datalen, prec; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); osh = bus->dhd->osh; datalen = PKTLEN(osh, pkt); #ifdef SDTEST /* Push the test header if doing loopback */ if (bus->ext_loop) { uint8* data; PKTPUSH(osh, pkt, SDPCM_TEST_HDRLEN); data = PKTDATA(osh, pkt); *data++ = SDPCM_TEST_ECHOREQ; *data++ = (uint8)bus->loopid++; *data++ = (datalen >> 0); *data++ = (datalen >> 8); datalen += SDPCM_TEST_HDRLEN; } #endif /* SDTEST */ /* Add space for the header */ PKTPUSH(osh, pkt, SDPCM_HDRLEN); ASSERT(ISALIGNED((uintptr)PKTDATA(osh, pkt), 2)); prec = PRIO2PREC((PKTPRIO(pkt) & PRIOMASK)); #ifndef DHDTHREAD /* Lock: we're about to use shared data/code (and SDIO) */ dhd_os_sdlock(bus->dhd); #endif /* DHDTHREAD */ /* Check for existing queue, current flow-control, pending event, or pending clock */ if (dhd_deferred_tx || bus->fcstate || pktq_len(&bus->txq) || bus->dpc_sched || (!DATAOK(bus)) || (bus->flowcontrol & NBITVAL(prec)) || (bus->clkstate != CLK_AVAIL)) { DHD_TRACE(("%s: deferring pktq len %d\n", __FUNCTION__, pktq_len(&bus->txq))); bus->fcqueued++; /* Priority based enq */ dhd_os_sdlock_txq(bus->dhd); if (dhd_prec_enq(bus->dhd, &bus->txq, pkt, prec) == FALSE) { PKTPULL(osh, pkt, SDPCM_HDRLEN); #ifndef DHDTHREAD /* Need to also release txqlock before releasing sdlock. * This thread still has txqlock and releases sdlock. * Deadlock happens when dpc() grabs sdlock first then * attempts to grab txqlock. */ dhd_os_sdunlock_txq(bus->dhd); dhd_os_sdunlock(bus->dhd); #endif #ifdef PROP_TXSTATUS if (bus->dhd->wlfc_state) dhd_wlfc_txcomplete(bus->dhd, pkt, FALSE); else #endif dhd_txcomplete(bus->dhd, pkt, FALSE); #ifndef DHDTHREAD dhd_os_sdlock(bus->dhd); dhd_os_sdlock_txq(bus->dhd); #endif #ifdef PROP_TXSTATUS /* let the caller decide whether to free the packet */ if (!bus->dhd->wlfc_state) #endif PKTFREE(osh, pkt, TRUE); ret = BCME_NORESOURCE; } else ret = BCME_OK; dhd_os_sdunlock_txq(bus->dhd); if ((pktq_len(&bus->txq) >= FCHI) && dhd_doflow) dhd_txflowcontrol(bus->dhd, ALL_INTERFACES, ON); #ifdef DHD_DEBUG if (pktq_plen(&bus->txq, prec) > qcount[prec]) qcount[prec] = pktq_plen(&bus->txq, prec); #endif /* Schedule DPC if needed to send queued packet(s) */ if (dhd_deferred_tx && !bus->dpc_sched) { bus->dpc_sched = TRUE; dhd_sched_dpc(bus->dhd); } } else { #ifdef DHDTHREAD /* Lock: we're about to use shared data/code (and SDIO) */ dhd_os_sdlock(bus->dhd); #endif /* DHDTHREAD */ /* Otherwise, send it now */ BUS_WAKE(bus); /* Make sure back plane ht clk is on, no pending allowed */ dhdsdio_clkctl(bus, CLK_AVAIL, TRUE); #ifndef SDTEST ret = dhdsdio_txpkt(bus, pkt, SDPCM_DATA_CHANNEL, TRUE); #else ret = dhdsdio_txpkt(bus, pkt, (bus->ext_loop ? SDPCM_TEST_CHANNEL : SDPCM_DATA_CHANNEL), TRUE); #endif if (ret) bus->dhd->tx_errors++; else bus->dhd->dstats.tx_bytes += datalen; if ((bus->idletime == DHD_IDLE_IMMEDIATE) && !bus->dpc_sched) { bus->activity = FALSE; dhdsdio_clkctl(bus, CLK_NONE, TRUE); } #ifdef DHDTHREAD dhd_os_sdunlock(bus->dhd); #endif /* DHDTHREAD */ } #ifndef DHDTHREAD dhd_os_sdunlock(bus->dhd); #endif /* DHDTHREAD */ return ret; } static uint dhdsdio_sendfromq(dhd_bus_t *bus, uint maxframes) { void *pkt; uint32 intstatus = 0; uint retries = 0; int ret = 0, prec_out; uint cnt = 0; uint datalen; uint8 tx_prec_map; dhd_pub_t *dhd = bus->dhd; sdpcmd_regs_t *regs = bus->regs; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (!KSO_ENAB(bus)) { DHD_ERROR(("%s: Device asleep\n", __FUNCTION__)); return BCME_NODEVICE; } tx_prec_map = ~bus->flowcontrol; /* Send frames until the limit or some other event */ for (cnt = 0; (cnt < maxframes) && DATAOK(bus); cnt++) { dhd_os_sdlock_txq(bus->dhd); if ((pkt = pktq_mdeq(&bus->txq, tx_prec_map, &prec_out)) == NULL) { dhd_os_sdunlock_txq(bus->dhd); break; } dhd_os_sdunlock_txq(bus->dhd); datalen = PKTLEN(bus->dhd->osh, pkt) - SDPCM_HDRLEN; #ifndef SDTEST ret = dhdsdio_txpkt(bus, pkt, SDPCM_DATA_CHANNEL, TRUE); #else ret = dhdsdio_txpkt(bus, pkt, (bus->ext_loop ? SDPCM_TEST_CHANNEL : SDPCM_DATA_CHANNEL), TRUE); #endif if (ret) bus->dhd->tx_errors++; else bus->dhd->dstats.tx_bytes += datalen; /* In poll mode, need to check for other events */ if (!bus->intr && cnt) { /* Check device status, signal pending interrupt */ R_SDREG(intstatus, ®s->intstatus, retries); bus->f2txdata++; if (bcmsdh_regfail(bus->sdh)) break; if (intstatus & bus->hostintmask) bus->ipend = TRUE; } } /* Deflow-control stack if needed */ if (dhd_doflow && dhd->up && (dhd->busstate == DHD_BUS_DATA) && dhd->txoff && (pktq_len(&bus->txq) < FCLOW)) dhd_txflowcontrol(dhd, ALL_INTERFACES, OFF); return cnt; } int dhd_bus_txctl(struct dhd_bus *bus, uchar *msg, uint msglen) { uint8 *frame; uint16 len; uint32 swheader; uint retries = 0; bcmsdh_info_t *sdh = bus->sdh; uint8 doff = 0; int ret = -1; int i; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (bus->dhd->dongle_reset) return -EIO; /* Back the pointer to make a room for bus header */ frame = msg - SDPCM_HDRLEN; len = (msglen += SDPCM_HDRLEN); /* Add alignment padding (optional for ctl frames) */ if (dhd_alignctl) { if ((doff = ((uintptr)frame % DHD_SDALIGN))) { frame -= doff; len += doff; msglen += doff; bzero(frame, doff + SDPCM_HDRLEN); } ASSERT(doff < DHD_SDALIGN); } doff += SDPCM_HDRLEN; /* Round send length to next SDIO block */ if (bus->roundup && bus->blocksize && (len > bus->blocksize)) { uint16 pad = bus->blocksize - (len % bus->blocksize); if ((pad <= bus->roundup) && (pad < bus->blocksize)) len += pad; } else if (len % DHD_SDALIGN) { len += DHD_SDALIGN - (len % DHD_SDALIGN); } /* Satisfy length-alignment requirements */ if (forcealign && (len & (ALIGNMENT - 1))) len = ROUNDUP(len, ALIGNMENT); ASSERT(ISALIGNED((uintptr)frame, 2)); /* Need to lock here to protect txseq and SDIO tx calls */ dhd_os_sdlock(bus->dhd); BUS_WAKE(bus); /* Make sure backplane clock is on */ dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); /* Hardware tag: 2 byte len followed by 2 byte ~len check (all LE) */ *(uint16*)frame = htol16((uint16)msglen); *(((uint16*)frame) + 1) = htol16(~msglen); /* Software tag: channel, sequence number, data offset */ swheader = ((SDPCM_CONTROL_CHANNEL << SDPCM_CHANNEL_SHIFT) & SDPCM_CHANNEL_MASK) | bus->tx_seq | ((doff << SDPCM_DOFFSET_SHIFT) & SDPCM_DOFFSET_MASK); htol32_ua_store(swheader, frame + SDPCM_FRAMETAG_LEN); htol32_ua_store(0, frame + SDPCM_FRAMETAG_LEN + sizeof(swheader)); if (!TXCTLOK(bus)) { DHD_INFO(("%s: No bus credit bus->tx_max %d, bus->tx_seq %d\n", __FUNCTION__, bus->tx_max, bus->tx_seq)); bus->ctrl_frame_stat = TRUE; /* Send from dpc */ bus->ctrl_frame_buf = frame; bus->ctrl_frame_len = len; dhd_wait_for_event(bus->dhd, &bus->ctrl_frame_stat); if (bus->ctrl_frame_stat == FALSE) { DHD_INFO(("%s: ctrl_frame_stat == FALSE\n", __FUNCTION__)); ret = 0; } else { bus->dhd->txcnt_timeout++; if (!bus->dhd->hang_was_sent) DHD_ERROR(("%s: ctrl_frame_stat == TRUE txcnt_timeout=%d\n", __FUNCTION__, bus->dhd->txcnt_timeout)); ret = -1; bus->ctrl_frame_stat = FALSE; goto done; } } bus->dhd->txcnt_timeout = 0; if (ret == -1) { #ifdef DHD_DEBUG if (DHD_BYTES_ON() && DHD_CTL_ON()) { prhex("Tx Frame", frame, len); } else if (DHD_HDRS_ON()) { prhex("TxHdr", frame, MIN(len, 16)); } #endif do { ret = dhd_bcmsdh_send_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC, frame, len, NULL, NULL, NULL); ASSERT(ret != BCME_PENDING); if (ret == BCME_NODEVICE) { DHD_ERROR(("%s: Device asleep already\n", __FUNCTION__)); } else if (ret < 0) { /* On failure, abort the command and terminate the frame */ DHD_INFO(("%s: sdio error %d, abort command and terminate frame.\n", __FUNCTION__, ret)); bus->tx_sderrs++; bcmsdh_abort(sdh, SDIO_FUNC_2); bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_FRAMECTRL, SFC_WF_TERM, NULL); bus->f1regdata++; for (i = 0; i < 3; i++) { uint8 hi, lo; hi = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WFRAMEBCHI, NULL); lo = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WFRAMEBCLO, NULL); bus->f1regdata += 2; if ((hi == 0) && (lo == 0)) break; } } if (ret == 0) { bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQUENCE_WRAP; } } while ((ret < 0) && retries++ < TXRETRIES); } done: if ((bus->idletime == DHD_IDLE_IMMEDIATE) && !bus->dpc_sched) { bus->activity = FALSE; dhdsdio_clkctl(bus, CLK_NONE, TRUE); } dhd_os_sdunlock(bus->dhd); if (ret) bus->dhd->tx_ctlerrs++; else bus->dhd->tx_ctlpkts++; if (bus->dhd->txcnt_timeout >= MAX_CNTL_TIMEOUT) return -ETIMEDOUT; return ret ? -EIO : 0; } int dhd_bus_rxctl(struct dhd_bus *bus, uchar *msg, uint msglen) { int timeleft; uint rxlen = 0; bool pending; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (bus->dhd->dongle_reset) return -EIO; /* Wait until control frame is available */ timeleft = dhd_os_ioctl_resp_wait(bus->dhd, &bus->rxlen, &pending); dhd_os_sdlock(bus->dhd); rxlen = bus->rxlen; bcopy(bus->rxctl, msg, MIN(msglen, rxlen)); bus->rxlen = 0; dhd_os_sdunlock(bus->dhd); if (rxlen) { DHD_CTL(("%s: resumed on rxctl frame, got %d expected %d\n", __FUNCTION__, rxlen, msglen)); } else if (timeleft == 0) { DHD_ERROR(("%s: resumed on timeout\n", __FUNCTION__)); #ifdef DHD_DEBUG if (!SLPAUTO_ENAB(bus)) { dhd_os_sdlock(bus->dhd); dhdsdio_checkdied(bus, NULL, 0); dhd_os_sdunlock(bus->dhd); } #endif /* DHD_DEBUG */ } else if (pending == TRUE) { DHD_CTL(("%s: canceled\n", __FUNCTION__)); return -ERESTARTSYS; } else { DHD_CTL(("%s: resumed for unknown reason?\n", __FUNCTION__)); #ifdef DHD_DEBUG dhd_os_sdlock(bus->dhd); dhdsdio_checkdied(bus, NULL, 0); dhd_os_sdunlock(bus->dhd); #endif /* DHD_DEBUG */ } if (timeleft == 0) { bus->dhd->rxcnt_timeout++; DHD_ERROR(("%s: rxcnt_timeout=%d\n", __FUNCTION__, bus->dhd->rxcnt_timeout)); } else bus->dhd->rxcnt_timeout = 0; if (rxlen) bus->dhd->rx_ctlpkts++; else bus->dhd->rx_ctlerrs++; if (bus->dhd->rxcnt_timeout >= MAX_CNTL_TIMEOUT) return -ETIMEDOUT; return rxlen ? (int)rxlen : -EIO; } /* IOVar table */ enum { IOV_INTR = 1, IOV_POLLRATE, IOV_SDREG, IOV_SBREG, IOV_SDCIS, IOV_MEMBYTES, IOV_MEMSIZE, #ifdef DHD_DEBUG IOV_CHECKDIED, IOV_SERIALCONS, #endif /* DHD_DEBUG */ IOV_SET_DOWNLOAD_STATE, IOV_SOCRAM_STATE, IOV_FORCEEVEN, IOV_SDIOD_DRIVE, IOV_READAHEAD, IOV_SDRXCHAIN, IOV_ALIGNCTL, IOV_SDALIGN, IOV_DEVRESET, IOV_CPU, #ifdef SDTEST IOV_PKTGEN, IOV_EXTLOOP, #endif /* SDTEST */ IOV_SPROM, IOV_TXBOUND, IOV_RXBOUND, IOV_TXMINMAX, IOV_IDLETIME, IOV_IDLECLOCK, IOV_SD1IDLE, IOV_SLEEP, IOV_DONGLEISOLATION, IOV_KSO, IOV_DEVSLEEP, IOV_DEVCAP, IOV_VARS, #ifdef SOFTAP IOV_FWPATH #endif }; const bcm_iovar_t dhdsdio_iovars[] = { {"intr", IOV_INTR, 0, IOVT_BOOL, 0 }, {"sleep", IOV_SLEEP, 0, IOVT_BOOL, 0 }, {"pollrate", IOV_POLLRATE, 0, IOVT_UINT32, 0 }, {"idletime", IOV_IDLETIME, 0, IOVT_INT32, 0 }, {"idleclock", IOV_IDLECLOCK, 0, IOVT_INT32, 0 }, {"sd1idle", IOV_SD1IDLE, 0, IOVT_BOOL, 0 }, {"membytes", IOV_MEMBYTES, 0, IOVT_BUFFER, 2 * sizeof(int) }, {"memsize", IOV_MEMSIZE, 0, IOVT_UINT32, 0 }, {"dwnldstate", IOV_SET_DOWNLOAD_STATE, 0, IOVT_BOOL, 0 }, {"socram_state", IOV_SOCRAM_STATE, 0, IOVT_BOOL, 0 }, {"vars", IOV_VARS, 0, IOVT_BUFFER, 0 }, {"sdiod_drive", IOV_SDIOD_DRIVE, 0, IOVT_UINT32, 0 }, {"readahead", IOV_READAHEAD, 0, IOVT_BOOL, 0 }, {"sdrxchain", IOV_SDRXCHAIN, 0, IOVT_BOOL, 0 }, {"alignctl", IOV_ALIGNCTL, 0, IOVT_BOOL, 0 }, {"sdalign", IOV_SDALIGN, 0, IOVT_BOOL, 0 }, {"devreset", IOV_DEVRESET, 0, IOVT_BOOL, 0 }, #ifdef DHD_DEBUG {"sdreg", IOV_SDREG, 0, IOVT_BUFFER, sizeof(sdreg_t) }, {"sbreg", IOV_SBREG, 0, IOVT_BUFFER, sizeof(sdreg_t) }, {"sd_cis", IOV_SDCIS, 0, IOVT_BUFFER, DHD_IOCTL_MAXLEN }, {"forcealign", IOV_FORCEEVEN, 0, IOVT_BOOL, 0 }, {"txbound", IOV_TXBOUND, 0, IOVT_UINT32, 0 }, {"rxbound", IOV_RXBOUND, 0, IOVT_UINT32, 0 }, {"txminmax", IOV_TXMINMAX, 0, IOVT_UINT32, 0 }, {"cpu", IOV_CPU, 0, IOVT_BOOL, 0 }, #ifdef DHD_DEBUG {"checkdied", IOV_CHECKDIED, 0, IOVT_BUFFER, 0 }, {"serial", IOV_SERIALCONS, 0, IOVT_UINT32, 0 }, #endif /* DHD_DEBUG */ #endif /* DHD_DEBUG */ #ifdef SDTEST {"extloop", IOV_EXTLOOP, 0, IOVT_BOOL, 0 }, {"pktgen", IOV_PKTGEN, 0, IOVT_BUFFER, sizeof(dhd_pktgen_t) }, #endif /* SDTEST */ {"devcap", IOV_DEVCAP, 0, IOVT_UINT32, 0 }, {"dngl_isolation", IOV_DONGLEISOLATION, 0, IOVT_UINT32, 0 }, {"kso", IOV_KSO, 0, IOVT_UINT32, 0 }, {"devsleep", IOV_DEVSLEEP, 0, IOVT_UINT32, 0 }, #ifdef SOFTAP {"fwpath", IOV_FWPATH, 0, IOVT_BUFFER, 0 }, #endif {NULL, 0, 0, 0, 0 } }; static void dhd_dump_pct(struct bcmstrbuf *strbuf, char *desc, uint num, uint div) { uint q1, q2; if (!div) { bcm_bprintf(strbuf, "%s N/A", desc); } else { q1 = num / div; q2 = (100 * (num - (q1 * div))) / div; bcm_bprintf(strbuf, "%s %d.%02d", desc, q1, q2); } } void dhd_bus_dump(dhd_pub_t *dhdp, struct bcmstrbuf *strbuf) { dhd_bus_t *bus = dhdp->bus; bcm_bprintf(strbuf, "Bus SDIO structure:\n"); bcm_bprintf(strbuf, "hostintmask 0x%08x intstatus 0x%08x sdpcm_ver %d\n", bus->hostintmask, bus->intstatus, bus->sdpcm_ver); bcm_bprintf(strbuf, "fcstate %d qlen %d tx_seq %d, max %d, rxskip %d rxlen %d rx_seq %d\n", bus->fcstate, pktq_len(&bus->txq), bus->tx_seq, bus->tx_max, bus->rxskip, bus->rxlen, bus->rx_seq); bcm_bprintf(strbuf, "intr %d intrcount %d lastintrs %d spurious %d\n", bus->intr, bus->intrcount, bus->lastintrs, bus->spurious); bcm_bprintf(strbuf, "pollrate %d pollcnt %d regfails %d\n", bus->pollrate, bus->pollcnt, bus->regfails); bcm_bprintf(strbuf, "\nAdditional counters:\n"); bcm_bprintf(strbuf, "tx_sderrs %d fcqueued %d rxrtx %d rx_toolong %d rxc_errors %d\n", bus->tx_sderrs, bus->fcqueued, bus->rxrtx, bus->rx_toolong, bus->rxc_errors); bcm_bprintf(strbuf, "rx_hdrfail %d badhdr %d badseq %d\n", bus->rx_hdrfail, bus->rx_badhdr, bus->rx_badseq); bcm_bprintf(strbuf, "fc_rcvd %d, fc_xoff %d, fc_xon %d\n", bus->fc_rcvd, bus->fc_xoff, bus->fc_xon); bcm_bprintf(strbuf, "rxglomfail %d, rxglomframes %d, rxglompkts %d\n", bus->rxglomfail, bus->rxglomframes, bus->rxglompkts); bcm_bprintf(strbuf, "f2rx (hdrs/data) %d (%d/%d), f2tx %d f1regs %d\n", (bus->f2rxhdrs + bus->f2rxdata), bus->f2rxhdrs, bus->f2rxdata, bus->f2txdata, bus->f1regdata); { dhd_dump_pct(strbuf, "\nRx: pkts/f2rd", bus->dhd->rx_packets, (bus->f2rxhdrs + bus->f2rxdata)); dhd_dump_pct(strbuf, ", pkts/f1sd", bus->dhd->rx_packets, bus->f1regdata); dhd_dump_pct(strbuf, ", pkts/sd", bus->dhd->rx_packets, (bus->f2rxhdrs + bus->f2rxdata + bus->f1regdata)); dhd_dump_pct(strbuf, ", pkts/int", bus->dhd->rx_packets, bus->intrcount); bcm_bprintf(strbuf, "\n"); dhd_dump_pct(strbuf, "Rx: glom pct", (100 * bus->rxglompkts), bus->dhd->rx_packets); dhd_dump_pct(strbuf, ", pkts/glom", bus->rxglompkts, bus->rxglomframes); bcm_bprintf(strbuf, "\n"); dhd_dump_pct(strbuf, "Tx: pkts/f2wr", bus->dhd->tx_packets, bus->f2txdata); dhd_dump_pct(strbuf, ", pkts/f1sd", bus->dhd->tx_packets, bus->f1regdata); dhd_dump_pct(strbuf, ", pkts/sd", bus->dhd->tx_packets, (bus->f2txdata + bus->f1regdata)); dhd_dump_pct(strbuf, ", pkts/int", bus->dhd->tx_packets, bus->intrcount); bcm_bprintf(strbuf, "\n"); dhd_dump_pct(strbuf, "Total: pkts/f2rw", (bus->dhd->tx_packets + bus->dhd->rx_packets), (bus->f2txdata + bus->f2rxhdrs + bus->f2rxdata)); dhd_dump_pct(strbuf, ", pkts/f1sd", (bus->dhd->tx_packets + bus->dhd->rx_packets), bus->f1regdata); dhd_dump_pct(strbuf, ", pkts/sd", (bus->dhd->tx_packets + bus->dhd->rx_packets), (bus->f2txdata + bus->f2rxhdrs + bus->f2rxdata + bus->f1regdata)); dhd_dump_pct(strbuf, ", pkts/int", (bus->dhd->tx_packets + bus->dhd->rx_packets), bus->intrcount); bcm_bprintf(strbuf, "\n\n"); } #ifdef SDTEST if (bus->pktgen_count) { bcm_bprintf(strbuf, "pktgen config and count:\n"); bcm_bprintf(strbuf, "freq %d count %d print %d total %d min %d len %d\n", bus->pktgen_freq, bus->pktgen_count, bus->pktgen_print, bus->pktgen_total, bus->pktgen_minlen, bus->pktgen_maxlen); bcm_bprintf(strbuf, "send attempts %d rcvd %d fail %d\n", bus->pktgen_sent, bus->pktgen_rcvd, bus->pktgen_fail); } #endif /* SDTEST */ #ifdef DHD_DEBUG bcm_bprintf(strbuf, "dpc_sched %d host interrupt%spending\n", bus->dpc_sched, (bcmsdh_intr_pending(bus->sdh) ? " " : " not ")); bcm_bprintf(strbuf, "blocksize %d roundup %d\n", bus->blocksize, bus->roundup); #endif /* DHD_DEBUG */ bcm_bprintf(strbuf, "clkstate %d activity %d idletime %d idlecount %d sleeping %d\n", bus->clkstate, bus->activity, bus->idletime, bus->idlecount, bus->sleeping); } void dhd_bus_clearcounts(dhd_pub_t *dhdp) { dhd_bus_t *bus = (dhd_bus_t *)dhdp->bus; bus->intrcount = bus->lastintrs = bus->spurious = bus->regfails = 0; bus->rxrtx = bus->rx_toolong = bus->rxc_errors = 0; bus->rx_hdrfail = bus->rx_badhdr = bus->rx_badseq = 0; bus->tx_sderrs = bus->fc_rcvd = bus->fc_xoff = bus->fc_xon = 0; bus->rxglomfail = bus->rxglomframes = bus->rxglompkts = 0; bus->f2rxhdrs = bus->f2rxdata = bus->f2txdata = bus->f1regdata = 0; } #ifdef SDTEST static int dhdsdio_pktgen_get(dhd_bus_t *bus, uint8 *arg) { dhd_pktgen_t pktgen; pktgen.version = DHD_PKTGEN_VERSION; pktgen.freq = bus->pktgen_freq; pktgen.count = bus->pktgen_count; pktgen.print = bus->pktgen_print; pktgen.total = bus->pktgen_total; pktgen.minlen = bus->pktgen_minlen; pktgen.maxlen = bus->pktgen_maxlen; pktgen.numsent = bus->pktgen_sent; pktgen.numrcvd = bus->pktgen_rcvd; pktgen.numfail = bus->pktgen_fail; pktgen.mode = bus->pktgen_mode; pktgen.stop = bus->pktgen_stop; bcopy(&pktgen, arg, sizeof(pktgen)); return 0; } static int dhdsdio_pktgen_set(dhd_bus_t *bus, uint8 *arg) { dhd_pktgen_t pktgen; uint oldcnt, oldmode; bcopy(arg, &pktgen, sizeof(pktgen)); if (pktgen.version != DHD_PKTGEN_VERSION) return BCME_BADARG; oldcnt = bus->pktgen_count; oldmode = bus->pktgen_mode; bus->pktgen_freq = pktgen.freq; bus->pktgen_count = pktgen.count; bus->pktgen_print = pktgen.print; bus->pktgen_total = pktgen.total; bus->pktgen_minlen = pktgen.minlen; bus->pktgen_maxlen = pktgen.maxlen; bus->pktgen_mode = pktgen.mode; bus->pktgen_stop = pktgen.stop; bus->pktgen_tick = bus->pktgen_ptick = 0; bus->pktgen_len = MAX(bus->pktgen_len, bus->pktgen_minlen); bus->pktgen_len = MIN(bus->pktgen_len, bus->pktgen_maxlen); /* Clear counts for a new pktgen (mode change, or was stopped) */ if (bus->pktgen_count && (!oldcnt || oldmode != bus->pktgen_mode)) bus->pktgen_sent = bus->pktgen_rcvd = bus->pktgen_fail = 0; return 0; } #endif /* SDTEST */ static void dhdsdio_devram_remap(dhd_bus_t *bus, bool val) { uint8 enable, protect, remap; si_socdevram(bus->sih, FALSE, &enable, &protect, &remap); remap = val ? TRUE : FALSE; si_socdevram(bus->sih, TRUE, &enable, &protect, &remap); } static int dhdsdio_membytes(dhd_bus_t *bus, bool write, uint32 address, uint8 *data, uint size) { int bcmerror = 0; uint32 sdaddr; uint dsize; /* In remap mode, adjust address beyond socram and redirect * to devram at SOCDEVRAM_BP_ADDR since remap address > orig_ramsize * is not backplane accessible */ if (REMAP_ENAB(bus) && REMAP_ISADDR(bus, address)) { address -= bus->orig_ramsize; address += SOCDEVRAM_BP_ADDR; } /* Determine initial transfer parameters */ sdaddr = address & SBSDIO_SB_OFT_ADDR_MASK; if ((sdaddr + size) & SBSDIO_SBWINDOW_MASK) dsize = (SBSDIO_SB_OFT_ADDR_LIMIT - sdaddr); else dsize = size; /* Set the backplane window to include the start address */ if ((bcmerror = dhdsdio_set_siaddr_window(bus, address))) { DHD_ERROR(("%s: window change failed\n", __FUNCTION__)); goto xfer_done; } /* Do the transfer(s) */ while (size) { DHD_INFO(("%s: %s %d bytes at offset 0x%08x in window 0x%08x\n", __FUNCTION__, (write ? "write" : "read"), dsize, sdaddr, (address & SBSDIO_SBWINDOW_MASK))); if ((bcmerror = bcmsdh_rwdata(bus->sdh, write, sdaddr, data, dsize))) { DHD_ERROR(("%s: membytes transfer failed\n", __FUNCTION__)); break; } /* Adjust for next transfer (if any) */ if ((size -= dsize)) { data += dsize; address += dsize; if ((bcmerror = dhdsdio_set_siaddr_window(bus, address))) { DHD_ERROR(("%s: window change failed\n", __FUNCTION__)); break; } sdaddr = 0; dsize = MIN(SBSDIO_SB_OFT_ADDR_LIMIT, size); } } xfer_done: /* Return the window to backplane enumeration space for core access */ if (dhdsdio_set_siaddr_window(bus, bcmsdh_cur_sbwad(bus->sdh))) { DHD_ERROR(("%s: FAILED to set window back to 0x%x\n", __FUNCTION__, bcmsdh_cur_sbwad(bus->sdh))); } return bcmerror; } #ifdef DHD_DEBUG static int dhdsdio_readshared(dhd_bus_t *bus, sdpcm_shared_t *sh) { uint32 addr; int rv; /* Read last word in memory to determine address of sdpcm_shared structure */ if ((rv = dhdsdio_membytes(bus, FALSE, bus->ramsize - 4, (uint8 *)&addr, 4)) < 0) return rv; addr = ltoh32(addr); DHD_INFO(("sdpcm_shared address 0x%08X\n", addr)); /* * Check if addr is valid. * NVRAM length at the end of memory should have been overwritten. */ if (addr == 0 || ((~addr >> 16) & 0xffff) == (addr & 0xffff)) { DHD_ERROR(("%s: address (0x%08x) of sdpcm_shared invalid\n", __FUNCTION__, addr)); return BCME_ERROR; } /* Read hndrte_shared structure */ if ((rv = dhdsdio_membytes(bus, FALSE, addr, (uint8 *)sh, sizeof(sdpcm_shared_t))) < 0) return rv; /* Endianness */ sh->flags = ltoh32(sh->flags); sh->trap_addr = ltoh32(sh->trap_addr); sh->assert_exp_addr = ltoh32(sh->assert_exp_addr); sh->assert_file_addr = ltoh32(sh->assert_file_addr); sh->assert_line = ltoh32(sh->assert_line); sh->console_addr = ltoh32(sh->console_addr); sh->msgtrace_addr = ltoh32(sh->msgtrace_addr); if ((sh->flags & SDPCM_SHARED_VERSION_MASK) == 3 && SDPCM_SHARED_VERSION == 1) return BCME_OK; if ((sh->flags & SDPCM_SHARED_VERSION_MASK) != SDPCM_SHARED_VERSION) { DHD_ERROR(("%s: sdpcm_shared version %d in dhd " "is different than sdpcm_shared version %d in dongle\n", __FUNCTION__, SDPCM_SHARED_VERSION, sh->flags & SDPCM_SHARED_VERSION_MASK)); return BCME_ERROR; } return BCME_OK; } #define CONSOLE_LINE_MAX 192 static int dhdsdio_readconsole(dhd_bus_t *bus) { dhd_console_t *c = &bus->console; uint8 line[CONSOLE_LINE_MAX], ch; uint32 n, idx, addr; int rv; /* Don't do anything until FWREADY updates console address */ if (bus->console_addr == 0) return 0; if (!KSO_ENAB(bus)) return 0; /* Read console log struct */ addr = bus->console_addr + OFFSETOF(hndrte_cons_t, log); if ((rv = dhdsdio_membytes(bus, FALSE, addr, (uint8 *)&c->log, sizeof(c->log))) < 0) return rv; /* Allocate console buffer (one time only) */ if (c->buf == NULL) { c->bufsize = ltoh32(c->log.buf_size); if ((c->buf = MALLOC(bus->dhd->osh, c->bufsize)) == NULL) return BCME_NOMEM; } idx = ltoh32(c->log.idx); /* Protect against corrupt value */ if (idx > c->bufsize) return BCME_ERROR; /* Skip reading the console buffer if the index pointer has not moved */ if (idx == c->last) return BCME_OK; /* Read the console buffer */ addr = ltoh32(c->log.buf); if ((rv = dhdsdio_membytes(bus, FALSE, addr, c->buf, c->bufsize)) < 0) return rv; while (c->last != idx) { for (n = 0; n < CONSOLE_LINE_MAX - 2; n++) { if (c->last == idx) { /* This would output a partial line. Instead, back up * the buffer pointer and output this line next time around. */ if (c->last >= n) c->last -= n; else c->last = c->bufsize - n; goto break2; } ch = c->buf[c->last]; c->last = (c->last + 1) % c->bufsize; if (ch == '\n') break; line[n] = ch; } if (n > 0) { if (line[n - 1] == '\r') n--; line[n] = 0; printf("CONSOLE: %s\n", line); } } break2: return BCME_OK; } static int dhdsdio_checkdied(dhd_bus_t *bus, char *data, uint size) { int bcmerror = 0; uint msize = 512; char *mbuffer = NULL; char *console_buffer = NULL; uint maxstrlen = 256; char *str = NULL; trap_t tr; sdpcm_shared_t sdpcm_shared; struct bcmstrbuf strbuf; uint32 console_ptr, console_size, console_index; uint8 line[CONSOLE_LINE_MAX], ch; uint32 n, i, addr; int rv; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (data == NULL) { /* * Called after a rx ctrl timeout. "data" is NULL. * allocate memory to trace the trap or assert. */ size = msize; mbuffer = data = MALLOC(bus->dhd->osh, msize); if (mbuffer == NULL) { DHD_ERROR(("%s: MALLOC(%d) failed \n", __FUNCTION__, msize)); bcmerror = BCME_NOMEM; goto done; } } if ((str = MALLOC(bus->dhd->osh, maxstrlen)) == NULL) { DHD_ERROR(("%s: MALLOC(%d) failed \n", __FUNCTION__, maxstrlen)); bcmerror = BCME_NOMEM; goto done; } if ((bcmerror = dhdsdio_readshared(bus, &sdpcm_shared)) < 0) goto done; bcm_binit(&strbuf, data, size); bcm_bprintf(&strbuf, "msgtrace address : 0x%08X\nconsole address : 0x%08X\n", sdpcm_shared.msgtrace_addr, sdpcm_shared.console_addr); if ((sdpcm_shared.flags & SDPCM_SHARED_ASSERT_BUILT) == 0) { /* NOTE: Misspelled assert is intentional - DO NOT FIX. * (Avoids conflict with real asserts for programmatic parsing of output.) */ bcm_bprintf(&strbuf, "Assrt not built in dongle\n"); } if ((sdpcm_shared.flags & (SDPCM_SHARED_ASSERT|SDPCM_SHARED_TRAP)) == 0) { /* NOTE: Misspelled assert is intentional - DO NOT FIX. * (Avoids conflict with real asserts for programmatic parsing of output.) */ bcm_bprintf(&strbuf, "No trap%s in dongle", (sdpcm_shared.flags & SDPCM_SHARED_ASSERT_BUILT) ?"/assrt" :""); } else { if (sdpcm_shared.flags & SDPCM_SHARED_ASSERT) { /* Download assert */ bcm_bprintf(&strbuf, "Dongle assert"); if (sdpcm_shared.assert_exp_addr != 0) { str[0] = '\0'; if ((bcmerror = dhdsdio_membytes(bus, FALSE, sdpcm_shared.assert_exp_addr, (uint8 *)str, maxstrlen)) < 0) goto done; str[maxstrlen - 1] = '\0'; bcm_bprintf(&strbuf, " expr \"%s\"", str); } if (sdpcm_shared.assert_file_addr != 0) { str[0] = '\0'; if ((bcmerror = dhdsdio_membytes(bus, FALSE, sdpcm_shared.assert_file_addr, (uint8 *)str, maxstrlen)) < 0) goto done; str[maxstrlen - 1] = '\0'; bcm_bprintf(&strbuf, " file \"%s\"", str); } bcm_bprintf(&strbuf, " line %d ", sdpcm_shared.assert_line); } if (sdpcm_shared.flags & SDPCM_SHARED_TRAP) { if ((bcmerror = dhdsdio_membytes(bus, FALSE, sdpcm_shared.trap_addr, (uint8*)&tr, sizeof(trap_t))) < 0) goto done; bcm_bprintf(&strbuf, "Dongle trap type 0x%x @ epc 0x%x, cpsr 0x%x, spsr 0x%x, sp 0x%x," "lp 0x%x, rpc 0x%x Trap offset 0x%x, " "r0 0x%x, r1 0x%x, r2 0x%x, r3 0x%x, " "r4 0x%x, r5 0x%x, r6 0x%x, r7 0x%x\n\n", ltoh32(tr.type), ltoh32(tr.epc), ltoh32(tr.cpsr), ltoh32(tr.spsr), ltoh32(tr.r13), ltoh32(tr.r14), ltoh32(tr.pc), ltoh32(sdpcm_shared.trap_addr), ltoh32(tr.r0), ltoh32(tr.r1), ltoh32(tr.r2), ltoh32(tr.r3), ltoh32(tr.r4), ltoh32(tr.r5), ltoh32(tr.r6), ltoh32(tr.r7)); addr = sdpcm_shared.console_addr + OFFSETOF(hndrte_cons_t, log); if ((rv = dhdsdio_membytes(bus, FALSE, addr, (uint8 *)&console_ptr, sizeof(console_ptr))) < 0) goto printbuf; addr = sdpcm_shared.console_addr + OFFSETOF(hndrte_cons_t, log.buf_size); if ((rv = dhdsdio_membytes(bus, FALSE, addr, (uint8 *)&console_size, sizeof(console_size))) < 0) goto printbuf; addr = sdpcm_shared.console_addr + OFFSETOF(hndrte_cons_t, log.idx); if ((rv = dhdsdio_membytes(bus, FALSE, addr, (uint8 *)&console_index, sizeof(console_index))) < 0) goto printbuf; console_ptr = ltoh32(console_ptr); console_size = ltoh32(console_size); console_index = ltoh32(console_index); if (console_size > CONSOLE_BUFFER_MAX || !(console_buffer = MALLOC(bus->dhd->osh, console_size))) goto printbuf; if ((rv = dhdsdio_membytes(bus, FALSE, console_ptr, (uint8 *)console_buffer, console_size)) < 0) goto printbuf; for (i = 0, n = 0; i < console_size; i += n + 1) { for (n = 0; n < CONSOLE_LINE_MAX - 2; n++) { ch = console_buffer[(console_index + i + n) % console_size]; if (ch == '\n') break; line[n] = ch; } if (n > 0) { if (line[n - 1] == '\r') n--; line[n] = 0; /* Don't use DHD_ERROR macro since we print * a lot of information quickly. The macro * will truncate a lot of the printfs */ if (dhd_msg_level & DHD_ERROR_VAL) printf("CONSOLE: %s\n", line); } } } } printbuf: if (sdpcm_shared.flags & (SDPCM_SHARED_ASSERT | SDPCM_SHARED_TRAP)) { DHD_ERROR(("%s: %s\n", __FUNCTION__, strbuf.origbuf)); } done: if (mbuffer) MFREE(bus->dhd->osh, mbuffer, msize); if (str) MFREE(bus->dhd->osh, str, maxstrlen); if (console_buffer) MFREE(bus->dhd->osh, console_buffer, console_size); return bcmerror; } #endif /* #ifdef DHD_DEBUG */ int dhdsdio_downloadvars(dhd_bus_t *bus, void *arg, int len) { int bcmerror = BCME_OK; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); /* Basic sanity checks */ if (bus->dhd->up) { bcmerror = BCME_NOTDOWN; goto err; } if (!len) { bcmerror = BCME_BUFTOOSHORT; goto err; } /* Free the old ones and replace with passed variables */ if (bus->vars) MFREE(bus->dhd->osh, bus->vars, bus->varsz); bus->vars = MALLOC(bus->dhd->osh, len); bus->varsz = bus->vars ? len : 0; if (bus->vars == NULL) { bcmerror = BCME_NOMEM; goto err; } /* Copy the passed variables, which should include the terminating double-null */ bcopy(arg, bus->vars, bus->varsz); err: return bcmerror; } #ifdef DHD_DEBUG #define CC_PLL_CHIPCTRL_SERIAL_ENAB (1 << 24) #define CC_CHIPCTRL_JTAG_SEL (1 << 3) #define CC_CHIPCTRL_GPIO_SEL (0x3) #define CC_PLL_CHIPCTRL_SERIAL_ENAB_4334 (1 << 28) static int dhd_serialconsole(dhd_bus_t *bus, bool set, bool enable, int *bcmerror) { int int_val; uint32 addr, data, uart_enab = 0; uint32 jtag_sel = CC_CHIPCTRL_JTAG_SEL; uint32 gpio_sel = CC_CHIPCTRL_GPIO_SEL; addr = SI_ENUM_BASE + OFFSETOF(chipcregs_t, chipcontrol_addr); data = SI_ENUM_BASE + OFFSETOF(chipcregs_t, chipcontrol_data); *bcmerror = 0; bcmsdh_reg_write(bus->sdh, addr, 4, 1); if (bcmsdh_regfail(bus->sdh)) { *bcmerror = BCME_SDIO_ERROR; return -1; } int_val = bcmsdh_reg_read(bus->sdh, data, 4); if (bcmsdh_regfail(bus->sdh)) { *bcmerror = BCME_SDIO_ERROR; return -1; } if (bus->sih->chip == BCM4330_CHIP_ID) { uart_enab = CC_PLL_CHIPCTRL_SERIAL_ENAB; } else if (bus->sih->chip == BCM4334_CHIP_ID) { if (enable) { /* Moved to PMU chipcontrol 1 from 4330 */ int_val &= ~gpio_sel; int_val |= jtag_sel; } else { int_val |= gpio_sel; int_val &= ~jtag_sel; } uart_enab = CC_PLL_CHIPCTRL_SERIAL_ENAB_4334; } if (!set) return (int_val & uart_enab); if (enable) int_val |= uart_enab; else int_val &= ~uart_enab; bcmsdh_reg_write(bus->sdh, data, 4, int_val); if (bcmsdh_regfail(bus->sdh)) { *bcmerror = BCME_SDIO_ERROR; return -1; } if (bus->sih->chip == BCM4330_CHIP_ID) { uint32 chipcontrol; addr = SI_ENUM_BASE + OFFSETOF(chipcregs_t, chipcontrol); chipcontrol = bcmsdh_reg_read(bus->sdh, addr, 4); chipcontrol &= ~jtag_sel; if (enable) { chipcontrol |= jtag_sel; chipcontrol &= ~gpio_sel; } bcmsdh_reg_write(bus->sdh, addr, 4, chipcontrol); } return (int_val & uart_enab); } #endif static int dhdsdio_doiovar(dhd_bus_t *bus, const bcm_iovar_t *vi, uint32 actionid, const char *name, void *params, int plen, void *arg, int len, int val_size) { int bcmerror = 0; int32 int_val = 0; bool bool_val = 0; DHD_TRACE(("%s: Enter, action %d name %s params %p plen %d arg %p len %d val_size %d\n", __FUNCTION__, actionid, name, params, plen, arg, len, val_size)); if ((bcmerror = bcm_iovar_lencheck(vi, arg, len, IOV_ISSET(actionid))) != 0) goto exit; if (plen >= (int)sizeof(int_val)) bcopy(params, &int_val, sizeof(int_val)); bool_val = (int_val != 0) ? TRUE : FALSE; /* Some ioctls use the bus */ dhd_os_sdlock(bus->dhd); /* Check if dongle is in reset. If so, only allow DEVRESET iovars */ if (bus->dhd->dongle_reset && !(actionid == IOV_SVAL(IOV_DEVRESET) || actionid == IOV_GVAL(IOV_DEVRESET))) { bcmerror = BCME_NOTREADY; goto exit; } /* * Special handling for keepSdioOn: New SDIO Wake-up Mechanism */ if ((vi->varid == IOV_KSO) && (IOV_ISSET(actionid))) { dhdsdio_clk_kso_iovar(bus, bool_val); goto exit; } else if ((vi->varid == IOV_DEVSLEEP) && (IOV_ISSET(actionid))) { { dhdsdio_clk_devsleep_iovar(bus, bool_val); if (!SLPAUTO_ENAB(bus) && (bool_val == FALSE) && (bus->ipend)) { DHD_ERROR(("INT pending in devsleep 1, dpc_sched: %d\n", bus->dpc_sched)); if (!bus->dpc_sched) { bus->dpc_sched = TRUE; dhd_sched_dpc(bus->dhd); } } } goto exit; } /* Handle sleep stuff before any clock mucking */ if (vi->varid == IOV_SLEEP) { if (IOV_ISSET(actionid)) { bcmerror = dhdsdio_bussleep(bus, bool_val); } else { int_val = (int32)bus->sleeping; bcopy(&int_val, arg, val_size); } goto exit; } /* Request clock to allow SDIO accesses */ if (!bus->dhd->dongle_reset) { BUS_WAKE(bus); dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); } switch (actionid) { case IOV_GVAL(IOV_INTR): int_val = (int32)bus->intr; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_INTR): bus->intr = bool_val; bus->intdis = FALSE; if (bus->dhd->up) { if (bus->intr) { DHD_INTR(("%s: enable SDIO device interrupts\n", __FUNCTION__)); bcmsdh_intr_enable(bus->sdh); } else { DHD_INTR(("%s: disable SDIO interrupts\n", __FUNCTION__)); bcmsdh_intr_disable(bus->sdh); } } break; case IOV_GVAL(IOV_POLLRATE): int_val = (int32)bus->pollrate; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_POLLRATE): bus->pollrate = (uint)int_val; bus->poll = (bus->pollrate != 0); break; case IOV_GVAL(IOV_IDLETIME): int_val = bus->idletime; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_IDLETIME): if ((int_val < 0) && (int_val != DHD_IDLE_IMMEDIATE)) { bcmerror = BCME_BADARG; } else { bus->idletime = int_val; } break; case IOV_GVAL(IOV_IDLECLOCK): int_val = (int32)bus->idleclock; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_IDLECLOCK): bus->idleclock = int_val; break; case IOV_GVAL(IOV_SD1IDLE): int_val = (int32)sd1idle; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_SD1IDLE): sd1idle = bool_val; break; case IOV_SVAL(IOV_MEMBYTES): case IOV_GVAL(IOV_MEMBYTES): { uint32 address; uint size, dsize; uint8 *data; bool set = (actionid == IOV_SVAL(IOV_MEMBYTES)); ASSERT(plen >= 2*sizeof(int)); address = (uint32)int_val; bcopy((char *)params + sizeof(int_val), &int_val, sizeof(int_val)); size = (uint)int_val; /* Do some validation */ dsize = set ? plen - (2 * sizeof(int)) : len; if (dsize < size) { DHD_ERROR(("%s: error on %s membytes, addr 0x%08x size %d dsize %d\n", __FUNCTION__, (set ? "set" : "get"), address, size, dsize)); bcmerror = BCME_BADARG; break; } DHD_INFO(("%s: Request to %s %d bytes at address 0x%08x\n", __FUNCTION__, (set ? "write" : "read"), size, address)); /* If we know about SOCRAM, check for a fit */ if ((bus->orig_ramsize) && ((address > bus->orig_ramsize) || (address + size > bus->orig_ramsize))) { uint8 enable, protect, remap; si_socdevram(bus->sih, FALSE, &enable, &protect, &remap); if (!enable || protect) { DHD_ERROR(("%s: ramsize 0x%08x doesn't have %d bytes at 0x%08x\n", __FUNCTION__, bus->orig_ramsize, size, address)); DHD_ERROR(("%s: socram enable %d, protect %d\n", __FUNCTION__, enable, protect)); bcmerror = BCME_BADARG; break; } if (!REMAP_ENAB(bus) && (address >= SOCDEVRAM_ARM_ADDR)) { uint32 devramsize = si_socdevram_size(bus->sih); if ((address < SOCDEVRAM_ARM_ADDR) || (address + size > (SOCDEVRAM_ARM_ADDR + devramsize))) { DHD_ERROR(("%s: bad address 0x%08x, size 0x%08x\n", __FUNCTION__, address, size)); DHD_ERROR(("%s: socram range 0x%08x,size 0x%08x\n", __FUNCTION__, SOCDEVRAM_ARM_ADDR, devramsize)); bcmerror = BCME_BADARG; break; } /* move it such that address is real now */ address -= SOCDEVRAM_ARM_ADDR; address += SOCDEVRAM_BP_ADDR; DHD_INFO(("%s: Request to %s %d bytes @ Mapped address 0x%08x\n", __FUNCTION__, (set ? "write" : "read"), size, address)); } else if (REMAP_ENAB(bus) && REMAP_ISADDR(bus, address) && remap) { /* Can not access remap region while devram remap bit is set * ROM content would be returned in this case */ DHD_ERROR(("%s: Need to disable remap for address 0x%08x\n", __FUNCTION__, address)); bcmerror = BCME_ERROR; break; } } /* Generate the actual data pointer */ data = set ? (uint8*)params + 2 * sizeof(int): (uint8*)arg; /* Call to do the transfer */ bcmerror = dhdsdio_membytes(bus, set, address, data, size); break; } case IOV_GVAL(IOV_MEMSIZE): int_val = (int32)bus->ramsize; bcopy(&int_val, arg, val_size); break; case IOV_GVAL(IOV_SDIOD_DRIVE): int_val = (int32)dhd_sdiod_drive_strength; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_SDIOD_DRIVE): dhd_sdiod_drive_strength = int_val; si_sdiod_drive_strength_init(bus->sih, bus->dhd->osh, dhd_sdiod_drive_strength); break; case IOV_SVAL(IOV_SET_DOWNLOAD_STATE): bcmerror = dhdsdio_download_state(bus, bool_val); break; case IOV_SVAL(IOV_SOCRAM_STATE): bcmerror = dhdsdio_download_state(bus, bool_val); break; case IOV_SVAL(IOV_VARS): bcmerror = dhdsdio_downloadvars(bus, arg, len); break; case IOV_GVAL(IOV_READAHEAD): int_val = (int32)dhd_readahead; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_READAHEAD): if (bool_val && !dhd_readahead) bus->nextlen = 0; dhd_readahead = bool_val; break; case IOV_GVAL(IOV_SDRXCHAIN): int_val = (int32)bus->use_rxchain; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_SDRXCHAIN): if (bool_val && !bus->sd_rxchain) bcmerror = BCME_UNSUPPORTED; else bus->use_rxchain = bool_val; break; case IOV_GVAL(IOV_ALIGNCTL): int_val = (int32)dhd_alignctl; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_ALIGNCTL): dhd_alignctl = bool_val; break; case IOV_GVAL(IOV_SDALIGN): int_val = DHD_SDALIGN; bcopy(&int_val, arg, val_size); break; #ifdef DHD_DEBUG case IOV_GVAL(IOV_VARS): if (bus->varsz < (uint)len) bcopy(bus->vars, arg, bus->varsz); else bcmerror = BCME_BUFTOOSHORT; break; #endif /* DHD_DEBUG */ #ifdef DHD_DEBUG case IOV_GVAL(IOV_SDREG): { sdreg_t *sd_ptr; uint32 addr, size; sd_ptr = (sdreg_t *)params; addr = (uintptr)bus->regs + sd_ptr->offset; size = sd_ptr->func; int_val = (int32)bcmsdh_reg_read(bus->sdh, addr, size); if (bcmsdh_regfail(bus->sdh)) bcmerror = BCME_SDIO_ERROR; bcopy(&int_val, arg, sizeof(int32)); break; } case IOV_SVAL(IOV_SDREG): { sdreg_t *sd_ptr; uint32 addr, size; sd_ptr = (sdreg_t *)params; addr = (uintptr)bus->regs + sd_ptr->offset; size = sd_ptr->func; bcmsdh_reg_write(bus->sdh, addr, size, sd_ptr->value); if (bcmsdh_regfail(bus->sdh)) bcmerror = BCME_SDIO_ERROR; break; } /* Same as above, but offset is not backplane (not SDIO core) */ case IOV_GVAL(IOV_SBREG): { sdreg_t sdreg; uint32 addr, size; bcopy(params, &sdreg, sizeof(sdreg)); addr = SI_ENUM_BASE + sdreg.offset; size = sdreg.func; int_val = (int32)bcmsdh_reg_read(bus->sdh, addr, size); if (bcmsdh_regfail(bus->sdh)) bcmerror = BCME_SDIO_ERROR; bcopy(&int_val, arg, sizeof(int32)); break; } case IOV_SVAL(IOV_SBREG): { sdreg_t sdreg; uint32 addr, size; bcopy(params, &sdreg, sizeof(sdreg)); addr = SI_ENUM_BASE + sdreg.offset; size = sdreg.func; bcmsdh_reg_write(bus->sdh, addr, size, sdreg.value); if (bcmsdh_regfail(bus->sdh)) bcmerror = BCME_SDIO_ERROR; break; } case IOV_GVAL(IOV_SDCIS): { *(char *)arg = 0; bcmstrcat(arg, "\nFunc 0\n"); bcmsdh_cis_read(bus->sdh, 0x10, (uint8 *)arg + strlen(arg), SBSDIO_CIS_SIZE_LIMIT); bcmstrcat(arg, "\nFunc 1\n"); bcmsdh_cis_read(bus->sdh, 0x11, (uint8 *)arg + strlen(arg), SBSDIO_CIS_SIZE_LIMIT); bcmstrcat(arg, "\nFunc 2\n"); bcmsdh_cis_read(bus->sdh, 0x12, (uint8 *)arg + strlen(arg), SBSDIO_CIS_SIZE_LIMIT); break; } case IOV_GVAL(IOV_FORCEEVEN): int_val = (int32)forcealign; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_FORCEEVEN): forcealign = bool_val; break; case IOV_GVAL(IOV_TXBOUND): int_val = (int32)dhd_txbound; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_TXBOUND): dhd_txbound = (uint)int_val; break; case IOV_GVAL(IOV_RXBOUND): int_val = (int32)dhd_rxbound; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_RXBOUND): dhd_rxbound = (uint)int_val; break; case IOV_GVAL(IOV_TXMINMAX): int_val = (int32)dhd_txminmax; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_TXMINMAX): dhd_txminmax = (uint)int_val; break; case IOV_GVAL(IOV_SERIALCONS): int_val = dhd_serialconsole(bus, FALSE, 0, &bcmerror); if (bcmerror != 0) break; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_SERIALCONS): dhd_serialconsole(bus, TRUE, bool_val, &bcmerror); break; #endif /* DHD_DEBUG */ #ifdef SDTEST case IOV_GVAL(IOV_EXTLOOP): int_val = (int32)bus->ext_loop; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_EXTLOOP): bus->ext_loop = bool_val; break; case IOV_GVAL(IOV_PKTGEN): bcmerror = dhdsdio_pktgen_get(bus, arg); break; case IOV_SVAL(IOV_PKTGEN): bcmerror = dhdsdio_pktgen_set(bus, arg); break; #endif /* SDTEST */ case IOV_GVAL(IOV_DONGLEISOLATION): int_val = bus->dhd->dongle_isolation; bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_DONGLEISOLATION): bus->dhd->dongle_isolation = bool_val; break; case IOV_SVAL(IOV_DEVRESET): DHD_TRACE(("%s: Called set IOV_DEVRESET=%d dongle_reset=%d busstate=%d\n", __FUNCTION__, bool_val, bus->dhd->dongle_reset, bus->dhd->busstate)); ASSERT(bus->dhd->osh); /* ASSERT(bus->cl_devid); */ dhd_bus_devreset(bus->dhd, (uint8)bool_val); break; #ifdef SOFTAP case IOV_GVAL(IOV_FWPATH): { uint32 fw_path_len; fw_path_len = strlen(bus->fw_path); DHD_INFO(("[softap] get fwpath, l=%d\n", len)); if (fw_path_len > len-1) { bcmerror = BCME_BUFTOOSHORT; break; } if (fw_path_len) { bcopy(bus->fw_path, arg, fw_path_len); ((uchar*)arg)[fw_path_len] = 0; } break; } case IOV_SVAL(IOV_FWPATH): DHD_INFO(("[softap] set fwpath, idx=%d\n", int_val)); switch (int_val) { case 1: bus->fw_path = fw_path; /* ordinary one */ break; case 2: bus->fw_path = fw_path2; break; default: bcmerror = BCME_BADARG; break; } DHD_INFO(("[softap] new fw path: %s\n", (bus->fw_path[0] ? bus->fw_path : "NULL"))); break; #endif /* SOFTAP */ case IOV_GVAL(IOV_DEVRESET): DHD_TRACE(("%s: Called get IOV_DEVRESET\n", __FUNCTION__)); /* Get its status */ int_val = (bool) bus->dhd->dongle_reset; bcopy(&int_val, arg, val_size); break; case IOV_GVAL(IOV_KSO): int_val = dhdsdio_sleepcsr_get(bus); bcopy(&int_val, arg, val_size); break; case IOV_GVAL(IOV_DEVCAP): int_val = dhdsdio_devcap_get(bus); bcopy(&int_val, arg, val_size); break; case IOV_SVAL(IOV_DEVCAP): dhdsdio_devcap_set(bus, (uint8) int_val); break; default: bcmerror = BCME_UNSUPPORTED; break; } exit: if ((bus->idletime == DHD_IDLE_IMMEDIATE) && !bus->dpc_sched) { bus->activity = FALSE; dhdsdio_clkctl(bus, CLK_NONE, TRUE); } dhd_os_sdunlock(bus->dhd); return bcmerror; } static int dhdsdio_write_vars(dhd_bus_t *bus) { int bcmerror = 0; uint32 varsize, phys_size; uint32 varaddr; uint8 *vbuffer; uint32 varsizew; #ifdef DHD_DEBUG uint8 *nvram_ularray; #endif /* DHD_DEBUG */ /* Even if there are no vars are to be written, we still need to set the ramsize. */ varsize = bus->varsz ? ROUNDUP(bus->varsz, 4) : 0; varaddr = (bus->ramsize - 4) - varsize; if (bus->vars) { if ((bus->sih->buscoretype == SDIOD_CORE_ID) && (bus->sdpcmrev == 7)) { if (((varaddr & 0x3C) == 0x3C) && (varsize > 4)) { DHD_ERROR(("PR85623WAR in place\n")); varsize += 4; varaddr -= 4; } } vbuffer = (uint8 *)MALLOC(bus->dhd->osh, varsize); if (!vbuffer) return BCME_NOMEM; bzero(vbuffer, varsize); bcopy(bus->vars, vbuffer, bus->varsz); /* Write the vars list */ bcmerror = dhdsdio_membytes(bus, TRUE, varaddr, vbuffer, varsize); #ifdef DHD_DEBUG /* Verify NVRAM bytes */ DHD_INFO(("Compare NVRAM dl & ul; varsize=%d\n", varsize)); nvram_ularray = (uint8*)MALLOC(bus->dhd->osh, varsize); if (!nvram_ularray) return BCME_NOMEM; /* Upload image to verify downloaded contents. */ memset(nvram_ularray, 0xaa, varsize); /* Read the vars list to temp buffer for comparison */ bcmerror = dhdsdio_membytes(bus, FALSE, varaddr, nvram_ularray, varsize); if (bcmerror) { DHD_ERROR(("%s: error %d on reading %d nvram bytes at 0x%08x\n", __FUNCTION__, bcmerror, varsize, varaddr)); } /* Compare the org NVRAM with the one read from RAM */ if (memcmp(vbuffer, nvram_ularray, varsize)) { DHD_ERROR(("%s: Downloaded NVRAM image is corrupted.\n", __FUNCTION__)); } else DHD_ERROR(("%s: Download, Upload and compare of NVRAM succeeded.\n", __FUNCTION__)); MFREE(bus->dhd->osh, nvram_ularray, varsize); #endif /* DHD_DEBUG */ MFREE(bus->dhd->osh, vbuffer, varsize); } phys_size = REMAP_ENAB(bus) ? bus->ramsize : bus->orig_ramsize; /* adjust to the user specified RAM */ DHD_INFO(("Physical memory size: %d, usable memory size: %d\n", phys_size, bus->ramsize)); DHD_INFO(("Vars are at %d, orig varsize is %d\n", varaddr, varsize)); varsize = ((phys_size - 4) - varaddr); /* * Determine the length token: * Varsize, converted to words, in lower 16-bits, checksum in upper 16-bits. */ if (bcmerror) { varsizew = 0; } else { varsizew = varsize / 4; varsizew = (~varsizew << 16) | (varsizew & 0x0000FFFF); varsizew = htol32(varsizew); } DHD_INFO(("New varsize is %d, length token=0x%08x\n", varsize, varsizew)); /* Write the length token to the last word */ bcmerror = dhdsdio_membytes(bus, TRUE, (phys_size - 4), (uint8*)&varsizew, 4); return bcmerror; } static int dhdsdio_download_state(dhd_bus_t *bus, bool enter) { uint retries; int bcmerror = 0; /* To enter download state, disable ARM and reset SOCRAM. * To exit download state, simply reset ARM (default is RAM boot). */ if (enter) { bus->alp_only = TRUE; if (!(si_setcore(bus->sih, ARM7S_CORE_ID, 0)) && !(si_setcore(bus->sih, ARMCM3_CORE_ID, 0))) { DHD_ERROR(("%s: Failed to find ARM core!\n", __FUNCTION__)); bcmerror = BCME_ERROR; goto fail; } si_core_disable(bus->sih, 0); if (bcmsdh_regfail(bus->sdh)) { bcmerror = BCME_SDIO_ERROR; goto fail; } if (!(si_setcore(bus->sih, SOCRAM_CORE_ID, 0))) { DHD_ERROR(("%s: Failed to find SOCRAM core!\n", __FUNCTION__)); bcmerror = BCME_ERROR; goto fail; } si_core_reset(bus->sih, 0, 0); if (bcmsdh_regfail(bus->sdh)) { DHD_ERROR(("%s: Failure trying reset SOCRAM core?\n", __FUNCTION__)); bcmerror = BCME_SDIO_ERROR; goto fail; } /* Disable remap for download */ if (REMAP_ENAB(bus) && si_socdevram_remap_isenb(bus->sih)) dhdsdio_devram_remap(bus, FALSE); /* Clear the top bit of memory */ if (bus->ramsize) { uint32 zeros = 0; if (dhdsdio_membytes(bus, TRUE, bus->ramsize - 4, (uint8*)&zeros, 4) < 0) { bcmerror = BCME_SDIO_ERROR; goto fail; } } } else { if (!(si_setcore(bus->sih, SOCRAM_CORE_ID, 0))) { DHD_ERROR(("%s: Failed to find SOCRAM core!\n", __FUNCTION__)); bcmerror = BCME_ERROR; goto fail; } if (!si_iscoreup(bus->sih)) { DHD_ERROR(("%s: SOCRAM core is down after reset?\n", __FUNCTION__)); bcmerror = BCME_ERROR; goto fail; } if ((bcmerror = dhdsdio_write_vars(bus))) { DHD_ERROR(("%s: could not write vars to RAM\n", __FUNCTION__)); goto fail; } /* Enable remap before ARM reset but after vars. * No backplane access in remap mode */ if (REMAP_ENAB(bus) && !si_socdevram_remap_isenb(bus->sih)) dhdsdio_devram_remap(bus, TRUE); if (!si_setcore(bus->sih, PCMCIA_CORE_ID, 0) && !si_setcore(bus->sih, SDIOD_CORE_ID, 0)) { DHD_ERROR(("%s: Can't change back to SDIO core?\n", __FUNCTION__)); bcmerror = BCME_ERROR; goto fail; } W_SDREG(0xFFFFFFFF, &bus->regs->intstatus, retries); if (!(si_setcore(bus->sih, ARM7S_CORE_ID, 0)) && !(si_setcore(bus->sih, ARMCM3_CORE_ID, 0))) { DHD_ERROR(("%s: Failed to find ARM core!\n", __FUNCTION__)); bcmerror = BCME_ERROR; goto fail; } si_core_reset(bus->sih, 0, 0); if (bcmsdh_regfail(bus->sdh)) { DHD_ERROR(("%s: Failure trying to reset ARM core?\n", __FUNCTION__)); bcmerror = BCME_SDIO_ERROR; goto fail; } /* Allow HT Clock now that the ARM is running. */ bus->alp_only = FALSE; bus->dhd->busstate = DHD_BUS_LOAD; } fail: /* Always return to SDIOD core */ if (!si_setcore(bus->sih, PCMCIA_CORE_ID, 0)) si_setcore(bus->sih, SDIOD_CORE_ID, 0); return bcmerror; } int dhd_bus_iovar_op(dhd_pub_t *dhdp, const char *name, void *params, int plen, void *arg, int len, bool set) { dhd_bus_t *bus = dhdp->bus; const bcm_iovar_t *vi = NULL; int bcmerror = 0; int val_size; uint32 actionid; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); ASSERT(name); ASSERT(len >= 0); /* Get MUST have return space */ ASSERT(set || (arg && len)); /* Set does NOT take qualifiers */ ASSERT(!set || (!params && !plen)); /* Look up var locally; if not found pass to host driver */ if ((vi = bcm_iovar_lookup(dhdsdio_iovars, name)) == NULL) { dhd_os_sdlock(bus->dhd); BUS_WAKE(bus); /* Turn on clock in case SD command needs backplane */ dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); bcmerror = bcmsdh_iovar_op(bus->sdh, name, params, plen, arg, len, set); /* Check for bus configuration changes of interest */ /* If it was divisor change, read the new one */ if (set && strcmp(name, "sd_divisor") == 0) { if (bcmsdh_iovar_op(bus->sdh, "sd_divisor", NULL, 0, &bus->sd_divisor, sizeof(int32), FALSE) != BCME_OK) { bus->sd_divisor = -1; DHD_ERROR(("%s: fail on %s get\n", __FUNCTION__, name)); } else { DHD_INFO(("%s: noted %s update, value now %d\n", __FUNCTION__, name, bus->sd_divisor)); } } /* If it was a mode change, read the new one */ if (set && strcmp(name, "sd_mode") == 0) { if (bcmsdh_iovar_op(bus->sdh, "sd_mode", NULL, 0, &bus->sd_mode, sizeof(int32), FALSE) != BCME_OK) { bus->sd_mode = -1; DHD_ERROR(("%s: fail on %s get\n", __FUNCTION__, name)); } else { DHD_INFO(("%s: noted %s update, value now %d\n", __FUNCTION__, name, bus->sd_mode)); } } /* Similar check for blocksize change */ if (set && strcmp(name, "sd_blocksize") == 0) { int32 fnum = 2; if (bcmsdh_iovar_op(bus->sdh, "sd_blocksize", &fnum, sizeof(int32), &bus->blocksize, sizeof(int32), FALSE) != BCME_OK) { bus->blocksize = 0; DHD_ERROR(("%s: fail on %s get\n", __FUNCTION__, "sd_blocksize")); } else { DHD_INFO(("%s: noted %s update, value now %d\n", __FUNCTION__, "sd_blocksize", bus->blocksize)); } } bus->roundup = MIN(max_roundup, bus->blocksize); if ((bus->idletime == DHD_IDLE_IMMEDIATE) && !bus->dpc_sched) { bus->activity = FALSE; dhdsdio_clkctl(bus, CLK_NONE, TRUE); } dhd_os_sdunlock(bus->dhd); goto exit; } DHD_CTL(("%s: %s %s, len %d plen %d\n", __FUNCTION__, name, (set ? "set" : "get"), len, plen)); /* set up 'params' pointer in case this is a set command so that * the convenience int and bool code can be common to set and get */ if (params == NULL) { params = arg; plen = len; } if (vi->type == IOVT_VOID) val_size = 0; else if (vi->type == IOVT_BUFFER) val_size = len; else /* all other types are integer sized */ val_size = sizeof(int); actionid = set ? IOV_SVAL(vi->varid) : IOV_GVAL(vi->varid); bcmerror = dhdsdio_doiovar(bus, vi, actionid, name, params, plen, arg, len, val_size); exit: return bcmerror; } void dhd_bus_stop(struct dhd_bus *bus, bool enforce_mutex) { osl_t *osh; uint32 local_hostintmask; uint8 saveclk; uint retries; int err; if (!bus->dhd) return; osh = bus->dhd->osh; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); bcmsdh_waitlockfree(NULL); if (enforce_mutex) dhd_os_sdlock(bus->dhd); BUS_WAKE(bus); /* Change our idea of bus state */ bus->dhd->busstate = DHD_BUS_DOWN; if (KSO_ENAB(bus)) { /* Enable clock for device interrupts */ dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); /* Disable and clear interrupts at the chip level also */ W_SDREG(0, &bus->regs->hostintmask, retries); local_hostintmask = bus->hostintmask; bus->hostintmask = 0; /* Force clocks on backplane to be sure F2 interrupt propagates */ saveclk = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (!err) { bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, (saveclk | SBSDIO_FORCE_HT), &err); } if (err) { DHD_ERROR(("%s: Failed to force clock for F2: err %d\n", __FUNCTION__, err)); } /* Turn off the bus (F2), free any pending packets */ DHD_INTR(("%s: disable SDIO interrupts\n", __FUNCTION__)); bcmsdh_intr_disable(bus->sdh); bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_IOEN, SDIO_FUNC_ENABLE_1, NULL); /* Clear any pending interrupts now that F2 is disabled */ W_SDREG(local_hostintmask, &bus->regs->intstatus, retries); } /* Turn off the backplane clock (only) */ dhdsdio_clkctl(bus, CLK_SDONLY, FALSE); /* Clear the data packet queues */ pktq_flush(osh, &bus->txq, TRUE, NULL, 0); /* Clear any held glomming stuff */ if (bus->glomd) PKTFREE(osh, bus->glomd, FALSE); if (bus->glom) PKTFREE(osh, bus->glom, FALSE); bus->glom = bus->glomd = NULL; /* Clear rx control and wake any waiters */ bus->rxlen = 0; dhd_os_ioctl_resp_wake(bus->dhd); /* Reset some F2 state stuff */ bus->rxskip = FALSE; bus->tx_seq = bus->rx_seq = 0; if (enforce_mutex) dhd_os_sdunlock(bus->dhd); } int dhd_bus_init(dhd_pub_t *dhdp, bool enforce_mutex) { dhd_bus_t *bus = dhdp->bus; dhd_timeout_t tmo; uint retries = 0; uint8 ready, enable; int err, ret = 0; uint8 saveclk; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); ASSERT(bus->dhd); if (!bus->dhd) return 0; if (enforce_mutex) dhd_os_sdlock(bus->dhd); /* Make sure backplane clock is on, needed to generate F2 interrupt */ dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); if (bus->clkstate != CLK_AVAIL) { DHD_ERROR(("%s: clock state is wrong. state = %d\n", __FUNCTION__, bus->clkstate)); goto exit; } /* Force clocks on backplane to be sure F2 interrupt propagates */ saveclk = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (!err) { bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, (saveclk | SBSDIO_FORCE_HT), &err); } if (err) { DHD_ERROR(("%s: Failed to force clock for F2: err %d\n", __FUNCTION__, err)); goto exit; } /* Enable function 2 (frame transfers) */ W_SDREG((SDPCM_PROT_VERSION << SMB_DATA_VERSION_SHIFT), &bus->regs->tosbmailboxdata, retries); enable = (SDIO_FUNC_ENABLE_1 | SDIO_FUNC_ENABLE_2); bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_IOEN, enable, NULL); /* Give the dongle some time to do its thing and set IOR2 */ dhd_timeout_start(&tmo, DHD_WAIT_F2RDY * 1000); ready = 0; while (ready != enable && !dhd_timeout_expired(&tmo)) ready = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_IORDY, NULL); DHD_INFO(("%s: enable 0x%02x, ready 0x%02x (waited %uus)\n", __FUNCTION__, enable, ready, tmo.elapsed)); /* If F2 successfully enabled, set core and enable interrupts */ if (ready == enable) { /* Make sure we're talking to the core. */ if (!