/* * Copyright (c) 2011 Broadcom Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <linux/delay.h> #include <linux/io.h> #include <brcm_hw_ids.h> #include <chipcommon.h> #include <brcmu_utils.h> #include "pub.h" #include "aiutils.h" #include "pmu.h" #include "soc.h" /* * external LPO crystal frequency */ #define EXT_ILP_HZ 32768 /* * Duration for ILP clock frequency measurment in milliseconds * * remark: 1000 must be an integer multiple of this duration */ #define ILP_CALC_DUR 10 /* Fields in pmucontrol */ #define PCTL_ILP_DIV_MASK 0xffff0000 #define PCTL_ILP_DIV_SHIFT 16 #define PCTL_PLL_PLLCTL_UPD 0x00000400 /* rev 2 */ #define PCTL_NOILP_ON_WAIT 0x00000200 /* rev 1 */ #define PCTL_HT_REQ_EN 0x00000100 #define PCTL_ALP_REQ_EN 0x00000080 #define PCTL_XTALFREQ_MASK 0x0000007c #define PCTL_XTALFREQ_SHIFT 2 #define PCTL_ILP_DIV_EN 0x00000002 #define PCTL_LPO_SEL 0x00000001 /* ILP clock */ #define ILP_CLOCK 32000 /* ALP clock on pre-PMU chips */ #define ALP_CLOCK 20000000 /* pmustatus */ #define PST_EXTLPOAVAIL 0x0100 #define PST_WDRESET 0x0080 #define PST_INTPEND 0x0040 #define PST_SBCLKST 0x0030 #define PST_SBCLKST_ILP 0x0010 #define PST_SBCLKST_ALP 0x0020 #define PST_SBCLKST_HT 0x0030 #define PST_ALPAVAIL 0x0008 #define PST_HTAVAIL 0x0004 #define PST_RESINIT 0x0003 /* PMU resource bit position */ #define PMURES_BIT(bit) (1 << (bit)) /* PMU corerev and chip specific PLL controls. * PMU<rev>_PLL<num>_XX where <rev> is PMU corerev and <num> is an arbitrary * number to differentiate different PLLs controlled by the same PMU rev. */ /* pllcontrol registers: * ndiv_pwrdn, pwrdn_ch<x>, refcomp_pwrdn, dly_ch<x>, * p1div, p2div, _bypass_sdmod */ #define PMU1_PLL0_PLLCTL0 0 #define PMU1_PLL0_PLLCTL1 1 #define PMU1_PLL0_PLLCTL2 2 #define PMU1_PLL0_PLLCTL3 3 #define PMU1_PLL0_PLLCTL4 4 #define PMU1_PLL0_PLLCTL5 5 /* pmu XtalFreqRatio */ #define PMU_XTALFREQ_REG_ILPCTR_MASK 0x00001FFF #define PMU_XTALFREQ_REG_MEASURE_MASK 0x80000000 #define PMU_XTALFREQ_REG_MEASURE_SHIFT 31 /* 4313 resources */ #define RES4313_BB_PU_RSRC 0 #define RES4313_ILP_REQ_RSRC 1 #define RES4313_XTAL_PU_RSRC 2 #define RES4313_ALP_AVAIL_RSRC 3 #define RES4313_RADIO_PU_RSRC 4 #define RES4313_BG_PU_RSRC 5 #define RES4313_VREG1P4_PU_RSRC 6 #define RES4313_AFE_PWRSW_RSRC 7 #define RES4313_RX_PWRSW_RSRC 8 #define RES4313_TX_PWRSW_RSRC 9 #define RES4313_BB_PWRSW_RSRC 10 #define RES4313_SYNTH_PWRSW_RSRC 11 #define RES4313_MISC_PWRSW_RSRC 12 #define RES4313_BB_PLL_PWRSW_RSRC 13 #define RES4313_HT_AVAIL_RSRC 14 #define RES4313_MACPHY_CLK_AVAIL_RSRC 15 /* Determine min/max rsrc masks. Value 0 leaves hardware at default. */ static void si_pmu_res_masks(struct si_pub *sih, u32 * pmin, u32 * pmax) { u32 min_mask = 0, max_mask = 0; uint rsrcs; /* # resources */ rsrcs = (ai_get_pmucaps(sih) & PCAP_RC_MASK) >> PCAP_RC_SHIFT; /* determine min/max rsrc masks */ switch (ai_get_chip_id(sih)) { case BCM43224_CHIP_ID: case BCM43225_CHIP_ID: /* ??? */ break; case