/* * Copyright (c) 2010 Broadcom Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <linux/slab.h> #include <linux/delay.h> #include <linux/pci.h> #include <defs.h> #include <soc.h> #include <chipcommon.h> #include "aiutils.h" #include "pub.h" #include "nicpci.h" /* SPROM offsets */ #define SRSH_ASPM_OFFSET 4 /* word 4 */ #define SRSH_ASPM_ENB 0x18 /* bit 3, 4 */ #define SRSH_ASPM_L1_ENB 0x10 /* bit 4 */ #define SRSH_ASPM_L0s_ENB 0x8 /* bit 3 */ #define SRSH_PCIE_MISC_CONFIG 5 /* word 5 */ #define SRSH_L23READY_EXIT_NOPERST 0x8000 /* bit 15 */ #define SRSH_CLKREQ_OFFSET_REV5 20 /* word 20 for srom rev <= 5 */ #define SRSH_CLKREQ_ENB 0x0800 /* bit 11 */ #define SRSH_BD_OFFSET 6 /* word 6 */ /* chipcontrol */ #define CHIPCTRL_4321_PLL_DOWN 0x800000/* serdes PLL down override */ /* MDIO control */ #define MDIOCTL_DIVISOR_MASK 0x7f /* clock to be used on MDIO */ #define MDIOCTL_DIVISOR_VAL 0x2 #define MDIOCTL_PREAM_EN 0x80 /* Enable preamble sequnce */ #define MDIOCTL_ACCESS_DONE 0x100 /* Transaction complete */ /* MDIO Data */ #define MDIODATA_MASK 0x0000ffff /* data 2 bytes */ #define MDIODATA_TA 0x00020000 /* Turnaround */ #define MDIODATA_REGADDR_SHF 18 /* Regaddr shift */ #define MDIODATA_REGADDR_MASK 0x007c0000 /* Regaddr Mask */ #define MDIODATA_DEVADDR_SHF 23 /* Physmedia devaddr shift */ #define MDIODATA_DEVADDR_MASK 0x0f800000 /* Physmedia devaddr Mask */ /* MDIO Data for older revisions < 10 */ #define MDIODATA_REGADDR_SHF_OLD 18 /* Regaddr shift */ #define MDIODATA_REGADDR_MASK_OLD 0x003c0000 /* Regaddr Mask */ #define MDIODATA_DEVADDR_SHF_OLD 22 /* Physmedia devaddr shift */ #define MDIODATA_DEVADDR_MASK_OLD 0x0fc00000 /* Physmedia devaddr Mask */ /* Transactions flags */ #define MDIODATA_WRITE 0x10000000 #define MDIODATA_READ 0x20000000 #define MDIODATA_START 0x40000000 #define MDIODATA_DEV_ADDR 0x0 /* dev address for serdes */ #define MDIODATA_BLK_ADDR 0x1F /* blk address for serdes */ /* serdes regs (rev < 10) */ #define MDIODATA_DEV_PLL 0x1d /* SERDES PLL Dev */ #define MDIODATA_DEV_TX 0x1e /* SERDES TX Dev */ #define MDIODATA_DEV_RX 0x1f /* SERDES RX Dev */ /* SERDES RX registers */ #define SERDES_RX_CTRL 1 /* Rx cntrl */ #define SERDES_RX_TIMER1 2 /* Rx Timer1 */ #define SERDES_RX_CDR 6 /* CDR */ #define SERDES_RX_CDRBW 7 /* CDR BW */ /* SERDES RX control register */ #define SERDES_RX_CTRL_FORCE 0x80 /* rxpolarity_force */ #define SERDES_RX_CTRL_POLARITY 0x40 /* rxpolarity_value */ /* SERDES PLL registers */ #define SERDES_PLL_CTRL 1 /* PLL control reg */ #define PLL_CTRL_FREQDET_EN 0x4000 /* bit 14 is FREQDET on */ /* Linkcontrol reg offset in PCIE Cap */ #define PCIE_CAP_LINKCTRL_OFFSET 16 /* offset in pcie cap */ #define PCIE_CAP_LCREG_ASPML0s 0x01 /* ASPM L0s in linkctrl */ #define PCIE_CAP_LCREG_ASPML1 0x02 /* ASPM L1 in linkctrl */ #define PCIE_CLKREQ_ENAB 0x100 /* CLKREQ Enab in linkctrl */ #define PCIE_ASPM_ENAB 3 /* ASPM L0s & L1 in linkctrl */ #define PCIE_ASPM_L1_ENAB 2 /* ASPM L0s & L1 in linkctrl */ #define PCIE_ASPM_L0s_ENAB 1 /* ASPM L0s & L1 in linkctrl */ #define PCIE_ASPM_DISAB 