(bus->regs = si_setcore(bus->sih, PCMCIA_CORE_ID, 0))) bus->regs = si_setcore(bus->sih, SDIOD_CORE_ID, 0); ASSERT(bus->regs != NULL); /* Set up the interrupt mask and enable interrupts */ bus->hostintmask = HOSTINTMASK; /* corerev 4 could use the newer interrupt logic to detect the frames */ if ((bus->sih->buscoretype == SDIOD_CORE_ID) && (bus->sdpcmrev == 4) && (bus->rxint_mode != SDIO_DEVICE_HMB_RXINT)) { bus->hostintmask &= ~I_HMB_FRAME_IND; bus->hostintmask |= I_XMTDATA_AVAIL; } W_SDREG(bus->hostintmask, &bus->regs->hostintmask, retries); bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_WATERMARK, (uint8)watermark, &err); /* Set bus state according to enable result */ dhdp->busstate = DHD_BUS_DATA; /* bcmsdh_intr_unmask(bus->sdh); */ bus->intdis = FALSE; if (bus->intr) { DHD_INTR(("%s: enable SDIO device interrupts\n", __FUNCTION__)); bcmsdh_intr_enable(bus->sdh); } else { DHD_INTR(("%s: disable SDIO interrupts\n", __FUNCTION__)); bcmsdh_intr_disable(bus->sdh); } } else { /* Disable F2 again */ enable = SDIO_FUNC_ENABLE_1; bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_IOEN, enable, NULL); } /* Restore previous clock setting */ if (SLPAUTO_ENAB(bus)) bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, SBSDIO_FORCE_HT, &err); else bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, saveclk, &err); /* If we didn't come up, turn off backplane clock */ if (dhdp->busstate != DHD_BUS_DATA) dhdsdio_clkctl(bus, CLK_NONE, FALSE); exit: if (enforce_mutex) dhd_os_sdunlock(bus->dhd); return ret; } static void dhdsdio_rxfail(dhd_bus_t *bus, bool abort, bool rtx) { bcmsdh_info_t *sdh = bus->sdh; sdpcmd_regs_t *regs = bus->regs; uint retries = 0; uint16 lastrbc; uint8 hi, lo; int err; DHD_ERROR(("%s: %sterminate frame%s\n", __FUNCTION__, (abort ? "abort command, " : ""), (rtx ? ", send NAK" : ""))); if (!KSO_ENAB(bus)) { DHD_ERROR(("%s: Device asleep\n", __FUNCTION__)); return; } if (abort) { bcmsdh_abort(sdh, SDIO_FUNC_2); } bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_FRAMECTRL, SFC_RF_TERM, &err); bus->f1regdata++; /* Wait until the packet has been flushed (device/FIFO stable) */ for (lastrbc = retries = 0xffff; retries > 0; retries--) { hi = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_RFRAMEBCHI, NULL); lo = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_RFRAMEBCLO, NULL); bus->f1regdata += 2; if ((hi == 0) && (lo == 0)) break; if ((hi > (lastrbc >> 8)) && (lo > (lastrbc & 0x00ff))) { DHD_ERROR(("%s: count growing: last 0x%04x now 0x%04x\n", __FUNCTION__, lastrbc, ((hi << 8) + lo))); } lastrbc = (hi << 8) + lo; } if (!retries) { DHD_ERROR(("%s: count never zeroed: last 0x%04x\n", __FUNCTION__, lastrbc)); } else { DHD_INFO(("%s: flush took %d iterations\n", __FUNCTION__, (0xffff - retries))); } if (rtx) { bus->rxrtx++; W_SDREG(SMB_NAK, ®s->tosbmailbox, retries); bus->f1regdata++; if (retries <= retry_limit) { bus->rxskip = TRUE; } } /* Clear partial in any case */ bus->nextlen = 0; /* If we can't reach the device, signal failure */ if (err || bcmsdh_regfail(sdh)) bus->dhd->busstate = DHD_BUS_DOWN; } static void dhdsdio_read_control(dhd_bus_t *bus, uint8 *hdr, uint len, uint doff) { bcmsdh_info_t *sdh = bus->sdh; uint rdlen, pad; int sdret; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); /* Control data already received in aligned rxctl */ if ((bus->bus == SPI_BUS) && (!bus->usebufpool)) goto gotpkt; ASSERT(bus->rxbuf); /* Set rxctl for frame (w/optional alignment) */ bus->rxctl = bus->rxbuf; if (dhd_alignctl) { bus->rxctl += firstread; if ((pad = ((uintptr)bus->rxctl % DHD_SDALIGN))) bus->rxctl += (DHD_SDALIGN - pad); bus->rxctl -= firstread; } ASSERT(bus->rxctl >= bus->rxbuf); /* Copy the already-read portion over */ bcopy(hdr, bus->rxctl, firstread); if (len <= firstread) goto gotpkt; /* Copy the full data pkt in gSPI case and process ioctl. */ if (bus->bus == SPI_BUS) { bcopy(hdr, bus->rxctl, len); goto gotpkt; } /* Raise rdlen to next SDIO block to avoid tail command */ rdlen = len - firstread; if (bus->roundup && bus->blocksize && (rdlen > bus->blocksize)) { pad = bus->blocksize - (rdlen % bus->blocksize); if ((pad <= bus->roundup) && (pad < bus->blocksize) && ((len + pad) < bus->dhd->maxctl)) rdlen += pad; } else if (rdlen % DHD_SDALIGN) { rdlen += DHD_SDALIGN - (rdlen % DHD_SDALIGN); } /* Satisfy length-alignment requirements */ if (forcealign && (rdlen & (ALIGNMENT - 1))) rdlen = ROUNDUP(rdlen, ALIGNMENT); /* Drop if the read is too big or it exceeds our maximum */ if ((rdlen + firstread) > bus->dhd->maxctl) { DHD_ERROR(("%s: %d-byte control read exceeds %d-byte buffer\n", __FUNCTION__, rdlen, bus->dhd->maxctl)); bus->dhd->rx_errors++; dhdsdio_rxfail(bus, FALSE, FALSE); goto done; } if ((len - doff) > bus->dhd->maxctl) { DHD_ERROR(("%s: %d-byte ctl frame (%d-byte ctl data) exceeds %d-byte limit\n", __FUNCTION__, len, (len - doff), bus->dhd->maxctl)); bus->dhd->rx_errors++; bus->rx_toolong++; dhdsdio_rxfail(bus, FALSE, FALSE); goto done; } /* Read remainder of frame body into the rxctl buffer */ sdret = dhd_bcmsdh_recv_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC, (bus->rxctl + firstread), rdlen, NULL, NULL, NULL); bus->f2rxdata++; ASSERT(sdret != BCME_PENDING); /* Control frame failures need retransmission */ if (sdret < 0) { DHD_ERROR(("%s: read %d control bytes failed: %d\n", __FUNCTION__, rdlen, sdret)); bus->rxc_errors++; /* dhd.rx_ctlerrs is higher level */ dhdsdio_rxfail(bus, TRUE, TRUE); goto done; } gotpkt: #ifdef DHD_DEBUG if (DHD_BYTES_ON() && DHD_CTL_ON()) { prhex("RxCtrl", bus->rxctl, len); } #endif /* Point to valid data and indicate its length */ bus->rxctl += doff; bus->rxlen = len - doff; done: /* Awake any waiters */ dhd_os_ioctl_resp_wake(bus->dhd); } static uint8 dhdsdio_rxglom(dhd_bus_t *bus, uint8 rxseq) { uint16 dlen, totlen; uint8 *dptr, num = 0; uint16 sublen, check; void *pfirst, *plast, *pnext, *save_pfirst; osl_t *osh = bus->dhd->osh; int errcode; uint8 chan, seq, doff, sfdoff; uint8 txmax; uchar reorder_info_buf[WLHOST_REORDERDATA_TOTLEN]; uint reorder_info_len; int ifidx = 0; bool usechain = bus->use_rxchain; /* If packets, issue read(s) and send up packet chain */ /* Return sequence numbers consumed? */ DHD_TRACE(("dhdsdio_rxglom: start: glomd %p glom %p\n", bus->glomd, bus->glom)); /* If there's a descriptor, generate the packet chain */ if (bus->glomd) { dhd_os_sdlock_rxq(bus->dhd); pfirst = plast = pnext = NULL; dlen = (uint16)PKTLEN(osh, bus->glomd); dptr = PKTDATA(osh, bus->glomd); if (!dlen || (dlen & 1)) { DHD_ERROR(("%s: bad glomd len (%d), ignore descriptor\n", __FUNCTION__, dlen)); dlen = 0; } for (totlen = num = 0; dlen; num++) { /* Get (and move past) next length */ sublen = ltoh16_ua(dptr); dlen -= sizeof(uint16); dptr += sizeof(uint16); if ((sublen < SDPCM_HDRLEN) || ((num == 0) && (sublen < (2 * SDPCM_HDRLEN)))) { DHD_ERROR(("%s: descriptor len %d bad: %d\n", __FUNCTION__, num, sublen)); pnext = NULL; break; } if (sublen % DHD_SDALIGN) { DHD_ERROR(("%s: sublen %d not a multiple of %d\n", __FUNCTION__, sublen, DHD_SDALIGN)); usechain = FALSE; } totlen += sublen; /* For last frame, adjust read len so total is a block multiple */ if (!dlen) { sublen += (ROUNDUP(totlen, bus->blocksize) - totlen); totlen = ROUNDUP(totlen, bus->blocksize); } /* Allocate/chain packet for next subframe */ if ((pnext = PKTGET(osh, sublen + DHD_SDALIGN, FALSE)) == NULL) { DHD_ERROR(("%s: PKTGET failed, num %d len %d\n", __FUNCTION__, num, sublen)); break; } ASSERT(!PKTLINK(pnext)); if (!pfirst) { ASSERT(!plast); pfirst = plast = pnext; } else { ASSERT(plast); PKTSETNEXT(osh, plast, pnext); plast = pnext; } /* Adhere to start alignment requirements */ PKTALIGN(osh, pnext, sublen, DHD_SDALIGN); } /* If all allocations succeeded, save packet chain in bus structure */ if (pnext) { DHD_GLOM(("%s: allocated %d-byte packet chain for %d subframes\n", __FUNCTION__, totlen, num)); if (DHD_GLOM_ON() && bus->nextlen) { if (totlen != bus->nextlen) { DHD_GLOM(("%s: glomdesc mismatch: nextlen %d glomdesc %d " "rxseq %d\n", __FUNCTION__, bus->nextlen, totlen, rxseq)); } } bus->glom = pfirst; pfirst = pnext = NULL; } else { if (pfirst) PKTFREE(osh, pfirst, FALSE); bus->glom = NULL; num = 0; } /* Done with descriptor packet */ PKTFREE(osh, bus->glomd, FALSE); bus->glomd = NULL; bus->nextlen = 0; dhd_os_sdunlock_rxq(bus->dhd); } /* Ok -- either we just generated a packet chain, or had one from before */ if (bus->glom) { if (DHD_GLOM_ON()) { DHD_GLOM(("%s: attempt superframe read, packet chain:\n", __FUNCTION__)); for (pnext = bus->glom; pnext; pnext = PKTNEXT(osh, pnext)) { DHD_GLOM((" %p: %p len 0x%04x (%d)\n", pnext, (uint8*)PKTDATA(osh, pnext), PKTLEN(osh, pnext), PKTLEN(osh, pnext))); } } pfirst = bus->glom; dlen = (uint16)pkttotlen(osh, pfirst); /* Do an SDIO read for the superframe. Configurable iovar to * read directly into the chained packet, or allocate a large * packet and and copy into the chain. */ if (usechain) { errcode = dhd_bcmsdh_recv_buf(bus, bcmsdh_cur_sbwad(bus->sdh), SDIO_FUNC_2, F2SYNC, (uint8*)PKTDATA(osh, pfirst), dlen, pfirst, NULL, NULL); } else if (bus->dataptr) { errcode = dhd_bcmsdh_recv_buf(bus, bcmsdh_cur_sbwad(bus->sdh), SDIO_FUNC_2, F2SYNC, bus->dataptr, dlen, NULL, NULL, NULL); sublen = (uint16)pktfrombuf(osh, pfirst, 0, dlen, bus->dataptr); if (sublen != dlen) { DHD_ERROR(("%s: FAILED TO COPY, dlen %d sublen %d\n", __FUNCTION__, dlen, sublen)); errcode = -1; } pnext = NULL; } else { DHD_ERROR(("COULDN'T ALLOC %d-BYTE GLOM, FORCE FAILURE\n", dlen)); errcode = -1; } bus->f2rxdata++; ASSERT(errcode != BCME_PENDING); /* On failure, kill the superframe, allow a couple retries */ if (errcode < 0) { DHD_ERROR(("%s: glom read of %d bytes failed: %d\n", __FUNCTION__, dlen, errcode)); bus->dhd->rx_errors++; if (bus->glomerr++ < 3) { dhdsdio_rxfail(bus, TRUE, TRUE); } else { bus->glomerr = 0; dhdsdio_rxfail(bus, TRUE, FALSE); dhd_os_sdlock_rxq(bus->dhd); PKTFREE(osh, bus->glom, FALSE); dhd_os_sdunlock_rxq(bus->dhd); bus->rxglomfail++; bus->glom = NULL; } return 0; } #ifdef DHD_DEBUG if (DHD_GLOM_ON()) { prhex("SUPERFRAME", PKTDATA(osh, pfirst), MIN(PKTLEN(osh, pfirst), 48)); } #endif /* Validate the superframe header */ dptr = (uint8 *)PKTDATA(osh, pfirst); sublen = ltoh16_ua(dptr); check = ltoh16_ua(dptr + sizeof(uint16)); chan = SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]); seq = SDPCM_PACKET_SEQUENCE(&dptr[SDPCM_FRAMETAG_LEN]); bus->nextlen = dptr[SDPCM_FRAMETAG_LEN + SDPCM_NEXTLEN_OFFSET]; if ((bus->nextlen << 4) > MAX_RX_DATASZ) { DHD_INFO(("%s: got frame w/nextlen too large (%d) seq %d\n", __FUNCTION__, bus->nextlen, seq)); bus->nextlen = 0; } doff = SDPCM_DOFFSET_VALUE(&dptr[SDPCM_FRAMETAG_LEN]); txmax = SDPCM_WINDOW_VALUE(&dptr[SDPCM_FRAMETAG_LEN]); errcode = 0; if ((uint16)~(sublen^check)) { DHD_ERROR(("%s (superframe): HW hdr error: len/check 0x%04x/0x%04x\n", __FUNCTION__, sublen, check)); errcode = -1; } else if (ROUNDUP(sublen, bus->blocksize) != dlen) { DHD_ERROR(("%s (superframe): len 0x%04x, rounded 0x%04x, expect 0x%04x\n", __FUNCTION__, sublen, ROUNDUP(sublen, bus->blocksize), dlen)); errcode = -1; } else if (SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]) != SDPCM_GLOM_CHANNEL) { DHD_ERROR(("%s (superframe): bad channel %d\n", __FUNCTION__, SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]))); errcode = -1; } else if (SDPCM_GLOMDESC(&dptr[SDPCM_FRAMETAG_LEN])) { DHD_ERROR(("%s (superframe): got second descriptor?\n", __FUNCTION__)); errcode = -1; } else if ((doff < SDPCM_HDRLEN) || (doff > (PKTLEN(osh, pfirst) - SDPCM_HDRLEN))) { DHD_ERROR(("%s (superframe): Bad data offset %d: HW %d pkt %d min %d\n", __FUNCTION__, doff, sublen, PKTLEN(osh, pfirst), SDPCM_HDRLEN)); errcode = -1; } /* Check sequence number of superframe SW header */ if (rxseq != seq) { DHD_INFO(("%s: (superframe) rx_seq %d, expected %d\n", __FUNCTION__, seq, rxseq)); bus->rx_badseq++; rxseq = seq; } /* Check window for sanity */ if ((uint8)(txmax - bus->tx_seq) > 0x40) { DHD_ERROR(("%s: got unlikely tx max %d with tx_seq %d\n", __FUNCTION__, txmax, bus->tx_seq)); txmax = bus->tx_max; } bus->tx_max = txmax; /* Remove superframe header, remember offset */ PKTPULL(osh, pfirst, doff); sfdoff = doff; /* Validate all the subframe headers */ for (num = 0, pnext = pfirst; pnext && !errcode; num++, pnext = PKTNEXT(osh, pnext)) { dptr = (uint8 *)PKTDATA(osh, pnext); dlen = (uint16)PKTLEN(osh, pnext); sublen = ltoh16_ua(dptr); check = ltoh16_ua(dptr + sizeof(uint16)); chan = SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]); doff = SDPCM_DOFFSET_VALUE(&dptr[SDPCM_FRAMETAG_LEN]); #ifdef DHD_DEBUG if (DHD_GLOM_ON()) { prhex("subframe", dptr, 32); } #endif if ((uint16)~(sublen^check)) { DHD_ERROR(("%s (subframe %d): HW hdr error: " "len/check 0x%04x/0x%04x\n", __FUNCTION__, num, sublen, check)); errcode = -1; } else if ((sublen > dlen) || (sublen < SDPCM_HDRLEN)) { DHD_ERROR(("%s (subframe %d): length mismatch: " "len 0x%04x, expect 0x%04x\n", __FUNCTION__, num, sublen, dlen)); errcode = -1; } else if ((chan != SDPCM_DATA_CHANNEL) && (chan != SDPCM_EVENT_CHANNEL)) { DHD_ERROR(("%s (subframe %d): bad channel %d\n", __FUNCTION__, num, chan)); errcode = -1; } else if ((doff < SDPCM_HDRLEN) || (doff > sublen)) { DHD_ERROR(("%s (subframe %d): Bad data offset %d: HW %d min %d\n", __FUNCTION__, num, doff, sublen, SDPCM_HDRLEN)); errcode = -1; } } if (errcode) { /* Terminate frame on error, request a couple retries */ if (bus->glomerr++ < 3) { /* Restore superframe header space */ PKTPUSH(osh, pfirst, sfdoff); dhdsdio_rxfail(bus, TRUE, TRUE); } else { bus->glomerr = 0; dhdsdio_rxfail(bus, TRUE, FALSE); dhd_os_sdlock_rxq(bus->dhd); PKTFREE(osh, bus->glom, FALSE); dhd_os_sdunlock_rxq(bus->dhd); bus->rxglomfail++; bus->glom = NULL; } bus->nextlen = 0; return 0; } /* Basic SD framing looks ok - process each packet (header) */ save_pfirst = pfirst; bus->glom = NULL; plast = NULL; dhd_os_sdlock_rxq(bus->dhd); for (num = 0; pfirst; rxseq++, pfirst = pnext) { pnext = PKTNEXT(osh, pfirst); PKTSETNEXT(osh, pfirst, NULL); dptr = (uint8 *)PKTDATA(osh, pfirst); sublen = ltoh16_ua(dptr); chan = SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]); seq = SDPCM_PACKET_SEQUENCE(&dptr[SDPCM_FRAMETAG_LEN]); doff = SDPCM_DOFFSET_VALUE(&dptr[SDPCM_FRAMETAG_LEN]); DHD_GLOM(("%s: Get subframe %d, %p(%p/%d), sublen %d chan %d seq %d\n", __FUNCTION__, num, pfirst, PKTDATA(osh, pfirst), PKTLEN(osh, pfirst), sublen, chan, seq)); ASSERT((chan == SDPCM_DATA_CHANNEL) || (chan == SDPCM_EVENT_CHANNEL)); if (rxseq != seq) { DHD_GLOM(("%s: rx_seq %d, expected %d\n", __FUNCTION__, seq, rxseq)); bus->rx_badseq++; rxseq = seq; } #ifdef DHD_DEBUG if (DHD_BYTES_ON() && DHD_DATA_ON()) { prhex("Rx Subframe Data", dptr, dlen); } #endif PKTSETLEN(osh, pfirst, sublen); PKTPULL(osh, pfirst, doff); reorder_info_len = sizeof(reorder_info_buf); if (PKTLEN(osh, pfirst) == 0) { PKTFREE(bus->dhd->osh, pfirst, FALSE); if (plast) { PKTSETNEXT(osh, plast, pnext); } else { ASSERT(save_pfirst == pfirst); save_pfirst = pnext; } continue; } else if (dhd_prot_hdrpull(bus->dhd, &ifidx, pfirst, reorder_info_buf, &reorder_info_len) != 0) { DHD_ERROR(("%s: rx protocol error\n", __FUNCTION__)); bus->dhd->rx_errors++; PKTFREE(osh, pfirst, FALSE); if (plast) { PKTSETNEXT(osh, plast, pnext); } else { ASSERT(save_pfirst == pfirst); save_pfirst = pnext; } continue; } if (reorder_info_len) { uint32 free_buf_count; void *ppfirst; ppfirst = pfirst; /* Reordering info from the firmware */ dhd_process_pkt_reorder_info(bus->dhd, reorder_info_buf, reorder_info_len, &ppfirst, &free_buf_count); if (free_buf_count == 0) { if (plast) { PKTSETNEXT(osh, plast, pnext); } else { ASSERT(save_pfirst == pfirst); save_pfirst = pnext; } continue; } else { void *temp; /* go to the end of the chain and attach the pnext there */ temp = ppfirst; while (PKTNEXT(osh, temp) != NULL) { temp = PKTNEXT(osh, temp); } pfirst = temp; if (plast) { PKTSETNEXT(osh, plast, ppfirst); } else { /* first one in the chain */ save_pfirst = ppfirst; } PKTSETNEXT(osh, pfirst, pnext); plast = pfirst; } num += (uint8)free_buf_count; } else { /* this packet will go up, link back into chain and count it */ PKTSETNEXT(osh, pfirst, pnext); plast = pfirst; num++; } #ifdef DHD_DEBUG if (DHD_GLOM_ON()) { DHD_GLOM(("%s subframe %d to stack, %p(%p/%d) nxt/lnk %p/%p\n", __FUNCTION__, num, pfirst, PKTDATA(osh, pfirst), PKTLEN(osh, pfirst), PKTNEXT(osh, pfirst), PKTLINK(pfirst))); prhex("", (uint8 *)PKTDATA(osh, pfirst), MIN(PKTLEN(osh, pfirst), 32)); } #endif /* DHD_DEBUG */ } dhd_os_sdunlock_rxq(bus->dhd); if (num) { dhd_os_sdunlock(bus->dhd); dhd_rx_frame(bus->dhd, ifidx, save_pfirst, num, 0); dhd_os_sdlock(bus->dhd); } bus->rxglomframes++; bus->rxglompkts += num; } return num; } /* Return TRUE if there may be more frames to read */ static uint dhdsdio_readframes(dhd_bus_t *bus, uint maxframes, bool *finished) { osl_t *osh = bus->dhd->osh; bcmsdh_info_t *sdh = bus->sdh; uint16 len, check; /* Extracted hardware header fields */ uint8 chan, seq, doff; /* Extracted software header fields */ uint8 fcbits; /* Extracted fcbits from software header */ uint8 delta; void *pkt; /* Packet for event or data frames */ uint16 pad; /* Number of pad bytes to read */ uint16 rdlen; /* Total number of bytes to read */ uint8 rxseq; /* Next sequence number to expect */ uint rxleft = 0; /* Remaining number of frames allowed */ int sdret; /* Return code from bcmsdh calls */ uint8 txmax; /* Maximum tx sequence offered */ bool len_consistent; /* Result of comparing readahead len and len from hw-hdr */ uint8 *rxbuf; int ifidx = 0; uint rxcount = 0; /* Total frames read */ uchar reorder_info_buf[WLHOST_REORDERDATA_TOTLEN]; uint reorder_info_len; uint pkt_count; #if defined(DHD_DEBUG) || defined(SDTEST) bool sdtest = FALSE; /* To limit message spew from test mode */ #endif DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (!KSO_ENAB(bus)) { DHD_ERROR(("%s: KSO off\n", __FUNCTION__)); return 0; } ASSERT(maxframes); #ifdef SDTEST /* Allow pktgen to override maxframes */ if (bus->pktgen_count && (bus->pktgen_mode == DHD_PKTGEN_RECV)) { maxframes = bus->pktgen_count; sdtest = TRUE; } #endif /* Not finished unless we encounter no more frames indication */ *finished = FALSE; for (rxseq = bus->rx_seq, rxleft = maxframes; !bus->rxskip && rxleft && bus->dhd->busstate != DHD_BUS_DOWN; rxseq++, rxleft--) { #ifdef DHDTHREAD /* tx more to improve rx performance */ if ((bus->clkstate == CLK_AVAIL) && !bus->fcstate && pktq_mlen(&bus->txq, ~bus->flowcontrol) && DATAOK(bus)) { dhdsdio_sendfromq(bus, dhd_txbound); } #endif /* DHDTHREAD */ /* Handle glomming separately */ if (bus->glom || bus->glomd) { uint8 cnt; DHD_GLOM(("%s: calling rxglom: glomd %p, glom %p\n", __FUNCTION__, bus->glomd, bus->glom)); cnt = dhdsdio_rxglom(bus, rxseq); DHD_GLOM(("%s: rxglom returned %d\n", __FUNCTION__, cnt)); rxseq += cnt - 1; rxleft = (rxleft > cnt) ? (rxleft - cnt) : 1; continue; } /* Try doing single read if we can */ if (dhd_readahead && bus->nextlen) { uint16 nextlen = bus->nextlen; bus->nextlen = 0; if (bus->bus == SPI_BUS) { rdlen = len = nextlen; } else { rdlen = len = nextlen << 4; /* Pad read to blocksize for efficiency */ if (bus->roundup && bus->blocksize && (rdlen > bus->blocksize)) { pad = bus->blocksize - (rdlen % bus->blocksize); if ((pad <= bus->roundup) && (pad < bus->blocksize) && ((rdlen + pad + firstread) < MAX_RX_DATASZ)) rdlen += pad; } else if (rdlen % DHD_SDALIGN) { rdlen += DHD_SDALIGN - (rdlen % DHD_SDALIGN); } } /* We use bus->rxctl buffer in WinXP for initial control pkt receives. * Later we use buffer-poll for data as well as control packets. * This is required because dhd receives full frame in gSPI unlike SDIO. * After the frame is received we have to distinguish whether it is data * or non-data frame. */ /* Allocate a packet buffer */ dhd_os_sdlock_rxq(bus->dhd); if (!(pkt = PKTGET(osh, rdlen + DHD_SDALIGN, FALSE))) { if (bus->bus == SPI_BUS) { bus->usebufpool = FALSE; bus->rxctl = bus->rxbuf; if (dhd_alignctl) { bus->rxctl += firstread; if ((pad = ((uintptr)bus->rxctl % DHD_SDALIGN))) bus->rxctl += (DHD_SDALIGN - pad); bus->rxctl -= firstread; } ASSERT(bus->rxctl >= bus->rxbuf); rxbuf = bus->rxctl; /* Read the entire frame */ sdret = dhd_bcmsdh_recv_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC, rxbuf, rdlen, NULL, NULL, NULL); bus->f2rxdata++; ASSERT(sdret != BCME_PENDING); /* Control frame failures need retransmission */ if (sdret < 0) { DHD_ERROR(("%s: read %d control bytes failed: %d\n", __FUNCTION__, rdlen, sdret)); /* dhd.rx_ctlerrs is higher level */ bus->rxc_errors++; dhd_os_sdunlock_rxq(bus->dhd); dhdsdio_rxfail(bus, TRUE, (bus->bus == SPI_BUS) ? FALSE : TRUE); continue; } } else { /* Give up on data, request rtx of events */ DHD_ERROR(("%s (nextlen): PKTGET failed: len %d rdlen %d " "expected rxseq %d\n", __FUNCTION__, len, rdlen, rxseq)); /* Just go try again w/normal header read */ dhd_os_sdunlock_rxq(bus->dhd); continue; } } else { if (bus->bus == SPI_BUS) bus->usebufpool = TRUE; ASSERT(!PKTLINK(pkt)); PKTALIGN(osh, pkt, rdlen, DHD_SDALIGN); rxbuf = (uint8 *)PKTDATA(osh, pkt); /* Read the entire frame */ sdret = dhd_bcmsdh_recv_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC, rxbuf, rdlen, pkt, NULL, NULL); bus->f2rxdata++; ASSERT(sdret != BCME_PENDING); if (sdret < 0) { DHD_ERROR(("%s (nextlen): read %d bytes failed: %d\n", __FUNCTION__, rdlen, sdret)); PKTFREE(bus->dhd->osh, pkt, FALSE); bus->dhd->rx_errors++; dhd_os_sdunlock_rxq(bus->dhd); /* Force retry w/normal header read. Don't attempt NAK for * gSPI */ dhdsdio_rxfail(bus, TRUE, (bus->bus == SPI_BUS) ? FALSE : TRUE); continue; } } dhd_os_sdunlock_rxq(bus->dhd); /* Now check the header */ bcopy(rxbuf, bus->rxhdr, SDPCM_HDRLEN); /* Extract hardware header fields */ len = ltoh16_ua(bus->rxhdr); check = ltoh16_ua(bus->rxhdr + sizeof(uint16)); /* All zeros means readahead info was bad */ if (!(len|check)) { DHD_INFO(("%s (nextlen): read zeros in HW header???\n", __FUNCTION__)); dhd_os_sdlock_rxq(bus->dhd); PKTFREE2(); dhd_os_sdunlock_rxq(bus->dhd); GSPI_PR55150_BAILOUT; continue; } /* Validate check bytes */ if ((uint16)~(len^check)) { DHD_ERROR(("%s (nextlen): HW hdr error: nextlen/len/check" " 0x%04x/0x%04x/0x%04x\n", __FUNCTION__, nextlen, len, check)); dhd_os_sdlock_rxq(bus->dhd); PKTFREE2(); dhd_os_sdunlock_rxq(bus->dhd); bus->rx_badhdr++; dhdsdio_rxfail(bus, FALSE, FALSE); GSPI_PR55150_BAILOUT; continue; } /* Validate frame length */ if (len < SDPCM_HDRLEN) { DHD_ERROR(("%s (nextlen): HW hdr length invalid: %d\n", __FUNCTION__, len)); dhd_os_sdlock_rxq(bus->dhd); PKTFREE2(); dhd_os_sdunlock_rxq(bus->dhd); GSPI_PR55150_BAILOUT; continue; } /* Check for consistency with readahead info */ len_consistent = (nextlen != (ROUNDUP(len, 16) >> 4)); if (len_consistent) { /* Mismatch, force retry w/normal header (may be >4K) */ DHD_ERROR(("%s (nextlen): mismatch, nextlen %d len %d rnd %d; " "expected rxseq %d\n", __FUNCTION__, nextlen, len, ROUNDUP(len, 16), rxseq)); dhd_os_sdlock_rxq(bus->dhd); PKTFREE2(); dhd_os_sdunlock_rxq(bus->dhd); dhdsdio_rxfail(bus, TRUE, (bus->bus == SPI_BUS) ? FALSE : TRUE); GSPI_PR55150_BAILOUT; continue; } /* Extract software header fields */ chan = SDPCM_PACKET_CHANNEL(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); seq = SDPCM_PACKET_SEQUENCE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); doff = SDPCM_DOFFSET_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); txmax = SDPCM_WINDOW_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); bus->nextlen = bus->rxhdr[SDPCM_FRAMETAG_LEN + SDPCM_NEXTLEN_OFFSET]; if ((bus->nextlen << 4) > MAX_RX_DATASZ) { DHD_INFO(("%s (nextlen): got frame w/nextlen too large" " (%d), seq %d\n", __FUNCTION__, bus->nextlen, seq)); bus->nextlen = 0; } bus->dhd->rx_readahead_cnt ++; /* Handle Flow Control */ fcbits = SDPCM_FCMASK_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); delta = 0; if (~bus->flowcontrol & fcbits) { bus->fc_xoff++; delta = 1; } if (bus->flowcontrol & ~fcbits) { bus->fc_xon++; delta = 1; } if (delta) { bus->fc_rcvd++; bus->flowcontrol = fcbits; } /* Check and update sequence number */ if (rxseq != seq) { DHD_INFO(("%s (nextlen): rx_seq %d, expected %d\n", __FUNCTION__, seq, rxseq)); bus->rx_badseq++; rxseq = seq; } /* Check window for sanity */ if ((uint8)(txmax - bus->tx_seq) > 0x40) { DHD_ERROR(("%s: got unlikely tx max %d with tx_seq %d\n", __FUNCTION__, txmax, bus->tx_seq)); txmax = bus->tx_max; } bus->tx_max = txmax; #ifdef DHD_DEBUG if (DHD_BYTES_ON() && DHD_DATA_ON()) { prhex("Rx Data", rxbuf, len); } else if (DHD_HDRS_ON()) { prhex("RxHdr", bus->rxhdr, SDPCM_HDRLEN); } #endif if (chan == SDPCM_CONTROL_CHANNEL) { if (bus->bus == SPI_BUS) { dhdsdio_read_control(bus, rxbuf, len, doff); if (bus->usebufpool) { dhd_os_sdlock_rxq(bus->dhd); PKTFREE(bus->dhd->osh, pkt, FALSE); dhd_os_sdunlock_rxq(bus->dhd); } continue; } else { DHD_ERROR(("%s (nextlen): readahead on control" " packet %d?\n", __FUNCTION__, seq)); /* Force retry w/normal header read */ bus->nextlen = 0; dhdsdio_rxfail(bus, FALSE, TRUE); dhd_os_sdlock_rxq(bus->dhd); PKTFREE2(); dhd_os_sdunlock_rxq(bus->dhd); continue; } } if ((bus->bus == SPI_BUS) && !bus->usebufpool) { DHD_ERROR(("Received %d bytes on %d channel. Running out of " "rx pktbuf's or not yet malloced.\n", len, chan)); continue; } /* Validate data offset */ if ((doff < SDPCM_HDRLEN) || (doff > len)) { DHD_ERROR(("%s (nextlen): bad data offset %d: HW len %d min %d\n", __FUNCTION__, doff, len, SDPCM_HDRLEN)); dhd_os_sdlock_rxq(bus->dhd); PKTFREE2(); dhd_os_sdunlock_rxq(bus->dhd); ASSERT(0); dhdsdio_rxfail(bus, FALSE, FALSE); continue; } /* All done with this one -- now deliver the packet */ goto deliver; } /* gSPI frames should not be handled in fractions */ if (bus->bus == SPI_BUS) { break; } /* Read frame header (hardware and software) */ sdret = dhd_bcmsdh_recv_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC, bus->rxhdr, firstread, NULL, NULL, NULL); bus->f2rxhdrs++; ASSERT(sdret != BCME_PENDING); if (sdret < 0) { DHD_ERROR(("%s: RXHEADER FAILED: %d\n", __FUNCTION__, sdret)); bus->rx_hdrfail++; dhdsdio_rxfail(bus, TRUE, TRUE); continue; } #ifdef DHD_DEBUG if (DHD_BYTES_ON() || DHD_HDRS_ON()) { prhex("RxHdr", bus->rxhdr, SDPCM_HDRLEN); } #endif /* Extract hardware header fields */ len = ltoh16_ua(bus->rxhdr); check = ltoh16_ua(bus->rxhdr + sizeof(uint16)); /* All zeros means no more frames */ if (!(len|check)) { *finished = TRUE; break; } /* Validate check bytes */ if ((uint16)~(len^check)) { DHD_ERROR(("%s: HW hdr error: len/check 0x%04x/0x%04x\n", __FUNCTION__, len, check)); bus->rx_badhdr++; dhdsdio_rxfail(bus, FALSE, FALSE); continue; } /* Validate frame length */ if (len < SDPCM_HDRLEN) { DHD_ERROR(("%s: HW hdr length invalid: %d\n", __FUNCTION__, len)); continue; } /* Extract software header fields */ chan = SDPCM_PACKET_CHANNEL(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); seq = SDPCM_PACKET_SEQUENCE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); doff = SDPCM_DOFFSET_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); txmax = SDPCM_WINDOW_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); /* Validate data offset */ if ((doff < SDPCM_HDRLEN) || (doff > len)) { DHD_ERROR(("%s: Bad data offset %d: HW len %d, min %d seq %d\n", __FUNCTION__, doff, len, SDPCM_HDRLEN, seq)); bus->rx_badhdr++; ASSERT(0); dhdsdio_rxfail(bus, FALSE, FALSE); continue; } /* Save the readahead length if there is one */ bus->nextlen = bus->rxhdr[SDPCM_FRAMETAG_LEN + SDPCM_NEXTLEN_OFFSET]; if ((bus->nextlen << 4) > MAX_RX_DATASZ) { DHD_INFO(("%s (nextlen): got frame w/nextlen too large (%d), seq %d\n", __FUNCTION__, bus->nextlen, seq)); bus->nextlen = 0; } /* Handle Flow Control */ fcbits = SDPCM_FCMASK_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); delta = 0; if (~bus->flowcontrol & fcbits) { bus->fc_xoff++; delta = 1; } if (bus->flowcontrol & ~fcbits) { bus->fc_xon++; delta = 1; } if (delta) { bus->fc_rcvd++; bus->flowcontrol = fcbits; } /* Check and update sequence number */ if (rxseq != seq) { DHD_INFO(("%s: rx_seq %d, expected %d\n", __FUNCTION__, seq, rxseq)); bus->rx_badseq++; rxseq = seq; } /* Check window for sanity */ if ((uint8)(txmax - bus->tx_seq) > 0x40) { DHD_ERROR(("%s: got unlikely tx max %d with tx_seq %d\n", __FUNCTION__, txmax, bus->tx_seq)); txmax = bus->tx_max; } bus->tx_max = txmax; /* Call a separate function for control frames */ if (chan == SDPCM_CONTROL_CHANNEL) { dhdsdio_read_control(bus, bus->rxhdr, len, doff); continue; } ASSERT((chan == SDPCM_DATA_CHANNEL) || (chan == SDPCM_EVENT_CHANNEL) || (chan == SDPCM_TEST_CHANNEL) || (chan == SDPCM_GLOM_CHANNEL)); /* Length to read */ rdlen = (len > firstread) ? (len - firstread) : 0; /* May pad read to blocksize for efficiency */ if (bus->roundup && bus->blocksize && (rdlen > bus->blocksize)) { pad = bus->blocksize - (rdlen % bus->blocksize); if ((pad <= bus->roundup) && (pad < bus->blocksize) && ((rdlen + pad + firstread) < MAX_RX_DATASZ)) rdlen += pad; } else if (rdlen % DHD_SDALIGN) { rdlen += DHD_SDALIGN - (rdlen % DHD_SDALIGN); } /* Satisfy length-alignment requirements */ if (forcealign && (rdlen & (ALIGNMENT - 1))) rdlen = ROUNDUP(rdlen, ALIGNMENT); if ((rdlen + firstread) > MAX_RX_DATASZ) { /* Too long -- skip this frame */ DHD_ERROR(("%s: too long: len %d rdlen %d\n", __FUNCTION__, len, rdlen)); bus->dhd->rx_errors++; bus->rx_toolong++; dhdsdio_rxfail(bus, FALSE, FALSE); continue; } dhd_os_sdlock_rxq(bus->dhd); if (!(pkt = PKTGET(osh, (rdlen + firstread + DHD_SDALIGN), FALSE))) { /* Give up on data, request rtx of events */ DHD_ERROR(("%s: PKTGET failed: rdlen %d chan %d\n", __FUNCTION__, rdlen, chan)); bus->dhd->rx_dropped++; dhd_os_sdunlock_rxq(bus->dhd); dhdsdio_rxfail(bus, FALSE, RETRYCHAN(chan)); continue; } dhd_os_sdunlock_rxq(bus->dhd); ASSERT(!PKTLINK(pkt)); /* Leave room for what we already read, and align remainder */ ASSERT(firstread < (PKTLEN(osh, pkt))); PKTPULL(osh, pkt, firstread); PKTALIGN(osh, pkt, rdlen, DHD_SDALIGN); /* Read the remaining frame data */ sdret = dhd_bcmsdh_recv_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC, ((uint8 *)PKTDATA(osh, pkt)), rdlen, pkt, NULL, NULL); bus->f2rxdata++; ASSERT(sdret != BCME_PENDING); if (sdret < 0) { DHD_ERROR(("%s: read %d %s bytes failed: %d\n", __FUNCTION__, rdlen, ((chan == SDPCM_EVENT_CHANNEL) ? "event" : ((chan == SDPCM_DATA_CHANNEL) ? "data" : "test")), sdret)); dhd_os_sdlock_rxq(bus->dhd); PKTFREE(bus->dhd->osh, pkt, FALSE); dhd_os_sdunlock_rxq(bus->dhd); bus->dhd->rx_errors++; dhdsdio_rxfail(bus, TRUE, RETRYCHAN(chan)); continue; } /* Copy the already-read portion */ PKTPUSH(osh, pkt, firstread); bcopy(bus->rxhdr, PKTDATA(osh, pkt), firstread); #ifdef DHD_DEBUG if (DHD_BYTES_ON() && DHD_DATA_ON()) { prhex("Rx Data", PKTDATA(osh, pkt), len); } #endif deliver: /* Save superframe descriptor and allocate packet frame */ if (chan == SDPCM_GLOM_CHANNEL) { if (SDPCM_GLOMDESC(&bus->rxhdr[SDPCM_FRAMETAG_LEN])) { DHD_GLOM(("%s: got glom descriptor, %d bytes:\n", __FUNCTION__, len)); #ifdef DHD_DEBUG if (DHD_GLOM_ON()) { prhex("Glom Data", PKTDATA(osh, pkt), len); } #endif PKTSETLEN(osh, pkt, len); ASSERT(doff == SDPCM_HDRLEN); PKTPULL(osh, pkt, SDPCM_HDRLEN); bus->glomd = pkt; } else { DHD_ERROR(("%s: glom superframe w/o descriptor!