BCM4313_CHIP_ID: min_mask = PMURES_BIT(RES4313_BB_PU_RSRC) | PMURES_BIT(RES4313_XTAL_PU_RSRC) | PMURES_BIT(RES4313_ALP_AVAIL_RSRC) | PMURES_BIT(RES4313_BB_PLL_PWRSW_RSRC); max_mask = 0xffff; break; default: break; } *pmin = min_mask; *pmax = max_mask; } void si_pmu_spuravoid_pllupdate(struct si_pub *sih, u8 spuravoid) { u32 tmp = 0; struct bcma_device *core; /* switch to chipc */ core = ai_findcore(sih, BCMA_CORE_CHIPCOMMON, 0); switch (ai_get_chip_id(sih)) { case BCM43224_CHIP_ID: case BCM43225_CHIP_ID: if (spuravoid == 1) { bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr), PMU1_PLL0_PLLCTL0); bcma_write32(core, CHIPCREGOFFS(pllcontrol_data), 0x11500010); bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr), PMU1_PLL0_PLLCTL1); bcma_write32(core, CHIPCREGOFFS(pllcontrol_data), 0x000C0C06); bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr), PMU1_PLL0_PLLCTL2); bcma_write32(core, CHIPCREGOFFS(pllcontrol_data), 0x0F600a08); bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr), PMU1_PLL0_PLLCTL3); bcma_write32(core, CHIPCREGOFFS(pllcontrol_data), 0x00000000); bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr), PMU1_PLL0_PLLCTL4); bcma_write32(core, CHIPCREGOFFS(pllcontrol_data), 0x2001E920); bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr), PMU1_PLL0_PLLCTL5); bcma_write32(core, CHIPCREGOFFS(pllcontrol_data), 0x88888815); } else { bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr), PMU1_PLL0_PLLCTL0); bcma_write32(core, CHIPCREGOFFS(pllcontrol_data), 0x11100010); bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr), PMU1_PLL0_PLLCTL1); bcma_write32(core, CHIPCREGOFFS(pllcontrol_data), 0x000c0c06); bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr), PMU1_PLL0_PLLCTL2); bcma_write32(core, CHIPCREGOFFS(pllcontrol_data), 0x03000a08); bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr), PMU1_PLL0_PLLCTL3); bcma_write32(core, CHIPCREGOFFS(pllcontrol_data), 0x00000000); bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr), PMU1_PLL0_PLLCTL4); bcma_write32(core, CHIPCREGOFFS(pllcontrol_data), 0x200005c0); bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr), PMU1_PLL0_PLLCTL5); bcma_write32(core, CHIPCREGOFFS(pllcontrol_data), 0x88888815); } tmp = 1 << 10; break; default: /* bail out */ return; } bcma_set32(core, CHIPCREGOFFS(pmucontrol), tmp); } u16 si_pmu_fast_pwrup_delay(struct si_pub *sih) { uint delay = PMU_MAX_TRANSITION_DLY; switch (ai_get_chip_id(sih)) { case BCM43224_CHIP_ID: case BCM43225_CHIP_ID: case BCM4313_CHIP_ID: delay = 3700; break; default: break; } return (u16) delay; } /* Read/write a chipcontrol reg */ u32 si_pmu_chipcontrol(struct si_pub *sih, uint reg, u32 mask, u32 val) { ai_cc_reg(sih, offsetof(struct chipcregs, chipcontrol_addr), ~0, reg); return ai_cc_reg(sih, offsetof(struct chipcregs, chipcontrol_data), mask, val); } /* Read/write a regcontrol reg */ u32 si_pmu_regcontrol(struct si_pub *sih, uint reg, u32 