0 /* ASPM L0s & L1 in linkctrl */ /* Power management threshold */ #define PCIE_L1THRESHOLDTIME_MASK 0xFF00 /* bits 8 - 15 */ #define PCIE_L1THRESHOLDTIME_SHIFT 8 /* PCIE_L1THRESHOLDTIME_SHIFT */ #define PCIE_L1THRESHOLD_WARVAL 0x72 /* WAR value */ #define PCIE_ASPMTIMER_EXTEND 0x01000000 /* > rev7: * enable extend ASPM timer */ /* different register spaces to access thru pcie indirect access */ #define PCIE_CONFIGREGS 1 /* Access to config space */ #define PCIE_PCIEREGS 2 /* Access to pcie registers */ /* PCIE protocol PHY diagnostic registers */ #define PCIE_PLP_STATUSREG 0x204 /* Status */ /* Status reg PCIE_PLP_STATUSREG */ #define PCIE_PLP_POLARITYINV_STAT 0x10 /* PCIE protocol DLLP diagnostic registers */ #define PCIE_DLLP_LCREG 0x100 /* Link Control */ #define PCIE_DLLP_PMTHRESHREG 0x128 /* Power Management Threshold */ /* PCIE protocol TLP diagnostic registers */ #define PCIE_TLP_WORKAROUNDSREG 0x004 /* TLP Workarounds */ /* Sonics to PCI translation types */ #define SBTOPCI_PREF 0x4 /* prefetch enable */ #define SBTOPCI_BURST 0x8 /* burst enable */ #define SBTOPCI_RC_READMULTI 0x20 /* memory read multiple */ #define PCI_CLKRUN_DSBL 0x8000 /* Bit 15 forceClkrun */ /* PCI core index in SROM shadow area */ #define SRSH_PI_OFFSET 0 /* first word */ #define SRSH_PI_MASK 0xf000 /* bit 15:12 */ #define SRSH_PI_SHIFT 12 /* bit 15:12 */ #define PCIREGOFFS(field) offsetof(struct sbpciregs, field) #define PCIEREGOFFS(field) offsetof(struct sbpcieregs, field) /* Sonics side: PCI core and host control registers */ struct sbpciregs { u32 control; /* PCI control */ u32 PAD[3]; u32 arbcontrol; /* PCI arbiter control */ u32 clkrun; /* Clkrun Control (>=rev11) */ u32 PAD[2]; u32 intstatus; /* Interrupt status */ u32 intmask; /* Interrupt mask */ u32 sbtopcimailbox; /* Sonics to PCI mailbox */ u32 PAD[9]; u32 bcastaddr; /* Sonics broadcast address */ u32 bcastdata; /* Sonics broadcast data */ u32 PAD[2]; u32 gpioin; /* ro: gpio input (>=rev2) */ u32 gpioout; /* rw: gpio output (>=rev2) */ u32 gpioouten; /* rw: gpio output enable (>= rev2) */ u32 gpiocontrol; /* rw: gpio control (>= rev2) */ u32 PAD[36]; u32 sbtopci0; /* Sonics to PCI translation 0 */ u32 sbtopci1; /* Sonics to PCI translation 1 */ u32 sbtopci2; /* Sonics to PCI translation 2 */ u32 PAD[189]; u32 pcicfg[4][64]; /* 0x400 - 0x7FF, PCI Cfg Space (>=rev8) */ u16 sprom[36]; /* SPROM shadow Area */ u32 PAD[46]; }; /* SB side: PCIE core and host control registers */ struct sbpcieregs { u32 control; /* host mode only */ u32 PAD[2]; u32 biststatus; /* bist Status: 0x00C */ u32 gpiosel; /* PCIE gpio sel: 0x010 */ u32 gpioouten; /* PCIE gpio outen: 0x14 */ u32 PAD[2]; u32 intstatus; /* Interrupt status: 0x20 */ u32 intmask; /* Interrupt mask: 0x24 */ u32 sbtopcimailbox; /* sb to pcie mailbox: 0x028 */ u32 PAD[53]; u32 sbtopcie0; /* sb to pcie translation 0: 0x100 */ u32 sbtopcie1; /* sb to pcie translation 1: 0x104 */ u32 sbtopcie2; /* sb to pcie translation 2: 0x108 */ u32 PAD[5]; /* pcie core supports in direct access to config space */ u32 configaddr; /* pcie