\n", __FUNCTION__)); dhdsdio_rxfail(bus, FALSE, FALSE); } continue; } /* Fill in packet len and prio, deliver upward */ PKTSETLEN(osh, pkt, len); PKTPULL(osh, pkt, doff); #ifdef SDTEST /* Test channel packets are processed separately */ if (chan == SDPCM_TEST_CHANNEL) { dhdsdio_testrcv(bus, pkt, seq); continue; } #endif /* SDTEST */ if (PKTLEN(osh, pkt) == 0) { dhd_os_sdlock_rxq(bus->dhd); PKTFREE(bus->dhd->osh, pkt, FALSE); dhd_os_sdunlock_rxq(bus->dhd); continue; } else if (dhd_prot_hdrpull(bus->dhd, &ifidx, pkt, reorder_info_buf, &reorder_info_len) != 0) { DHD_ERROR(("%s: rx protocol error\n", __FUNCTION__)); dhd_os_sdlock_rxq(bus->dhd); PKTFREE(bus->dhd->osh, pkt, FALSE); dhd_os_sdunlock_rxq(bus->dhd); bus->dhd->rx_errors++; continue; } if (reorder_info_len) { /* Reordering info from the firmware */ dhd_process_pkt_reorder_info(bus->dhd, reorder_info_buf, reorder_info_len, &pkt, &pkt_count); if (pkt_count == 0) continue; } else pkt_count = 1; /* Unlock during rx call */ dhd_os_sdunlock(bus->dhd); dhd_rx_frame(bus->dhd, ifidx, pkt, pkt_count, chan); dhd_os_sdlock(bus->dhd); } rxcount = maxframes - rxleft; #ifdef DHD_DEBUG /* Message if we hit the limit */ if (!rxleft && !sdtest) DHD_DATA(("%s: hit rx limit of %d frames\n", __FUNCTION__, maxframes)); else #endif /* DHD_DEBUG */ DHD_DATA(("%s: processed %d frames\n", __FUNCTION__, rxcount)); /* Back off rxseq if awaiting rtx, update rx_seq */ if (bus->rxskip) rxseq--; bus->rx_seq = rxseq; return rxcount; } static uint32 dhdsdio_hostmail(dhd_bus_t *bus) { sdpcmd_regs_t *regs = bus->regs; uint32 intstatus = 0; uint32 hmb_data; uint8 fcbits; uint retries = 0; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); /* Read mailbox data and ack that we did so */ R_SDREG(hmb_data, ®s->tohostmailboxdata, retries); if (retries <= retry_limit) W_SDREG(SMB_INT_ACK, ®s->tosbmailbox, retries); bus->f1regdata += 2; /* Dongle recomposed rx frames, accept them again */ if (hmb_data & HMB_DATA_NAKHANDLED) { DHD_INFO(("Dongle reports NAK handled, expect rtx of %d\n", bus->rx_seq)); if (!bus->rxskip) { DHD_ERROR(("%s: unexpected NAKHANDLED!\n", __FUNCTION__)); } bus->rxskip = FALSE; intstatus |= FRAME_AVAIL_MASK(bus); } /* * DEVREADY does not occur with gSPI. */ if (hmb_data & (HMB_DATA_DEVREADY | HMB_DATA_FWREADY)) { bus->sdpcm_ver = (hmb_data & HMB_DATA_VERSION_MASK) >> HMB_DATA_VERSION_SHIFT; if (bus->sdpcm_ver != SDPCM_PROT_VERSION) DHD_ERROR(("Version mismatch, dongle reports %d, expecting %d\n", bus->sdpcm_ver, SDPCM_PROT_VERSION)); else DHD_INFO(("Dongle ready, protocol version %d\n", bus->sdpcm_ver)); /* make sure for the SDIO_DEVICE_RXDATAINT_MODE_1 corecontrol is proper */ if ((bus->sih->buscoretype == SDIOD_CORE_ID) && (bus->sdpcmrev >= 4) && (bus->rxint_mode == SDIO_DEVICE_RXDATAINT_MODE_1)) { uint32 val; val = R_REG(bus->dhd->osh, &bus->regs->corecontrol); val &= ~CC_XMTDATAAVAIL_MODE; val |= CC_XMTDATAAVAIL_CTRL; W_REG(bus->dhd->osh, &bus->regs->corecontrol, val); val = R_REG(bus->dhd->osh, &bus->regs->corecontrol); } #ifdef DHD_DEBUG /* Retrieve console state address now that firmware should have updated it */ { sdpcm_shared_t shared; if (dhdsdio_readshared(bus, &shared) == 0) bus->console_addr = shared.console_addr; } #endif /* DHD_DEBUG */ } /* * Flow Control has been moved into the RX headers and this out of band * method isn't used any more. Leave this here for possibly remaining backward * compatible with older dongles */ if (hmb_data & HMB_DATA_FC) { fcbits = (hmb_data & HMB_DATA_FCDATA_MASK) >> HMB_DATA_FCDATA_SHIFT; if (fcbits & ~bus->flowcontrol) bus->fc_xoff++; if (bus->flowcontrol & ~fcbits) bus->fc_xon++; bus->fc_rcvd++; bus->flowcontrol = fcbits; } #ifdef DHD_DEBUG /* At least print a message if FW halted */ if (hmb_data & HMB_DATA_FWHALT) { DHD_ERROR(("INTERNAL ERROR: FIRMWARE HALTED\n")); dhdsdio_checkdied(bus, NULL, 0); } #endif /* DHD_DEBUG */ /* Shouldn't be any others */ if (hmb_data & ~(HMB_DATA_DEVREADY | HMB_DATA_FWHALT | HMB_DATA_NAKHANDLED | HMB_DATA_FC | HMB_DATA_FWREADY | HMB_DATA_FCDATA_MASK | HMB_DATA_VERSION_MASK)) { DHD_ERROR(("Unknown mailbox data content: 0x%02x\n", hmb_data)); } return intstatus; } static bool dhdsdio_dpc(dhd_bus_t *bus) { bcmsdh_info_t *sdh = bus->sdh; sdpcmd_regs_t *regs = bus->regs; uint32 intstatus, newstatus = 0; uint retries = 0; uint rxlimit = dhd_rxbound; /* Rx frames to read before resched */ uint txlimit = dhd_txbound; /* Tx frames to send before resched */ uint framecnt = 0; /* Temporary counter of tx/rx frames */ bool rxdone = TRUE; /* Flag for no more read data */ bool resched = FALSE; /* Flag indicating resched wanted */ DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (bus->dhd->busstate == DHD_BUS_DOWN) { DHD_ERROR(("%s: Bus down, ret\n", __FUNCTION__)); bus->intstatus = 0; return 0; } /* Start with leftover status bits */ intstatus = bus->intstatus; dhd_os_sdlock(bus->dhd); if (!SLPAUTO_ENAB(bus) && !KSO_ENAB(bus)) { DHD_ERROR(("%s: Device asleep\n", __FUNCTION__)); goto exit; } /* If waiting for HTAVAIL, check status */ if (!SLPAUTO_ENAB(bus) && (bus->clkstate == CLK_PENDING)) { int err; uint8 clkctl, devctl = 0; #ifdef DHD_DEBUG /* Check for inconsistent device control */ devctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err); if (err) { DHD_ERROR(("%s: error reading DEVCTL: %d\n", __FUNCTION__, err)); bus->dhd->busstate = DHD_BUS_DOWN; } else { ASSERT(devctl & SBSDIO_DEVCTL_CA_INT_ONLY); } #endif /* DHD_DEBUG */ /* Read CSR, if clock on switch to AVAIL, else ignore */ clkctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (err) { DHD_ERROR(("%s: error reading CSR: %d\n", __FUNCTION__, err)); bus->dhd->busstate = DHD_BUS_DOWN; } DHD_INFO(("DPC: PENDING, devctl 0x%02x clkctl 0x%02x\n", devctl, clkctl)); if (SBSDIO_HTAV(clkctl)) { devctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err); if (err) { DHD_ERROR(("%s: error reading DEVCTL: %d\n", __FUNCTION__, err)); bus->dhd->busstate = DHD_BUS_DOWN; } devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY; bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, devctl, &err); if (err) { DHD_ERROR(("%s: error writing DEVCTL: %d\n", __FUNCTION__, err)); bus->dhd->busstate = DHD_BUS_DOWN; } bus->clkstate = CLK_AVAIL; } else { goto clkwait; } } BUS_WAKE(bus); /* Make sure backplane clock is on */ dhdsdio_clkctl(bus, CLK_AVAIL, TRUE); if (bus->clkstate != CLK_AVAIL) goto clkwait; /* Pending interrupt indicates new device status */ if (bus->ipend) { bus->ipend = FALSE; R_SDREG(newstatus, ®s->intstatus, retries); bus->f1regdata++; if (bcmsdh_regfail(bus->sdh)) newstatus = 0; newstatus &= bus->hostintmask; bus->fcstate = !!(newstatus & I_HMB_FC_STATE); if (newstatus) { bus->f1regdata++; if ((bus->rxint_mode == SDIO_DEVICE_RXDATAINT_MODE_0) && (newstatus == I_XMTDATA_AVAIL)) { } else W_SDREG(newstatus, ®s->intstatus, retries); } } /* Merge new bits with previous */ intstatus |= newstatus; bus->intstatus = 0; /* Handle flow-control change: read new state in case our ack * crossed another change interrupt. If change still set, assume * FC ON for safety, let next loop through do the debounce. */ if (intstatus & I_HMB_FC_CHANGE) { intstatus &= ~I_HMB_FC_CHANGE; W_SDREG(I_HMB_FC_CHANGE, ®s->intstatus, retries); R_SDREG(newstatus, ®s->intstatus, retries); bus->f1regdata += 2; bus->fcstate = !!(newstatus & (I_HMB_FC_STATE | I_HMB_FC_CHANGE)); intstatus |= (newstatus & bus->hostintmask); } /* Just being here means nothing more to do for chipactive */ if (intstatus & I_CHIPACTIVE) { /* ASSERT(bus->clkstate == CLK_AVAIL); */ intstatus &= ~I_CHIPACTIVE; } /* Handle host mailbox indication */ if (intstatus & I_HMB_HOST_INT) { intstatus &= ~I_HMB_HOST_INT; intstatus |= dhdsdio_hostmail(bus); } /* Generally don't ask for these, can get CRC errors... */ if (intstatus & I_WR_OOSYNC) { DHD_ERROR(("Dongle reports WR_OOSYNC\n")); intstatus &= ~I_WR_OOSYNC; } if (intstatus & I_RD_OOSYNC) { DHD_ERROR(("Dongle reports RD_OOSYNC\n")); intstatus &= ~I_RD_OOSYNC; } if (intstatus & I_SBINT) { DHD_ERROR(("Dongle reports SBINT\n")); intstatus &= ~I_SBINT; } /* Would be active due to wake-wlan in gSPI */ if (intstatus & I_CHIPACTIVE) { DHD_INFO(("Dongle reports CHIPACTIVE\n")); intstatus &= ~I_CHIPACTIVE; } /* Ignore frame indications if rxskip is set */ if (bus->rxskip) { intstatus &= ~FRAME_AVAIL_MASK(bus); } /* On frame indication, read available frames */ if (PKT_AVAILABLE(bus, intstatus)) { framecnt = dhdsdio_readframes(bus, rxlimit, &rxdone); if (rxdone || bus->rxskip) intstatus &= ~FRAME_AVAIL_MASK(bus); rxlimit -= MIN(framecnt, rxlimit); } /* Keep still-pending events for next scheduling */ bus->intstatus = intstatus; clkwait: /* Re-enable interrupts to detect new device events (mailbox, rx frame) * or clock availability. (Allows tx loop to check ipend if desired.) * (Unless register access seems hosed, as we may not be able to ACK...) */ if (bus->intr && bus->intdis && !bcmsdh_regfail(sdh)) { DHD_INTR(("%s: enable SDIO interrupts, rxdone %d framecnt %d\n", __FUNCTION__, rxdone, framecnt)); bus->intdis = FALSE; #if defined(OOB_INTR_ONLY) bcmsdh_oob_intr_set(1); #endif /* (OOB_INTR_ONLY) */ bcmsdh_intr_enable(sdh); } if (TXCTLOK(bus) && bus->ctrl_frame_stat && (bus->clkstate == CLK_AVAIL)) { int ret, i; ret = dhd_bcmsdh_send_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC, (uint8 *)bus->ctrl_frame_buf, (uint32)bus->ctrl_frame_len, NULL, NULL, NULL); ASSERT(ret != BCME_PENDING); if (ret == BCME_NODEVICE) { DHD_ERROR(("%s: Device asleep already\n", __FUNCTION__)); } else if (ret < 0) { /* On failure, abort the command and terminate the frame */ DHD_INFO(("%s: sdio error %d, abort command and terminate frame.\n", __FUNCTION__, ret)); bus->tx_sderrs++; bcmsdh_abort(sdh, SDIO_FUNC_2); bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_FRAMECTRL, SFC_WF_TERM, NULL); bus->f1regdata++; for (i = 0; i < 3; i++) { uint8 hi, lo; hi = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WFRAMEBCHI, NULL); lo = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WFRAMEBCLO, NULL); bus->f1regdata += 2; if ((hi == 0) && (lo == 0)) break; } } if (ret == 0) { bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQUENCE_WRAP; } bus->ctrl_frame_stat = FALSE; dhd_wait_event_wakeup(bus->dhd); } /* Send queued frames (limit 1 if rx may still be pending) */ else if ((bus->clkstate == CLK_AVAIL) && !bus->fcstate && pktq_mlen(&bus->txq, ~bus->flowcontrol) && txlimit && DATAOK(bus)) { framecnt = rxdone ? txlimit : MIN(txlimit, dhd_txminmax); framecnt = dhdsdio_sendfromq(bus, framecnt); txlimit -= framecnt; } /* Resched the DPC if ctrl cmd is pending on bus credit */ if (bus->ctrl_frame_stat) resched = TRUE; /* Resched if events or tx frames are pending, else await next interrupt */ /* On failed register access, all bets are off: no resched or interrupts */ if ((bus->dhd->busstate == DHD_BUS_DOWN) || bcmsdh_regfail(sdh)) { if ((bus->sih->buscorerev >= 12) && !(dhdsdio_sleepcsr_get(bus) & SBSDIO_FUNC1_SLEEPCSR_KSO_MASK)) { /* Bus failed because of KSO */ DHD_ERROR(("%s: Bus failed due to KSO\n", __FUNCTION__)); bus->kso = FALSE; } else { DHD_ERROR(("%s: failed backplane access over SDIO, halting operation\n", __FUNCTION__)); bus->dhd->busstate = DHD_BUS_DOWN; bus->intstatus = 0; } } else if (bus->clkstate == CLK_PENDING) { /* Awaiting I_CHIPACTIVE; don't resched */ } else if (bus->intstatus || bus->ipend || (!bus->fcstate && pktq_mlen(&bus->txq, ~bus->flowcontrol) && DATAOK(bus)) || PKT_AVAILABLE(bus, bus->intstatus)) { /* Read multiple frames */ resched = TRUE; } bus->dpc_sched = resched; /* If we're done for now, turn off clock request. */ if ((bus->idletime == DHD_IDLE_IMMEDIATE) && (bus->clkstate != CLK_PENDING)) { bus->activity = FALSE; dhdsdio_clkctl(bus, CLK_NONE, FALSE); } exit: dhd_os_sdunlock(bus->dhd); return resched; } bool dhd_bus_dpc(struct dhd_bus *bus) { bool resched; /* Call the DPC directly. */ DHD_TRACE(("Calling dhdsdio_dpc() from %s\n", __FUNCTION__)); resched = dhdsdio_dpc(bus); return resched; } void dhdsdio_isr(void *arg) { dhd_bus_t *bus = (dhd_bus_t*)arg; bcmsdh_info_t *sdh; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (!bus) { DHD_ERROR(("%s : bus is null pointer , exit \n", __FUNCTION__)); return; } sdh = bus->sdh; if (bus->dhd->busstate == DHD_BUS_DOWN) { DHD_ERROR(("%s : bus is down. we have nothing to do\n", __FUNCTION__)); return; } DHD_TRACE(("%s: Enter\n", __FUNCTION__)); /* Count the interrupt call */ bus->intrcount++; bus->ipend = TRUE; /* Shouldn't get this interrupt if we're sleeping? */ if (!SLPAUTO_ENAB(bus)) { if (bus->sleeping) { DHD_ERROR(("INTERRUPT WHILE SLEEPING??\n")); return; } else if (!KSO_ENAB(bus)) { DHD_ERROR(("ISR in devsleep 1\n")); } } /* Disable additional interrupts (is this needed now)? */ if (bus->intr) { DHD_INTR(("%s: disable SDIO interrupts\n", __FUNCTION__)); } else { DHD_ERROR(("dhdsdio_isr() w/o interrupt configured!\n")); } bcmsdh_intr_disable(sdh); bus->intdis = TRUE; #if defined(SDIO_ISR_THREAD) DHD_TRACE(("Calling dhdsdio_dpc() from %s\n", __FUNCTION__)); DHD_OS_WAKE_LOCK(bus->dhd); while (dhdsdio_dpc(bus)); DHD_OS_WAKE_UNLOCK(bus->dhd); #else bus->dpc_sched = TRUE; dhd_sched_dpc(bus->dhd); #endif } #ifdef SDTEST static void dhdsdio_pktgen_init(dhd_bus_t *bus) { /* Default to specified length, or full range */ if (dhd_pktgen_len) { bus->pktgen_maxlen = MIN(dhd_pktgen_len, MAX_PKTGEN_LEN); bus->pktgen_minlen = bus->pktgen_maxlen; } else { bus->pktgen_maxlen = MAX_PKTGEN_LEN; bus->pktgen_minlen = 0; } bus->pktgen_len = (uint16)bus->pktgen_minlen; /* Default to per-watchdog burst with 10s print time */ bus->pktgen_freq = 1; bus->pktgen_print = 10000 / dhd_watchdog_ms; bus->pktgen_count = (dhd_pktgen * dhd_watchdog_ms + 999) / 1000; /* Default to echo mode */ bus->pktgen_mode = DHD_PKTGEN_ECHO; bus->pktgen_stop = 1; } static void dhdsdio_pktgen(dhd_bus_t *bus) { void *pkt; uint8 *data; uint pktcount; uint fillbyte; osl_t *osh = bus->dhd->osh; uint16 len; /* Display current count if appropriate */ if (bus->pktgen_print && (++bus->pktgen_ptick >= bus->pktgen_print)) { bus->pktgen_ptick = 0; printf("%s: send attempts %d rcvd %d\n", __FUNCTION__, bus->pktgen_sent, bus->pktgen_rcvd); } /* For recv mode, just make sure dongle has started sending */ if (bus->pktgen_mode == DHD_PKTGEN_RECV) { if (bus->pktgen_rcv_state == PKTGEN_RCV_IDLE) { bus->pktgen_rcv_state = PKTGEN_RCV_ONGOING; dhdsdio_sdtest_set(bus, (uint8)bus->pktgen_total); } return; } /* Otherwise, generate or request the specified number of packets */ for (pktcount = 0; pktcount < bus->pktgen_count; pktcount++) { /* Stop if total has been reached */ if (bus->pktgen_total && (bus->pktgen_sent >= bus->pktgen_total)) { bus->pktgen_count = 0; break; } /* Allocate an appropriate-sized packet */ len = bus->pktgen_len; if (!(pkt = PKTGET(osh, (len + SDPCM_HDRLEN + SDPCM_TEST_HDRLEN + DHD_SDALIGN), TRUE))) {; DHD_ERROR(("%s: PKTGET failed!\n", __FUNCTION__)); break; } PKTALIGN(osh, pkt, (len + SDPCM_HDRLEN + SDPCM_TEST_HDRLEN), DHD_SDALIGN); data = (uint8*)PKTDATA(osh, pkt) + SDPCM_HDRLEN; /* Write test header cmd and extra based on mode */ switch (bus->pktgen_mode) { case DHD_PKTGEN_ECHO: *data++ = SDPCM_TEST_ECHOREQ; *data++ = (uint8)bus->pktgen_sent; break; case DHD_PKTGEN_SEND: *data++ = SDPCM_TEST_DISCARD; *data++ = (uint8)bus->pktgen_sent; break; case DHD_PKTGEN_RXBURST: *data++ = SDPCM_TEST_BURST; *data++ = (uint8)bus->pktgen_count; break; default: DHD_ERROR(("Unrecognized pktgen mode %d\n", bus->pktgen_mode)); PKTFREE(osh, pkt, TRUE); bus->pktgen_count = 0; return; } /* Write test header length field */ *data++ = (len >> 0); *data++ = (len >> 8); /* Then fill in the remainder -- N/A for burst, but who cares... */ for (fillbyte = 0; fillbyte < len; fillbyte++) *data++ = SDPCM_TEST_FILL(fillbyte, (uint8)bus->pktgen_sent); #ifdef DHD_DEBUG if (DHD_BYTES_ON() && DHD_DATA_ON()) { data = (uint8*)PKTDATA(osh, pkt) + SDPCM_HDRLEN; prhex("dhdsdio_pktgen: Tx Data", data, PKTLEN(osh, pkt) - SDPCM_HDRLEN); } #endif /* Send it */ if (dhdsdio_txpkt(bus, pkt, SDPCM_TEST_CHANNEL, TRUE)) { bus->pktgen_fail++; if (bus->pktgen_stop && bus->pktgen_stop == bus->pktgen_fail) bus->pktgen_count = 0; } bus->pktgen_sent++; /* Bump length if not fixed, wrap at max */ if (++bus->pktgen_len > bus->pktgen_maxlen) bus->pktgen_len = (uint16)bus->pktgen_minlen; /* Special case for burst mode: just send one request! */ if (bus->pktgen_mode == DHD_PKTGEN_RXBURST) break; } } static void dhdsdio_sdtest_set(dhd_bus_t *bus, uint8 count) { void *pkt; uint8 *data; osl_t *osh = bus->dhd->osh; /* Allocate the packet */ if (!(pkt = PKTGET(osh, SDPCM_HDRLEN + SDPCM_TEST_HDRLEN + DHD_SDALIGN, TRUE))) { DHD_ERROR(("%s: PKTGET failed!