mask, u32 val) { ai_cc_reg(sih, offsetof(struct chipcregs, regcontrol_addr), ~0, reg); return ai_cc_reg(sih, offsetof(struct chipcregs, regcontrol_data), mask, val); } /* Read/write a pllcontrol reg */ u32 si_pmu_pllcontrol(struct si_pub *sih, uint reg, u32 mask, u32 val) { ai_cc_reg(sih, offsetof(struct chipcregs, pllcontrol_addr), ~0, reg); return ai_cc_reg(sih, offsetof(struct chipcregs, pllcontrol_data), mask, val); } /* PMU PLL update */ void si_pmu_pllupd(struct si_pub *sih) { ai_cc_reg(sih, offsetof(struct chipcregs, pmucontrol), PCTL_PLL_PLLCTL_UPD, PCTL_PLL_PLLCTL_UPD); } /* query alp/xtal clock frequency */ u32 si_pmu_alp_clock(struct si_pub *sih) { u32 clock = ALP_CLOCK; /* bail out with default */ if (!(ai_get_cccaps(sih) & CC_CAP_PMU)) return clock; switch (ai_get_chip_id(sih)) { case BCM43224_CHIP_ID: case BCM43225_CHIP_ID: case BCM4313_CHIP_ID: /* always 20Mhz */ clock = 20000 * 1000; break; default: break; } return clock; } /* initialize PMU */ void si_pmu_init(struct si_pub *sih) { struct bcma_device *core; /* select chipc */ core = ai_findcore(sih, BCMA_CORE_CHIPCOMMON, 0); if (ai_get_pmurev(sih) == 1) bcma_mask32(core, CHIPCREGOFFS(pmucontrol), ~PCTL_NOILP_ON_WAIT); else if (ai_get_pmurev(sih) >= 2) bcma_set32(core, CHIPCREGOFFS(pmucontrol), PCTL_NOILP_ON_WAIT); } /* initialize PMU resources */ void si_pmu_res_init(struct si_pub *sih) { struct bcma_device *core; u32 min_mask = 0, max_mask = 0; /* select to chipc */ core = ai_findcore(sih, BCMA_CORE_CHIPCOMMON, 0); /* Determine min/max rsrc masks */ si_pmu_res_masks(sih, &min_mask, &max_mask); /* It is required to program max_mask first and then min_mask */ /* Program max resource mask */ if (max_mask) bcma_write32(core, CHIPCREGOFFS(max_res_mask), max_mask); /* Program min resource mask */ if (min_mask) bcma_write32(core, CHIPCREGOFFS(min_res_mask), min_mask); /* Add some delay; allow resources to come up and settle. */ mdelay(2); } u32 si_pmu_measure_alpclk(struct si_pub *sih) { struct bcma_device *core; u32 alp_khz; if (ai_get_pmurev(sih) < 10) return 0; /* Remember original core before switch to chipc */ core = ai_findcore(sih, BCMA_CORE_CHIPCOMMON, 0); if (bcma_read32(core, CHIPCREGOFFS(pmustatus)) & PST_EXTLPOAVAIL) { u32 ilp_ctr, alp_hz; /* * Enable the reg to measure the freq, * in case it was disabled before */ bcma_write32(core, CHIPCREGOFFS(pmu_xtalfreq), 1U << PMU_XTALFREQ_REG_MEASURE_SHIFT); /* Delay for well over 4 ILP clocks */ udelay(1000); /* Read the latched number of ALP ticks per 4 ILP ticks */ ilp_ctr = bcma_read32(core, CHIPCREGOFFS(pmu_xtalfreq)) & PMU_XTALFREQ_REG_ILPCTR_MASK; /* * Turn off the PMU_XTALFREQ_REG_MEASURE_SHIFT * bit to save power */ bcma_write32(core, CHIPCREGOFFS(pmu_xtalfreq), 0); /* Calculate ALP frequency */ alp_hz = (ilp_ctr * EXT_ILP_HZ) / 4; /* * Round to nearest 100KHz, and at * the same time convert to KHz */ alp_khz = (alp_hz + 50000) / 100000 * 100; } else alp_khz = 0; return alp_khz; }