config space access: Address field: 0x120 */ u32 configdata; /* pcie config space access: Data field: 0x124 */ /* mdio access to serdes */ u32 mdiocontrol; /* controls the mdio access: 0x128 */ u32 mdiodata; /* Data to the mdio access: 0x12c */ /* pcie protocol phy/dllp/tlp register indirect access mechanism */ u32 pcieindaddr; /* indirect access to * the internal register: 0x130 */ u32 pcieinddata; /* Data to/from the internal regsiter: 0x134 */ u32 clkreqenctrl; /* >= rev 6, Clkreq rdma control : 0x138 */ u32 PAD[177]; u32 pciecfg[4][64]; /* 0x400 - 0x7FF, PCIE Cfg Space */ u16 sprom[64]; /* SPROM shadow Area */ }; struct pcicore_info { struct bcma_device *core; struct si_pub *sih; /* System interconnect handle */ struct pci_dev *dev; u8 pciecap_lcreg_offset;/* PCIE capability LCreg offset * in the config space */ bool pcie_pr42767; u8 pcie_polarity; u8 pcie_war_aspm_ovr; /* Override ASPM/Clkreq settings */ u8 pmecap_offset; /* PM Capability offset in the config space */ bool pmecap; /* Capable of generating PME */ }; #define PCIE_ASPM(sih) \ ((ai_get_buscoretype(sih) == PCIE_CORE_ID) && \ ((ai_get_buscorerev(sih) >= 3) && \ (ai_get_buscorerev(sih) <= 5))) /* delay needed between the mdio control/ mdiodata register data access */ static void pr28829_delay(void) { udelay(10); } /* Initialize the PCI core. * It's caller's responsibility to make sure that this is done only once */ struct pcicore_info *pcicore_init(struct si_pub *sih, struct bcma_device *core) { struct pcicore_info *pi; /* alloc struct pcicore_info */ pi = kzalloc(sizeof(struct pcicore_info), GFP_ATOMIC); if (pi == NULL) return NULL; pi->sih = sih; pi->dev = core->bus->host_pci; pi->core = core; if (core->id.id == PCIE_CORE_ID) { u8 cap_ptr; cap_ptr = pcicore_find_pci_capability(pi->dev, PCI_CAP_ID_EXP, NULL, NULL); pi->pciecap_lcreg_offset = cap_ptr + PCIE_CAP_LINKCTRL_OFFSET; } return pi; } void pcicore_deinit(struct pcicore_info *pch) { kfree(pch); } /* return cap_offset if requested capability exists in the PCI config space */ /* Note that it's caller's responsibility to make sure it's a pci bus */ u8 pcicore_find_pci_capability(struct pci_dev *dev, u8 req_cap_id, unsigned char *buf, u32 *buflen) { u8 cap_id; u8 cap_ptr = 0; u32 bufsize; u8 byte_val; /* check for Header type 0 */ pci_read_config_byte(dev, PCI_HEADER_TYPE, &byte_val); if ((byte_val & 0x7f) != PCI_HEADER_TYPE_NORMAL) goto end; /* check if the capability pointer field exists */ pci_read_config_byte(dev, PCI_STATUS, &byte_val); if (!(byte_val & PCI_STATUS_CAP_LIST)) goto end; pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &cap_ptr); /* check if the capability pointer is 0x00 */ if (cap_ptr == 0x00) goto end; /* loop thru the capability list * and see if the pcie capability exists */ pci_read_config_byte(dev, cap_ptr, &cap_id); while (cap_id != req_cap_id) { pci_read_config_byte(dev, cap_ptr + 1, &cap_ptr); if (cap_ptr == 0x00) break; pci_read_config_byte(dev, cap_ptr, &cap_id); } if (cap_id != req_cap_id) goto end; /* found the caller requested capability */ if (buf != NULL && buflen != NULL) { u8 cap_data; bufsize = *buflen; if (!bufsize) goto end; *buflen = 0; /* copy the capability data excluding cap ID and next ptr */ cap_data = cap_ptr + 2; if ((bufsize + cap_data) > PCI_SZPCR) bufsize = PCI_SZPCR - cap_data; *buflen = bufsize; while (bufsize--) { pci_read_config_byte(dev, cap_data, buf); cap_data++; buf++; } } end: return cap_ptr; } /* ***** Register Access API */ static uint pcie_readreg(struct bcma_device *core, uint addrtype, uint offset) { uint retval = 0xFFFFFFFF; switch (addrtype) { case PCIE_CONFIGREGS: bcma_write32(core, PCIEREGOFFS(configaddr), offset); (void)bcma_read32(core, PCIEREGOFFS(configaddr)); retval = bcma_read32(core, PCIEREGOFFS(configdata)); break; case PCIE_PCIEREGS: bcma_write32(core, PCIEREGOFFS(pcieindaddr), offset); (void)bcma_read32(core, PCIEREGOFFS(pcieindaddr)); retval = bcma_read32(core, PCIEREGOFFS(pcieinddata)); break; } return retval; } static uint pcie_writereg(struct bcma_device *core, uint addrtype, uint offset, uint val) { switch (addrtype) { case PCIE_CONFIGREGS: bcma_write32(core, PCIEREGOFFS(configaddr), offset); bcma_write32(core, PCIEREGOFFS(configdata), val); break; case PCIE_PCIEREGS: bcma_write32(core, PCIEREGOFFS(pcieindaddr), offset); bcma_write32(core, PCIEREGOFFS(pcieinddata), val); break; default: break; } return 0; } static bool pcie_mdiosetblock(struct pcicore_info *pi, uint blk) { uint mdiodata, i = 0; uint pcie_serdes_spinwait = 200; mdiodata = (MDIODATA_START | MDIODATA_WRITE | MDIODATA_TA | (MDIODATA_DEV_ADDR << MDIODATA_DEVADDR_SHF) | (MDIODATA_BLK_ADDR << MDIODATA_REGADDR_SHF) | (blk << 4)); bcma_write32(pi->core, PCIEREGOFFS(mdiodata), mdiodata); pr28829_delay(); /* retry till the transaction is complete */ while (i < pcie_serdes_spinwait) { if (bcma_read32(pi->core, PCIEREGOFFS(mdiocontrol)) & MDIOCTL_ACCESS_DONE) break; udelay(1000); i++; } if (i >= pcie_serdes_spinwait) return false; return true; } static int pcie_mdioop(struct pcicore_info *pi, uint physmedia, uint regaddr, bool write, uint *val) { uint mdiodata; uint i = 0; uint pcie_serdes_spinwait = 10; /* enable mdio access to SERDES */ bcma_write32(pi->core, PCIEREGOFFS(mdiocontrol), MDIOCTL_PREAM_EN | MDIOCTL_DIVISOR_VAL); if (ai_get_buscorerev(pi->sih) >= 10) { /* new serdes is slower in rw, * using two layers of reg address mapping */ if (!pcie_mdiosetblock(pi, physmedia)) return 1; mdiodata = ((MDIODATA_DEV_ADDR << MDIODATA_DEVADDR_SHF) | (regaddr << MDIODATA_REGADDR_SHF)); pcie_serdes_spinwait *= 20; } else { mdiodata = ((physmedia << MDIODATA_DEVADDR_SHF_OLD) | (regaddr << MDIODATA_REGADDR_SHF_OLD)); } if (!write) mdiodata |= (MDIODATA_START | MDIODATA_READ | MDIODATA_TA); else mdiodata |= (MDIODATA_START | MDIODATA_WRITE | MDIODATA_TA | *val); bcma_write32(pi->core, PCIEREGOFFS(mdiodata), mdiodata); pr28829_delay(); /* retry till the transaction is complete */ while (i < pcie_serdes_spinwait) { if (bcma_read32(pi->core, PCIEREGOFFS(mdiocontrol)) & MDIOCTL_ACCESS_DONE) { if (!write) { pr28829_delay(); *val = (bcma_read32(pi->core, PCIEREGOFFS(mdiodata)) & MDIODATA_MASK); } /* Disable mdio access to SERDES */ bcma_write32(pi->core, PCIEREGOFFS(mdiocontrol), 0); return 0; } udelay(1000); i++; } /* Timed out. Disable mdio access to SERDES. */ bcma_write32(pi->core, PCIEREGOFFS(mdiocontrol), 0); return 1; } /* use the mdio interface to read from mdio slaves */ static int pcie_mdioread(struct pcicore_info *pi, uint physmedia, uint regaddr, uint *regval) { return pcie_mdioop(pi, physmedia, regaddr, false, regval); } /* use the mdio interface to write to mdio slaves */ static int pcie_mdiowrite(struct pcicore_info *pi, uint physmedia, uint regaddr, uint val) { return pcie_mdioop(pi, physmedia, regaddr, true, &val); } /* ***** Support functions ***** */ static u8 pcie_clkreq(struct pcicore_info *pi, u32 mask, u32 val) { u32 reg_val; u8 offset; offset = pi->pciecap_lcreg_offset; if (!offset) return 0; pci_read_config_dword(pi->dev, offset, ®_val); /* set operation */ if (mask) { if (val) reg_val |= PCIE_CLKREQ_ENAB; else reg_val &= ~PCIE_CLKREQ_ENAB; pci_write_config_dword(pi->dev, offset, reg_val); pci_read_config_dword(pi->dev, offset, ®_val); } if (reg_val & PCIE_CLKREQ_ENAB) return 1; else return 0; } static void pcie_extendL1timer(struct pcicore_info *pi, bool extend) { u32 w; struct si_pub *sih = pi->sih; if (ai_get_buscoretype(sih) != PCIE_CORE_ID || ai_get_buscorerev(sih) < 7) return; w = pcie_readreg(pi->core, PCIE_PCIEREGS, PCIE_DLLP_PMTHRESHREG); if (extend) w |= PCIE_ASPMTIMER_EXTEND; else w &= ~PCIE_ASPMTIMER_EXTEND; pcie_writereg(pi->core, PCIE_PCIEREGS, PCIE_DLLP_PMTHRESHREG, w); w = pcie_readreg(pi->core, PCIE_PCIEREGS, PCIE_DLLP_PMTHRESHREG); } /* centralized clkreq control policy */ static void pcie_clkreq_upd(struct pcicore_info *pi, uint state) { struct si_pub *sih = pi->sih; switch (state) { case SI_DOATTACH: if (PCIE_ASPM(sih)) pcie_clkreq(pi, 1, 0); break; case SI_PCIDOWN: /* turn on serdes PLL down */ if (ai_get_buscorerev(sih) == 6) { ai_cc_reg(sih, offsetof(struct chipcregs, chipcontrol_addr), ~0, 0); ai_cc_reg(sih, offsetof(struct chipcregs, chipcontrol_data), ~0x40, 0); } else if (pi->pcie_pr42767) { pcie_clkreq(pi, 1, 1); } break; case SI_PCIUP: /* turn off serdes PLL down */ if (ai_get_buscorerev(sih) == 6) { ai_cc_reg(sih, offsetof(struct chipcregs, chipcontrol_addr), ~0, 0); ai_cc_reg(sih, offsetof(struct chipcregs, chipcontrol_data), ~0x40, 0x40); } else if (PCIE_ASPM(sih)) { /* disable clkreq */ pcie_clkreq(pi, 1, 0); } break; } } /* ***** PCI core WARs ***** */ /* Done only once at attach time */ static void pcie_war_polarity(struct pcicore_info *pi) { u32 w; if (pi->pcie_polarity != 0) return; w = pcie_readreg(pi->core, PCIE_PCIEREGS, PCIE_PLP_STATUSREG); /* Detect the current polarity at attach and force that polarity and * disable changing the polarity */ if ((w & PCIE_PLP_POLARITYINV_STAT) == 0) pi->pcie_polarity = SERDES_RX_CTRL_FORCE; else pi->pcie_polarity = (SERDES_RX_CTRL_FORCE | SERDES_RX_CTRL_POLARITY); } /* enable ASPM and CLKREQ if srom doesn't have it */ /* Needs to happen when update to shadow SROM is needed * : Coming out of 'standby'/'hibernate' * : If pcie_war_aspm_ovr state changed */ static void pcie_war_aspm_clkreq(struct pcicore_info *pi) { struct si_pub *sih = pi->sih; u16 val16; u32 w; if (!PCIE_ASPM(sih)) return; /* bypass this on QT or VSIM */ val16 = bcma_read16(pi->core, PCIEREGOFFS(sprom[SRSH_ASPM_OFFSET])); val16 &= ~SRSH_ASPM_ENB; if (pi->pcie_war_aspm_ovr == PCIE_ASPM_ENAB) val16 |= SRSH_ASPM_ENB; else if (pi->pcie_war_aspm_ovr == PCIE_ASPM_L1_ENAB) val16 |= SRSH_ASPM_L1_ENB; else if (pi->pcie_war_aspm_ovr == PCIE_ASPM_L0s_ENAB) val16 |= SRSH_ASPM_L0s_ENB; bcma_write16(pi->core, PCIEREGOFFS(sprom[SRSH_ASPM_OFFSET]), val16); pci_read_config_dword(pi->dev, pi->pciecap_lcreg_offset, &w); w &= ~PCIE_ASPM_ENAB; w |= pi->pcie_war_aspm_ovr; pci_write_config_dword(pi->dev, pi->pciecap_lcreg_offset, w); val16 = bcma_read16(pi->core, PCIEREGOFFS(sprom[SRSH_CLKREQ_OFFSET_REV5])); if (pi->pcie_war_aspm_ovr != PCIE_ASPM_DISAB) { val16 |= SRSH_CLKREQ_ENB; pi->pcie_pr42767 = true; } else val16 &= ~SRSH_CLKREQ_ENB; bcma_write16(pi->core, PCIEREGOFFS(sprom[SRSH_CLKREQ_OFFSET_REV5]), val16); } /* Apply the polarity determined at the start */ /* Needs to happen when coming out of 'standby'/'hibernate' */ static void pcie_war_serdes(struct pcicore_info *pi) { u32 w = 0; if (pi->pcie_polarity != 0) pcie_mdiowrite(pi, MDIODATA_DEV_RX, SERDES_RX_CTRL, pi->pcie_polarity); pcie_mdioread(pi, MDIODATA_DEV_PLL, SERDES_PLL_CTRL, &w); if (w & PLL_CTRL_FREQDET_EN) { w &= ~PLL_CTRL_FREQDET_EN; pcie_mdiowrite(pi, MDIODATA_DEV_PLL, SERDES_PLL_CTRL, w); } } /* Fix MISC config to allow coming out of L2/L3-Ready state w/o PRST */ /* Needs to happen when coming out of 'standby'/'hibernate' */ static void pcie_misc_config_fixup(struct pcicore_info *pi) { u16 val16; val16 = bcma_read16(pi->core, PCIEREGOFFS(sprom[SRSH_PCIE_MISC_CONFIG])); if ((val16 & SRSH_L23READY_EXIT_NOPERST) == 0) { val16 |= SRSH_L23READY_EXIT_NOPERST; bcma_write16(pi->core, PCIEREGOFFS(sprom[SRSH_PCIE_MISC_CONFIG]), val16); } } /* quick hack for testing */ /* Needs to happen when coming out of 'standby'/'hibernate' */ static void pcie_war_noplldown(struct pcicore_info *pi) { /* turn off serdes PLL down */ ai_cc_reg(pi->sih, offsetof(struct chipcregs, chipcontrol), CHIPCTRL_4321_PLL_DOWN, CHIPCTRL_4321_PLL_DOWN); /* clear srom shadow backdoor */ bcma_write16(pi->core, PCIEREGOFFS(sprom[SRSH_BD_OFFSET]), 0); } /* Needs to happen when coming out of 'standby'/'hibernate' */ static void pcie_war_pci_setup(struct pcicore_info *pi) { struct si_pub *sih = pi->sih; u32 w; if (ai_get_buscorerev(sih) == 0 || ai_get_buscorerev(sih) == 1) { w = pcie_readreg(pi->core, PCIE_PCIEREGS, PCIE_TLP_WORKAROUNDSREG); w |= 0x8; pcie_writereg(pi->core, PCIE_PCIEREGS, PCIE_TLP_WORKAROUNDSREG, w); } if (ai_get_buscorerev(sih) == 1) { w = pcie_readreg(pi->core, PCIE_PCIEREGS, PCIE_DLLP_LCREG); w |= 0x40; pcie_writereg(pi->core, PCIE_PCIEREGS, PCIE_DLLP_LCREG, w); } if (ai_get_buscorerev(sih) == 0) { pcie_mdiowrite(pi, MDIODATA_DEV_RX, SERDES_RX_TIMER1, 0x8128); pcie_mdiowrite(pi, MDIODATA_DEV_RX, SERDES_RX_CDR, 