\n", __FUNCTION__)); return; } PKTALIGN(osh, pkt, (SDPCM_HDRLEN + SDPCM_TEST_HDRLEN), DHD_SDALIGN); data = (uint8*)PKTDATA(osh, pkt) + SDPCM_HDRLEN; /* Fill in the test header */ *data++ = SDPCM_TEST_SEND; *data++ = count; *data++ = (bus->pktgen_maxlen >> 0); *data++ = (bus->pktgen_maxlen >> 8); /* Send it */ if (dhdsdio_txpkt(bus, pkt, SDPCM_TEST_CHANNEL, TRUE)) bus->pktgen_fail++; } static void dhdsdio_testrcv(dhd_bus_t *bus, void *pkt, uint seq) { osl_t *osh = bus->dhd->osh; uint8 *data; uint pktlen; uint8 cmd; uint8 extra; uint16 len; uint16 offset; /* Check for min length */ if ((pktlen = PKTLEN(osh, pkt)) < SDPCM_TEST_HDRLEN) { DHD_ERROR(("dhdsdio_restrcv: toss runt frame, pktlen %d\n", pktlen)); PKTFREE(osh, pkt, FALSE); return; } /* Extract header fields */ data = PKTDATA(osh, pkt); cmd = *data++; extra = *data++; len = *data++; len += *data++ << 8; DHD_TRACE(("%s:cmd:%d, xtra:%d,len:%d\n", __FUNCTION__, cmd, extra, len)); /* Check length for relevant commands */ if (cmd == SDPCM_TEST_DISCARD || cmd == SDPCM_TEST_ECHOREQ || cmd == SDPCM_TEST_ECHORSP) { if (pktlen != len + SDPCM_TEST_HDRLEN) { DHD_ERROR(("dhdsdio_testrcv: frame length mismatch, pktlen %d seq %d" " cmd %d extra %d len %d\n", pktlen, seq, cmd, extra, len)); PKTFREE(osh, pkt, FALSE); return; } } /* Process as per command */ switch (cmd) { case SDPCM_TEST_ECHOREQ: /* Rx->Tx turnaround ok (even on NDIS w/current implementation) */ *(uint8 *)(PKTDATA(osh, pkt)) = SDPCM_TEST_ECHORSP; if (dhdsdio_txpkt(bus, pkt, SDPCM_TEST_CHANNEL, TRUE) == 0) { bus->pktgen_sent++; } else { bus->pktgen_fail++; PKTFREE(osh, pkt, FALSE); } bus->pktgen_rcvd++; break; case SDPCM_TEST_ECHORSP: if (bus->ext_loop) { PKTFREE(osh, pkt, FALSE); bus->pktgen_rcvd++; break; } for (offset = 0; offset < len; offset++, data++) { if (*data != SDPCM_TEST_FILL(offset, extra)) { DHD_ERROR(("dhdsdio_testrcv: echo data mismatch: " "offset %d (len %d) expect 0x%02x rcvd 0x%02x\n", offset, len, SDPCM_TEST_FILL(offset, extra), *data)); break; } } PKTFREE(osh, pkt, FALSE); bus->pktgen_rcvd++; break; case SDPCM_TEST_DISCARD: { int i = 0; uint8 *prn = data; uint8 testval = extra; for (i = 0; i < len; i++) { if (*prn != testval) { DHD_ERROR(("DIErr@Pkt#:%d,Ix:%d, expected:0x%x, got:0x%x\n", i, bus->pktgen_rcvd_rcvsession, testval, *prn)); prn++; testval++; } } } PKTFREE(osh, pkt, FALSE); bus->pktgen_rcvd++; break; case SDPCM_TEST_BURST: case SDPCM_TEST_SEND: default: DHD_INFO(("dhdsdio_testrcv: unsupported or unknown command, pktlen %d seq %d" " cmd %d extra %d len %d\n", pktlen, seq, cmd, extra, len)); PKTFREE(osh, pkt, FALSE); break; } /* For recv mode, stop at limit (and tell dongle to stop sending) */ if (bus->pktgen_mode == DHD_PKTGEN_RECV) { if (bus->pktgen_rcv_state != PKTGEN_RCV_IDLE) { bus->pktgen_rcvd_rcvsession++; if (bus->pktgen_total && (bus->pktgen_rcvd_rcvsession >= bus->pktgen_total)) { bus->pktgen_count = 0; DHD_ERROR(("Pktgen:rcv test complete!\n")); bus->pktgen_rcv_state = PKTGEN_RCV_IDLE; dhdsdio_sdtest_set(bus, FALSE); bus->pktgen_rcvd_rcvsession = 0; } } } } #endif /* SDTEST */ extern void dhd_disable_intr(dhd_pub_t *dhdp) { dhd_bus_t *bus; bus = dhdp->bus; bcmsdh_intr_disable(bus->sdh); } extern bool dhd_bus_watchdog(dhd_pub_t *dhdp) { dhd_bus_t *bus; DHD_TIMER(("%s: Enter\n", __FUNCTION__)); bus = dhdp->bus; if (bus->dhd->dongle_reset) return FALSE; /* Ignore the timer if simulating bus down */ if (!SLPAUTO_ENAB(bus) && bus->sleeping) return FALSE; if (dhdp->busstate == DHD_BUS_DOWN) return FALSE; /* Poll period: check device if appropriate. */ if (!SLPAUTO_ENAB(bus) && (bus->poll && (++bus->polltick >= bus->pollrate))) { uint32 intstatus = 0; /* Reset poll tick */ bus->polltick = 0; /* Check device if no interrupts */ if (!bus->intr || (bus->intrcount == bus->lastintrs)) { if (!bus->dpc_sched) { uint8 devpend; devpend = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_INTPEND, NULL); intstatus = devpend & (INTR_STATUS_FUNC1 | INTR_STATUS_FUNC2); } /* If there is something, make like the ISR and schedule the DPC */ if (intstatus) { bus->pollcnt++; bus->ipend = TRUE; if (bus->intr) { bcmsdh_intr_disable(bus->sdh); } bus->dpc_sched = TRUE; dhd_sched_dpc(bus->dhd); } } /* Update interrupt tracking */ bus->lastintrs = bus->intrcount; } #ifdef DHD_DEBUG /* Poll for console output periodically */ if (dhdp->busstate == DHD_BUS_DATA && dhd_console_ms != 0) { bus->console.count += dhd_watchdog_ms; if (bus->console.count >= dhd_console_ms) { bus->console.count -= dhd_console_ms; /* Make sure backplane clock is on */ if (SLPAUTO_ENAB(bus)) dhdsdio_bussleep(bus, FALSE); else dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); if (dhdsdio_readconsole(bus) < 0) dhd_console_ms = 0; /* On error, stop trying */ } } #endif /* DHD_DEBUG */ #ifdef SDTEST /* Generate packets if configured */ if (bus->pktgen_count && (++bus->pktgen_tick >= bus->pktgen_freq)) { /* Make sure backplane clock is on */ dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); bus->pktgen_tick = 0; dhdsdio_pktgen(bus); } #endif /* On idle timeout clear activity flag and/or turn off clock */ if ((bus->idletime > 0) && (bus->clkstate == CLK_AVAIL)) { if (++bus->idlecount >= bus->idletime) { bus->idlecount = 0; if (bus->activity) { bus->activity = FALSE; if (SLPAUTO_ENAB(bus)) dhdsdio_bussleep(bus, TRUE); else dhdsdio_clkctl(bus, CLK_NONE, FALSE); } } } return bus->ipend; } #ifdef DHD_DEBUG extern int dhd_bus_console_in(dhd_pub_t *dhdp, uchar *msg, uint msglen) { dhd_bus_t *bus = dhdp->bus; uint32 addr, val; int rv; void *pkt; /* Address could be zero if CONSOLE := 0 in dongle Makefile */ if (bus->console_addr == 0) return BCME_UNSUPPORTED; /* Exclusive bus access */ dhd_os_sdlock(bus->dhd); /* Don't allow input if dongle is in reset */ if (bus->dhd->dongle_reset) { dhd_os_sdunlock(bus->dhd); return BCME_NOTREADY; } /* Request clock to allow SDIO accesses */ BUS_WAKE(bus); /* No pend allowed since txpkt is called later, ht clk has to be on */ dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); /* Zero cbuf_index */ addr = bus->console_addr + OFFSETOF(hndrte_cons_t, cbuf_idx); val = htol32(0); if ((rv = dhdsdio_membytes(bus, TRUE, addr, (uint8 *)&val, sizeof(val))) < 0) goto done; /* Write message into cbuf */ addr = bus->console_addr + OFFSETOF(hndrte_cons_t, cbuf); if ((rv = dhdsdio_membytes(bus, TRUE, addr, (uint8 *)msg, msglen)) < 0) goto done; /* Write length into vcons_in */ addr = bus->console_addr + OFFSETOF(hndrte_cons_t, vcons_in); val = htol32(msglen); if ((rv = dhdsdio_membytes(bus, TRUE, addr, (uint8 *)&val, sizeof(val))) < 0) goto done; /* Bump dongle by sending an empty packet on the event channel. * sdpcm_sendup (RX) checks for virtual console input. */ if ((pkt = PKTGET(bus->dhd->osh, 4 + SDPCM_RESERVE, TRUE)) != NULL) dhdsdio_txpkt(bus, pkt, SDPCM_EVENT_CHANNEL, TRUE); done: if ((bus->idletime == DHD_IDLE_IMMEDIATE) && !bus->dpc_sched) { bus->activity = FALSE; dhdsdio_clkctl(bus, CLK_NONE, TRUE); } dhd_os_sdunlock(bus->dhd); return rv; } #endif /* DHD_DEBUG */ #ifdef DHD_DEBUG static void dhd_dump_cis(uint fn, uint8 *cis) { uint byte, tag, tdata; DHD_INFO(("Function %d CIS:\n", fn)); for (tdata = byte = 0; byte < SBSDIO_CIS_SIZE_LIMIT; byte++) { if ((byte % 16) == 0) DHD_INFO((" ")); DHD_INFO(("%02x ", cis[byte])); if ((byte % 16) == 15) DHD_INFO(("\n")); if (!tdata--) { tag = cis[byte]; if (tag == 0xff) break; else if (!tag) tdata = 0; else if ((byte + 1) < SBSDIO_CIS_SIZE_LIMIT) tdata = cis[byte + 1] + 1; else DHD_INFO(("]")); } } if ((byte % 16) != 15) DHD_INFO(("\n")); } #endif /* DHD_DEBUG */ static bool dhdsdio_chipmatch(uint16 chipid) { if (chipid == BCM4325_CHIP_ID) return TRUE; if (chipid == BCM4329_CHIP_ID) return TRUE; if (chipid == BCM4315_CHIP_ID) return TRUE; if (chipid == BCM4319_CHIP_ID) return TRUE; if (chipid == BCM4336_CHIP_ID) return TRUE; if (chipid == BCM4330_CHIP_ID) return TRUE; if (chipid == BCM43237_CHIP_ID) return TRUE; if (chipid == BCM43362_CHIP_ID) return TRUE; if (chipid == BCM4314_CHIP_ID) return TRUE; if (chipid == BCM4334_CHIP_ID) return TRUE; if (chipid == BCM43239_CHIP_ID) return TRUE; if (chipid == BCM4324_CHIP_ID) return TRUE; return FALSE; } static void * dhdsdio_probe(uint16 venid, uint16 devid, uint16 bus_no, uint16 slot, uint16 func, uint bustype, void *regsva, osl_t * osh, void *sdh) { int ret; dhd_bus_t *bus; dhd_cmn_t *cmn; #ifdef GET_CUSTOM_MAC_ENABLE struct ether_addr ea_addr; #endif /* GET_CUSTOM_MAC_ENABLE */ #ifdef PROP_TXSTATUS uint up = 0; #endif /* Init global variables at run-time, not as part of the declaration. * This is required to support init/de-init of the driver. Initialization * of globals as part of the declaration results in non-deterministic * behavior since the value of the globals may be different on the * first time that the driver is initialized vs subsequent initializations. */ dhd_txbound = DHD_TXBOUND; dhd_rxbound = DHD_RXBOUND; dhd_alignctl = TRUE; sd1idle = TRUE; dhd_readahead = TRUE; retrydata = FALSE; dhd_doflow = FALSE; dhd_dongle_memsize = 0; dhd_txminmax = DHD_TXMINMAX; forcealign = TRUE; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); DHD_INFO(("%s: venid 0x%04x devid 0x%04x\n", __FUNCTION__, venid, devid)); /* We make assumptions about address window mappings */ ASSERT((uintptr)regsva == SI_ENUM_BASE); /* BCMSDH passes venid and devid based on CIS parsing -- but low-power start * means early parse could fail, so here we should get either an ID * we recognize OR (-1) indicating we must request power first. */ /* Check the Vendor ID */ switch (venid) { case 0x0000: case VENDOR_BROADCOM: break; default: DHD_ERROR(("%s: unknown vendor: 0x%04x\n", __FUNCTION__, venid)); return NULL; } /* Check the Device ID and make sure it's one that we support */ switch (devid) { case BCM4325_D11DUAL_ID: /* 4325 802.11a/g id */ case BCM4325_D11G_ID: /* 4325 802.11g 2.4Ghz band id */ case BCM4325_D11A_ID: /* 4325 802.11a 5Ghz band id */ DHD_INFO(("%s: found 4325 Dongle\n", __FUNCTION__)); break; case BCM4329_D11N_ID: /* 4329 802.11n dualband device */ case BCM4329_D11N2G_ID: /* 4329 802.11n 2.4G device */ case BCM4329_D11N5G_ID: /* 4329 802.11n 5G device */ case 0x4329: DHD_INFO(("%s: found 4329 Dongle\n", __FUNCTION__)); break; case BCM4315_D11DUAL_ID: /* 4315 802.11a/g id */ case BCM4315_D11G_ID: /* 4315 802.11g id */ case BCM4315_D11A_ID: /* 4315 802.11a id */ DHD_INFO(("%s: found 4315 Dongle\n", __FUNCTION__)); break; case BCM4319_D11N_ID: /* 4319 802.11n id */ case BCM4319_D11N2G_ID: /* 4319 802.11n2g id */ case BCM4319_D11N5G_ID: /* 4319 802.11n5g id */ DHD_INFO(("%s: found 4319 Dongle\n", __FUNCTION__)); break; case 0: DHD_INFO(("%s: allow device id 0, will check chip internals\n", __FUNCTION__)); break; default: DHD_ERROR(("%s: skipping 0x%04x/0x%04x, not a dongle\n", __FUNCTION__, venid, devid)); return NULL; } if (osh == NULL) { /* Ask the OS interface part for an OSL handle */ if (!(osh = dhd_osl_attach(sdh, DHD_BUS))) { DHD_ERROR(("%s: osl_attach failed!\n", __FUNCTION__)); return NULL; } } /* Allocate private bus interface state */ if (!(bus = MALLOC(osh, sizeof(dhd_bus_t)))) { DHD_ERROR(("%s: MALLOC of dhd_bus_t failed\n", __FUNCTION__)); goto fail; } bzero(bus, sizeof(dhd_bus_t)); bus->sdh = sdh; bus->cl_devid = (uint16)devid; bus->bus = DHD_BUS; bus->tx_seq = SDPCM_SEQUENCE_WRAP - 1; bus->usebufpool = FALSE; /* Use bufpool if allocated, else use locally malloced rxbuf */ /* attach the common module */ if (!(cmn = dhd_common_init(osh))) { DHD_ERROR(("%s: dhd_common_init failed\n", __FUNCTION__)); goto fail; } /* attempt to attach to the dongle */ if (!(dhdsdio_probe_attach(bus, osh, sdh, regsva, devid))) { DHD_ERROR(("%s: dhdsdio_probe_attach failed\n", __FUNCTION__)); dhd_common_deinit(NULL, cmn); goto fail; } /* Attach to the dhd/OS/network interface */ if (!(bus->dhd = dhd_attach(osh, bus, SDPCM_RESERVE))) { DHD_ERROR(("%s: dhd_attach failed\n", __FUNCTION__)); goto fail; } bus->dhd->cmn = cmn; cmn->dhd = bus->dhd; /* Allocate buffers */ if (!(dhdsdio_probe_malloc(bus, osh, sdh))) { DHD_ERROR(("%s: dhdsdio_probe_malloc failed\n", __FUNCTION__)); goto fail; } if (!(dhdsdio_probe_init(bus, osh, sdh))) { DHD_ERROR(("%s: dhdsdio_probe_init failed\n", __FUNCTION__)); goto fail; } if (bus->intr) { /* Register interrupt callback, but mask it (not operational yet). */ DHD_INTR(("%s: disable SDIO interrupts (not interested yet)\n", __FUNCTION__)); bcmsdh_intr_disable(sdh); if ((ret = bcmsdh_intr_reg(sdh, dhdsdio_isr, bus)) != 0) { DHD_ERROR(("%s: FAILED: bcmsdh_intr_reg returned %d\n", __FUNCTION__, ret)); goto fail; } DHD_INTR(("%s: registered SDIO interrupt function ok\n", __FUNCTION__)); } else { DHD_INFO(("%s: SDIO interrupt function is NOT registered due to polling mode\n", __FUNCTION__)); } DHD_INFO(("%s: completed!!\n", __FUNCTION__)); #ifdef GET_CUSTOM_MAC_ENABLE /* Read MAC address from external customer place */ memset(&ea_addr, 0, sizeof(ea_addr)); ret = dhd_custom_get_mac_address(ea_addr.octet); if (!ret) { memcpy(bus->dhd->mac.octet, (void *)&ea_addr, ETHER_ADDR_LEN); } #endif /* GET_CUSTOM_MAC_ENABLE */ /* if firmware path present try to download and bring up bus */ if (dhd_download_fw_on_driverload && (ret = dhd_bus_start(bus->dhd)) != 0) { DHD_ERROR(("%s: dhd_bus_start failed\n", __FUNCTION__)); if (ret == BCME_NOTUP) goto fail; } /* Ok, have the per-port tell the stack we're open for business */ if (dhd_net_attach(bus->dhd, 0) != 0) { DHD_ERROR(("%s: Net attach failed!!\n", __FUNCTION__)); goto fail; } #ifdef PROP_TXSTATUS if (dhd_download_fw_on_driverload) dhd_wl_ioctl_cmd(bus->dhd, WLC_UP, (char *)&up, sizeof(up), TRUE, 0); #endif return bus; fail: dhdsdio_release(bus, osh); return NULL; } static bool dhdsdio_probe_attach(struct dhd_bus *bus, osl_t *osh, void *sdh, void *regsva, uint16 devid) { int err = 0; uint8 clkctl = 0; bus->alp_only = TRUE; /* Return the window to backplane enumeration space for core access */ if (dhdsdio_set_siaddr_window(bus, SI_ENUM_BASE)) { DHD_ERROR(("%s: FAILED to return to SI_ENUM_BASE\n", __FUNCTION__)); } #ifdef DHD_DEBUG DHD_ERROR(("F1 signature read @0x18000000=0x%4x\n", bcmsdh_reg_read(bus->sdh, SI_ENUM_BASE, 4))); #endif /* DHD_DEBUG */ /* Force PLL off until si_attach() programs PLL control regs */ bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, DHD_INIT_CLKCTL1, &err); if (!err) clkctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (err || ((clkctl & ~SBSDIO_AVBITS) != DHD_INIT_CLKCTL1)) { DHD_ERROR(("dhdsdio_probe: ChipClkCSR access: err %d wrote 0x%02x read 0x%02x\n", err, DHD_INIT_CLKCTL1, clkctl)); goto fail; } #ifdef DHD_DEBUG if (DHD_INFO_ON()) { uint fn, numfn; uint8 *cis[SDIOD_MAX_IOFUNCS]; int err = 0; numfn = bcmsdh_query_iofnum(sdh); ASSERT(numfn <= SDIOD_MAX_IOFUNCS); /* Make sure ALP is available before trying to read CIS */ SPINWAIT(((clkctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, NULL)), !SBSDIO_ALPAV(clkctl)), PMU_MAX_TRANSITION_DLY); /* Now request ALP be put on the bus */ bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, DHD_INIT_CLKCTL2, &err); OSL_DELAY(65); for (fn = 0; fn <= numfn; fn++) { if (!(cis[fn] = MALLOC(osh, SBSDIO_CIS_SIZE_LIMIT))) { DHD_INFO(("dhdsdio_probe: fn %d cis malloc failed\n", fn)); break; } bzero(cis[fn], SBSDIO_CIS_SIZE_LIMIT); if ((err = bcmsdh_cis_read(sdh, fn, cis[fn], SBSDIO_CIS_SIZE_LIMIT))) { DHD_INFO(("dhdsdio_probe: fn %d cis read err %d\n", fn, err)); MFREE(osh, cis[fn], SBSDIO_CIS_SIZE_LIMIT); break; } dhd_dump_cis(fn, cis[fn]); } while (fn-- > 0) { ASSERT(cis[fn]); MFREE(osh, cis[fn], SBSDIO_CIS_SIZE_LIMIT); } if (err) { DHD_ERROR(("dhdsdio_probe: failure reading or parsing CIS\n")); goto fail; } } #endif /* DHD_DEBUG */ /* si_attach() will provide an SI handle and scan the backplane */ if (!(bus->sih = si_attach((uint)devid, osh, regsva, DHD_BUS, sdh, &bus->vars, &bus->varsz))) { DHD_ERROR(("%s: si_attach failed!\n", __FUNCTION__)); goto fail; } bcmsdh_chipinfo(sdh, bus->sih->chip, bus->sih->chiprev); if (!dhdsdio_chipmatch((uint16)bus->sih->chip)) { DHD_ERROR(("%s: unsupported chip: 0x%04x\n", __FUNCTION__, bus->sih->chip)); goto fail; } if (bus->sih->buscorerev >= 12) dhdsdio_clk_kso_init(bus); else bus->kso = TRUE; if (CST4330_CHIPMODE_SDIOD(bus->sih->chipst)) { } si_sdiod_drive_strength_init(bus->sih, osh, dhd_sdiod_drive_strength); /* Get info on the ARM and SOCRAM cores... */ if (!DHD_NOPMU(bus)) { if ((si_setcore(bus->sih, ARM7S_CORE_ID, 0)) || (si_setcore(bus->sih, ARMCM3_CORE_ID, 0))) { bus->armrev = si_corerev(bus->sih); } else { DHD_ERROR(("%s: failed to find ARM core!\n", __FUNCTION__)); goto fail; } if (!(bus->orig_ramsize = si_socram_size(bus->sih))) { DHD_ERROR(("%s: failed to find SOCRAM memory!\n", __FUNCTION__)); goto fail; } bus->ramsize = bus->orig_ramsize; if (dhd_dongle_memsize) dhd_dongle_setmemsize(bus, dhd_dongle_memsize); DHD_ERROR(("DHD: dongle ram size is set to %d(orig %d)\n", bus->ramsize, bus->orig_ramsize)); } /* ...but normally deal with the SDPCMDEV core */ if (!(bus->regs = si_setcore(bus->sih, PCMCIA_CORE_ID, 0)) && !(bus->regs = si_setcore(bus->sih, SDIOD_CORE_ID, 0))) { DHD_ERROR(("%s: failed to find SDIODEV core!\n", __FUNCTION__)); goto fail; } bus->sdpcmrev = si_corerev(bus->sih); /* Set core control so an SDIO reset does a backplane reset */ OR_REG(osh, &bus->regs->corecontrol, CC_BPRESEN); bus->rxint_mode = SDIO_DEVICE_HMB_RXINT; if ((bus->sih->buscoretype == SDIOD_CORE_ID) && (bus->sdpcmrev >= 4) && (bus->rxint_mode == SDIO_DEVICE_RXDATAINT_MODE_1)) { uint32 val; val = R_REG(osh, &bus->regs->corecontrol); val &= ~CC_XMTDATAAVAIL_MODE; val |= CC_XMTDATAAVAIL_CTRL; W_REG(osh, &bus->regs->corecontrol, val); } pktq_init(&bus->txq, (PRIOMASK + 1), QLEN); /* Locate an appropriately-aligned portion of hdrbuf */ bus->rxhdr = (uint8 *)ROUNDUP((uintptr)&bus->hdrbuf[0], DHD_SDALIGN); /* Set the poll and/or interrupt flags */ bus->intr = (bool)dhd_intr; if ((bus->poll = (bool)dhd_poll)) bus->pollrate = 1; return TRUE; fail: if (bus->sih != NULL) si_detach(bus->sih); return FALSE; } static bool dhdsdio_probe_malloc(dhd_bus_t *bus, osl_t *osh, void *sdh) { DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (bus->dhd->maxctl) { bus->rxblen = ROUNDUP((bus->dhd->maxctl + SDPCM_HDRLEN), ALIGNMENT) + DHD_SDALIGN; if (!(bus->rxbuf = DHD_OS_PREALLOC(osh, DHD_PREALLOC_RXBUF, bus->rxblen))) { DHD_ERROR(("%s: MALLOC of %d-byte rxbuf failed\n", __FUNCTION__, bus->rxblen)); goto fail; } } /* Allocate buffer to receive glomed packet */ if (!(bus->databuf = DHD_OS_PREALLOC(osh, DHD_PREALLOC_DATABUF, MAX_DATA_BUF))) { DHD_ERROR(("%s: MALLOC of %d-byte databuf failed\n", __FUNCTION__, MAX_DATA_BUF)); /* release rxbuf which was already located as above */ if (!bus->rxblen) DHD_OS_PREFREE(osh, bus->rxbuf, bus->rxblen); goto fail; } /* Align the buffer */ if ((uintptr)bus->databuf % DHD_SDALIGN) bus->dataptr = bus->databuf + (DHD_SDALIGN - ((uintptr)bus->databuf % DHD_SDALIGN)); else bus->dataptr = bus->databuf; return TRUE; fail: return FALSE; } static bool dhdsdio_probe_init(dhd_bus_t *bus, osl_t *osh, void *sdh) { int32 fnum; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); #ifdef SDTEST dhdsdio_pktgen_init(bus); #endif /* SDTEST */ /* Disable F2 to clear any intermediate frame state on the dongle */ bcmsdh_cfg_write(sdh, SDIO_FUNC_0, SDIOD_CCCR_IOEN, SDIO_FUNC_ENABLE_1, NULL); bus->dhd->busstate = DHD_BUS_DOWN; bus->sleeping = FALSE; bus->rxflow = FALSE; bus->prev_rxlim_hit = 0; /* Done with backplane-dependent accesses, can drop clock... */ bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, 0, NULL); /* ...and initialize clock/power states */ bus->clkstate = CLK_SDONLY; bus->idletime = (int32)dhd_idletime; bus->idleclock = DHD_IDLE_ACTIVE; /* Query the SD clock speed */ if (bcmsdh_iovar_op(sdh, "sd_divisor", NULL, 0, &bus->sd_divisor, sizeof(int32), FALSE) != BCME_OK) { DHD_ERROR(("%s: fail on %s get\n", __FUNCTION__, "sd_divisor")); bus->sd_divisor = -1; } else { DHD_INFO(("%s: Initial value for %s is %d\n", __FUNCTION__, "sd_divisor", bus->sd_divisor)); } /* Query the SD bus mode */ if (bcmsdh_iovar_op(sdh, "sd_mode", NULL, 0, &bus->sd_mode, sizeof(int32), FALSE) != BCME_OK) { DHD_ERROR(("%s: fail on %s get\n", __FUNCTION__, "sd_mode")); bus->sd_mode = -1; } else { DHD_INFO(("%s: Initial value for %s is %d\n", __FUNCTION__, "sd_mode", bus->sd_mode)); } /* Query the F2 block size, set roundup accordingly */ fnum = 2; if (bcmsdh_iovar_op(sdh, "sd_blocksize", &fnum, sizeof(int32), &bus->blocksize, sizeof(int32), FALSE) != BCME_OK) { bus->blocksize = 0; DHD_ERROR(("%s: fail on %s get\n", __FUNCTION__, "sd_blocksize")); } else { DHD_INFO(("%s: Initial value for %s is %d\n", __FUNCTION__, "sd_blocksize", bus->blocksize)); } bus->roundup = MIN(max_roundup, bus->blocksize); /* Query if bus module supports packet chaining, default to use if supported */ if (bcmsdh_iovar_op(sdh, "sd_rxchain", NULL, 0, &bus->sd_rxchain, sizeof(int32), FALSE) != BCME_OK) { bus->sd_rxchain = FALSE; } else { DHD_INFO(("%s: bus module (through bcmsdh API) %s chaining\n", __FUNCTION__, (bus->sd_rxchain ? "supports" : "does not support"))); } bus->use_rxchain = (bool)bus->sd_rxchain; return TRUE; } bool dhd_bus_download_firmware(struct dhd_bus *bus, osl_t *osh, char *pfw_path, char *pnv_path) { bool ret; bus->fw_path = pfw_path; bus->nv_path = pnv_path; ret = dhdsdio_download_firmware(bus, osh, bus->sdh); return ret; } static bool dhdsdio_download_firmware(struct dhd_bus *bus, osl_t *osh, void *sdh) { bool ret; DHD_OS_WAKE_LOCK(bus->dhd); if (!SLPAUTO_ENAB(bus)) { /* Download the firmware */ dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); } else { int err = 0; bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, SBSDIO_ALP_AVAIL_REQ, &err); } ret = _dhdsdio_download_firmware(bus) == 0; /* For SLPAUTO, keep ALP_REQ otherwise device can go into deep-sleep * without host request */ if (!SLPAUTO_ENAB(bus)) dhdsdio_clkctl(bus, CLK_SDONLY, FALSE); DHD_OS_WAKE_UNLOCK(bus->dhd); return ret; } /* Detach and free everything */ static void dhdsdio_release(dhd_bus_t *bus, osl_t *osh) { bool dongle_isolation = FALSE; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (bus) { ASSERT(osh); /* De-register interrupt handler */ bcmsdh_intr_disable(bus->sdh); bcmsdh_intr_dereg(bus->sdh); if (bus->dhd) { dhd_common_deinit(bus->dhd, NULL); dongle_isolation = bus->dhd->dongle_isolation; dhd_detach(bus->dhd); dhdsdio_release_dongle(bus, osh, dongle_isolation, TRUE); dhd_free(bus->dhd); bus->dhd = NULL; } dhdsdio_release_malloc(bus, osh); #ifdef DHD_DEBUG if (bus->console.buf != NULL) MFREE(osh, bus->console.buf, bus->console.bufsize); #endif MFREE(osh, bus, sizeof(dhd_bus_t)); } if (osh) dhd_osl_detach(osh); DHD_TRACE(("%s: Disconnected\n", __FUNCTION__)); } static void dhdsdio_release_malloc(dhd_bus_t *bus, osl_t *osh) { DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (bus->dhd && bus->dhd->dongle_reset) return; if (bus->rxbuf) { #ifndef CONFIG_DHD_USE_STATIC_BUF MFREE(osh, bus->rxbuf, bus->rxblen); #endif bus->rxctl = bus->rxbuf = NULL; bus->rxlen = 0; } if (bus->databuf) { #ifndef CONFIG_DHD_USE_STATIC_BUF MFREE(osh, bus->databuf, MAX_DATA_BUF); #endif bus->databuf = NULL; } if (bus->vars && bus->varsz) { MFREE(osh, bus->vars, bus->varsz); bus->vars = NULL; } } static void dhdsdio_release_dongle(dhd_bus_t *bus, osl_t *osh, bool dongle_isolation, bool reset_flag) { DHD_TRACE(("%s: Enter bus->dhd %p bus->dhd->dongle_reset %d \n", __FUNCTION__, bus->dhd, bus->dhd->dongle_reset)); if ((bus->dhd && bus->dhd->dongle_reset) && reset_flag) return; if (bus->sih) { if (bus->dhd) { dhdsdio_clkctl(bus, CLK_AVAIL, FALSE); } #if !defined(BCMLXSDMMC) if (KSO_ENAB(bus) && (dongle_isolation == FALSE)) si_watchdog(bus->sih, 4); #endif /* !defined(BCMLXSDMMC) */ if (bus->dhd) { dhdsdio_clkctl(bus, CLK_NONE, FALSE); } si_detach(bus->sih); if (bus->vars && bus->varsz) MFREE(osh, bus->vars, bus->varsz); bus->vars = NULL; } DHD_TRACE(("%s: Disconnected\n", __FUNCTION__)); } static void dhdsdio_disconnect(void *ptr) { dhd_bus_t *bus = (dhd_bus_t *)ptr; DHD_TRACE(("%s: Enter\n", __FUNCTION__)); if (bus) { ASSERT(bus->dhd); dhdsdio_release(bus, bus->dhd->osh); } DHD_TRACE(("%s: Disconnected\n", __FUNCTION__)); } /* Register/Unregister functions are called by the main DHD entry * point (e.g. module insertion) to link with the bus driver, in * order to look for or await the device. */ static bcmsdh_driver_t dhd_sdio = { dhdsdio_probe, dhdsdio_disconnect }; int dhd_bus_register(void) { DHD_TRACE(("%s: Enter\n", __FUNCTION__)); return bcmsdh_register(&dhd_sdio); } void dhd_bus_unregister(void) { DHD_TRACE(("%s: Enter\n", __FUNCTION__)); bcmsdh_unregister(); } /* Register a dummy SDIO client driver in order to be notified of new SDIO device */ int dhd_bus_reg_sdio_notify(void* semaphore) { return bcmsdh_reg_sdio_notify(semaphore); } void dhd_bus_unreg_sdio_notify(void) { bcmsdh_unreg_sdio_notify(); } #ifdef BCMEMBEDIMAGE static int dhdsdio_download_code_array(struct dhd_bus *bus) { int bcmerror = -1; int offset = 0; unsigned char *ularray = NULL; DHD_INFO(("%s: download embedded firmware...\n", __FUNCTION__)); /* Download image */ while ((offset + MEMBLOCK) < sizeof(dlarray)) { bcmerror = dhdsdio_membytes(bus, TRUE, offset, (uint8 *) (dlarray + offset), MEMBLOCK); if (bcmerror) { DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n", __FUNCTION__, bcmerror, MEMBLOCK, offset)); goto err; } offset += MEMBLOCK; } if (offset < sizeof(dlarray)) { bcmerror = dhdsdio_membytes(bus, TRUE, offset, (uint8 *) (dlarray + offset), sizeof(dlarray) - offset); if (bcmerror) { DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n", __FUNCTION__, bcmerror, sizeof(dlarray) - offset, offset)); goto err; } } #ifdef DHD_DEBUG /* Upload and compare the downloaded code */ { ularray = MALLOC(bus->dhd->osh, bus->ramsize); /* Upload image to verify downloaded contents. */ offset = 0; memset(ularray, 0xaa, bus->ramsize); while ((offset + MEMBLOCK) < sizeof(dlarray)) { bcmerror = dhdsdio_membytes(bus, FALSE, offset, ularray + offset, MEMBLOCK); if (bcmerror) { DHD_ERROR(("%s: error %d on reading %d membytes at 0x%08x\n", __FUNCTION__, bcmerror, MEMBLOCK, offset)); goto err; } offset += MEMBLOCK; } if (offset < sizeof(dlarray)) { bcmerror = dhdsdio_membytes(bus, FALSE, offset, ularray + offset, sizeof(dlarray) - offset); if (bcmerror) { DHD_ERROR(("%s: error %d on reading %d membytes at 0x%08x\n", __FUNCTION__, bcmerror, sizeof(dlarray) - offset, offset)); goto err; } } if (memcmp(dlarray, ularray, sizeof(dlarray))) { DHD_ERROR(("%s: Downloaded image is corrupted (%s, %s, %s).\n", __FUNCTION__, dlimagename, dlimagever, dlimagedate)); goto err; } else DHD_ERROR(("%s: Download, Upload and compare succeeded (%s, %s, %s).\n", __FUNCTION__, dlimagename, dlimagever, dlimagedate)); } #endif /* DHD_DEBUG */ err: if (ularray) MFREE(bus->dhd->osh, ularray, bus->ramsize); return bcmerror; } #endif /* BCMEMBEDIMAGE */ static int dhdsdio_download_code_file(struct dhd_bus *bus, char *pfw_path) { int bcmerror = -1; int offset = 0; uint len; void *image = NULL; uint8 *memblock = NULL, *memptr; DHD_INFO(("%s: download firmware %s\n", __FUNCTION__, pfw_path)); image = dhd_os_open_image(pfw_path); if (image == NULL) goto err; memptr = memblock = MALLOC(bus->dhd->osh, MEMBLOCK + DHD_SDALIGN); if (memblock == NULL) { DHD_ERROR(("%s: Failed to allocate memory %d bytes\n", __FUNCTION__, MEMBLOCK)); goto err; } if ((uint32)(uintptr)memblock % DHD_SDALIGN) memptr += (DHD_SDALIGN - ((uint32)(uintptr)memblock % DHD_SDALIGN)); /* Download image */ while ((len = dhd_os_get_image_block((char*)memptr, MEMBLOCK, image))) { bcmerror = dhdsdio_membytes(bus, TRUE, offset, memptr, len); if (bcmerror) { DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n", __FUNCTION__, bcmerror, MEMBLOCK, offset)); goto err; } offset += MEMBLOCK; } err: if (memblock) MFREE(bus->dhd->osh, memblock, MEMBLOCK + DHD_SDALIGN); if (image) dhd_os_close_image(image); return bcmerror; } /* EXAMPLE: nvram_array nvram_arry format: name=value Use carriage return at the end of each assignment, and an empty string with carriage return at the end of array. For example: unsigned char nvram_array[] = {"name1=value1\n", "name2=value2\n", "\n"}; Hex values start with 0x, and mac addr format: xx:xx:xx:xx:xx:xx. Search "EXAMPLE: nvram_array" to see how the array is activated. */ void dhd_bus_set_nvram_params(struct dhd_bus * bus, const char *nvram_params) { bus->nvram_params = nvram_params; } static int dhdsdio_download_nvram(struct dhd_bus *bus) { int bcmerror = -1; uint len; void * image = NULL; char * memblock = NULL; char *bufp; char *pnv_path; bool nvram_file_exists; pnv_path = bus->nv_path; nvram_file_exists = ((pnv_path != NULL) && (pnv_path[0] != '\0')); if (!nvram_file_exists && (bus->nvram_params == NULL)) return (0); if (nvram_file_exists) { image = dhd_os_open_image(pnv_path); if (image == NULL) goto err; } memblock = MALLOC(bus->dhd->osh, MAX_NVRAMBUF_SIZE); if (memblock == NULL) { DHD_ERROR(("%s: Failed to allocate memory %d bytes\n", __FUNCTION__, MAX_NVRAMBUF_SIZE)); goto err; } /* Download variables */ if (nvram_file_exists) { len = dhd_os_get_image_block(memblock, MAX_NVRAMBUF_SIZE, image); } else { len = strlen(bus->nvram_params); ASSERT(len <= MAX_NVRAMBUF_SIZE); memcpy(memblock, bus->nvram_params, len); } if (len > 0 && len < MAX_NVRAMBUF_SIZE) { bufp = (char *)memblock; bufp[len] = 0; len = process_nvram_vars(bufp, len); if (len % 4) { len += 4 - (len % 4); } bufp += len; *bufp++ = 0; if (len) bcmerror = dhdsdio_downloadvars(bus, memblock, len + 1); if (bcmerror) { DHD_ERROR(("%s: error downloading vars: %d\n", __FUNCTION__, bcmerror)); } } else { DHD_ERROR(("%s: error reading nvram file: %d\n", __FUNCTION__, len)); bcmerror = BCME_SDIO_ERROR; } err: if (memblock) MFREE(bus->dhd->osh, memblock, MAX_NVRAMBUF_SIZE); if (image) dhd_os_close_image(image); return bcmerror; } static int _dhdsdio_download_firmware(struct dhd_bus *bus) { int bcmerror = -1; bool embed = FALSE; /* download embedded firmware */ bool dlok = FALSE; /* download firmware succeeded */ /* Out immediately if no image to download */ if ((bus->fw_path == NULL) || (bus->fw_path[0] == '\0')) { #ifdef BCMEMBEDIMAGE embed = TRUE; #else return 0; #endif } /* Keep arm in reset */ if (dhdsdio_download_state(bus, TRUE)) { DHD_ERROR(("%s: error placing ARM core in reset\n", __FUNCTION__)); goto err; } /* External image takes precedence if specified */ if ((bus->fw_path != NULL) && (bus->fw_path[0] != '\0')) { if (dhdsdio_download_code_file(bus, bus->fw_path)) { DHD_ERROR(("%s: dongle image file download failed\n", __FUNCTION__)); #ifdef BCMEMBEDIMAGE embed = TRUE; #else goto err; #endif } else { embed = FALSE; dlok = TRUE; } } #ifdef BCMEMBEDIMAGE if (embed) { if (dhdsdio_download_code_array(bus)) { DHD_ERROR(("%s: dongle image array download failed\n", __FUNCTION__)); goto err; } else { dlok = TRUE; } } #else BCM_REFERENCE(embed); #endif if (!dlok) { DHD_ERROR(("%s: dongle image download failed\n", __FUNCTION__)); goto err; } /* EXAMPLE: nvram_array */ /* If a valid nvram_arry is specified as above, it can be passed down to dongle */ /* dhd_bus_set_nvram_params(bus, (char *)&nvram_array); */ /* External nvram takes precedence if specified */ if (dhdsdio_download_nvram(bus)) { DHD_ERROR(("%s: dongle nvram file download failed\n", __FUNCTION__)); goto err; } /* Take arm out of reset */ if (dhdsdio_download_state(bus, FALSE)) { DHD_ERROR(("%s: error getting out of ARM core reset\n", __FUNCTION__)); goto err; } bcmerror = 0; err: return bcmerror; } static int dhd_bcmsdh_recv_buf(dhd_bus_t *bus, uint32 addr, uint fn, uint flags, uint8 *buf, uint nbytes, void *pkt, bcmsdh_cmplt_fn_t complete, void *handle) { int status; if (!KSO_ENAB(bus)) { DHD_ERROR(("%s: Device asleep\n", __FUNCTION__)); return BCME_NODEVICE; } status = bcmsdh_recv_buf(bus->sdh, addr, fn, flags, buf, nbytes, pkt, complete, handle); return status; } static int dhd_bcmsdh_send_buf(dhd_bus_t *bus, uint32 addr, uint fn, uint flags, uint8 *buf, uint nbytes, void *pkt, bcmsdh_cmplt_fn_t complete, void *handle) { if (!KSO_ENAB(bus)) { DHD_ERROR(("%s: Device asleep\n", __FUNCTION__)); return BCME_NODEVICE; } return (bcmsdh_send_buf(bus->sdh, addr, fn, flags, buf, nbytes, pkt, complete, handle)); } uint dhd_bus_chip(struct dhd_bus *bus) { ASSERT(bus->sih != NULL); return bus->sih->chip; } void * dhd_bus_pub(struct dhd_bus *bus) { return bus->dhd; } void * dhd_bus_txq(struct dhd_bus *bus) { return &bus->txq; } uint dhd_bus_hdrlen(struct dhd_bus *bus) { return SDPCM_HDRLEN; } int dhd_bus_devreset(dhd_pub_t *dhdp, uint8 flag) { int bcmerror = 0; dhd_bus_t *bus; bus = dhdp->bus; if (flag == TRUE) { if (!bus->dhd->dongle_reset) { dhd_os_sdlock(dhdp); dhd_os_wd_timer(dhdp, 0); #if !defined(IGNORE_ETH0_DOWN) /* Force flow control as protection when stop come before ifconfig_down */ dhd_txflowcontrol(bus->dhd, ALL_INTERFACES, ON); #endif /* !defined(IGNORE_ETH0_DOWN) */ /* Expect app to have torn down any connection before calling */ /* Stop the bus, disable F2 */ dhd_bus_stop(bus, FALSE); #if defined(OOB_INTR_ONLY) /* Clean up any pending IRQ */ bcmsdh_set_irq(FALSE); #endif /* defined(OOB_INTR_ONLY) */ /* Clean tx/rx buffer pointers, detach from the dongle */ dhdsdio_release_dongle(bus, bus->dhd->osh, TRUE, TRUE); bus->dhd->dongle_reset = TRUE; bus->dhd->up = FALSE; dhd_os_sdunlock(dhdp); DHD_TRACE(("%s: WLAN OFF DONE\n", __FUNCTION__)); /* App can now remove power from device */ } else bcmerror = BCME_SDIO_ERROR; } else { /* App must have restored power to device before calling */ DHD_TRACE(("\n\n%s: == WLAN ON ==\n", __FUNCTION__)); if (bus->dhd->dongle_reset) { /* Turn on WLAN */ #ifdef DHDTHREAD dhd_os_sdlock(dhdp); #endif /* DHDTHREAD */ /* Reset SD client */ bcmsdh_reset(bus->sdh); /* Attempt to re-attach & download */ if (dhdsdio_probe_attach(bus, bus->dhd->osh, bus->sdh, (uint32 *)SI_ENUM_BASE, bus->cl_devid)) { /* Attempt to download binary to the dongle */ if (dhdsdio_probe_init(bus, bus->dhd->osh, bus->sdh) && dhdsdio_download_firmware(bus, bus->dhd->osh, bus->sdh)) { /* Re-init bus, enable F2 transfer */ bcmerror = dhd_bus_init((dhd_pub_t *) bus->dhd, FALSE); if (bcmerror == BCME_OK) { #if defined(OOB_INTR_ONLY) bcmsdh_set_irq(TRUE); dhd_enable_oob_intr(bus, TRUE); #endif /* defined(OOB_INTR_ONLY) */ bus->dhd->dongle_reset = FALSE; bus->dhd->up = TRUE; #if !defined(IGNORE_ETH0_DOWN) /* Restore flow control */ dhd_txflowcontrol(bus->dhd, ALL_INTERFACES, OFF); #endif dhd_os_wd_timer(dhdp, dhd_watchdog_ms); DHD_TRACE(("%s: WLAN ON DONE\n", __FUNCTION__)); } else { dhd_bus_stop(bus, FALSE); dhdsdio_release_dongle(bus, bus->dhd->osh, TRUE, FALSE); } } else bcmerror = BCME_SDIO_ERROR; } else bcmerror = BCME_SDIO_ERROR; #ifdef DHDTHREAD dhd_os_sdunlock(dhdp); #endif /* DHDTHREAD */ } else { bcmerror = BCME_SDIO_ERROR; DHD_INFO(("%s called when dongle is not in reset\n", __FUNCTION__)); DHD_INFO(("Will call dhd_bus_start instead\n")); sdioh_start(NULL, 1); if ((bcmerror = dhd_bus_start(dhdp)) != 0) DHD_ERROR(("%s: dhd_bus_start fail with %d\n", __FUNCTION__, bcmerror)); } } return bcmerror; } int dhd_bus_membytes(dhd_pub_t *dhdp, bool set, uint32 address, uint8 *data, uint size) { dhd_bus_t *bus; bus = dhdp->bus; return dhdsdio_membytes(bus, set, address, data, size); }