0x0100); pcie_mdiowrite(pi, MDIODATA_DEV_RX, SERDES_RX_CDRBW, 0x1466); } else if (PCIE_ASPM(sih)) { /* Change the L1 threshold for better performance */ w = pcie_readreg(pi->core, PCIE_PCIEREGS, PCIE_DLLP_PMTHRESHREG); w &= ~PCIE_L1THRESHOLDTIME_MASK; w |= PCIE_L1THRESHOLD_WARVAL << PCIE_L1THRESHOLDTIME_SHIFT; pcie_writereg(pi->core, PCIE_PCIEREGS, PCIE_DLLP_PMTHRESHREG, w); pcie_war_serdes(pi); pcie_war_aspm_clkreq(pi); } else if (ai_get_buscorerev(pi->sih) == 7) pcie_war_noplldown(pi); /* Note that the fix is actually in the SROM, * that's why this is open-ended */ if (ai_get_buscorerev(pi->sih) >= 6) pcie_misc_config_fixup(pi); } /* ***** Functions called during driver state changes ***** */ void pcicore_attach(struct pcicore_info *pi, int state) { struct si_pub *sih = pi->sih; u32 bfl2 = (u32)getintvar(sih, BRCMS_SROM_BOARDFLAGS2); /* Determine if this board needs override */ if (PCIE_ASPM(sih)) { if (bfl2 & BFL2_PCIEWAR_OVR) pi->pcie_war_aspm_ovr = PCIE_ASPM_DISAB; else pi->pcie_war_aspm_ovr = PCIE_ASPM_ENAB; } /* These need to happen in this order only */ pcie_war_polarity(pi); pcie_war_serdes(pi); pcie_war_aspm_clkreq(pi); pcie_clkreq_upd(pi, state); } void pcicore_hwup(struct pcicore_info *pi) { if (!pi || ai_get_buscoretype(pi->sih) != PCIE_CORE_ID) return; pcie_war_pci_setup(pi); } void pcicore_up(struct pcicore_info *pi, int state) { if (!pi || ai_get_buscoretype(pi->sih) != PCIE_CORE_ID) return; /* Restore L1 timer for better performance */ pcie_extendL1timer(pi, true); pcie_clkreq_upd(pi, state); } /* When the device is going to enter D3 state * (or the system is going to enter S3/S4 states) */ void pcicore_sleep(struct pcicore_info *pi) { u32 w; if (!pi || !PCIE_ASPM(pi->sih)) return; pci_read_config_dword(pi->dev, pi->pciecap_lcreg_offset, &w); w &= ~PCIE_CAP_LCREG_ASPML1; pci_write_config_dword(pi->dev, pi->pciecap_lcreg_offset, w); pi->pcie_pr42767 = false; } void pcicore_down(struct pcicore_info *pi, int state) { if (!pi || ai_get_buscoretype(pi->sih) != PCIE_CORE_ID) return; pcie_clkreq_upd(pi, state); /* Reduce L1 timer for better power savings */ pcie_extendL1timer(pi, false); } void pcicore_fixcfg(struct pcicore_info *pi) { struct bcma_device *core = pi->core; u16 val16; uint regoff; switch (pi->core->id.id) { case BCMA_CORE_PCI: regoff = PCIREGOFFS(sprom[SRSH_PI_OFFSET]); break; case BCMA_CORE_PCIE: regoff = PCIEREGOFFS(sprom[SRSH_PI_OFFSET]); break; default: return; } val16 = bcma_read16(pi->core, regoff); if (((val16 & SRSH_PI_MASK) >> SRSH_PI_SHIFT) != (u16)core->core_index) { val16 = ((u16)core->core_index << SRSH_PI_SHIFT) | (val16 & ~SRSH_PI_MASK); bcma_write16(pi->core, regoff, val16); } } /* precondition: current core is pci core */ void pcicore_pci_setup(struct pcicore_info *pi) { bcma_set32(pi->core, PCIREGOFFS(sbtopci2), SBTOPCI_PREF | SBTOPCI_BURST); if (pi->core->id.rev >= 11) { bcma_set32(pi->core, PCIREGOFFS(sbtopci2), SBTOPCI_RC_READMULTI); bcma_set32(pi->core, PCIREGOFFS(clkrun), PCI_CLKRUN_DSBL); (void)bcma_read32(pi->core, PCIREGOFFS(clkrun)); } }