/* linux/drivers/usb/gadget/s3c-hsudc.c * * Copyright (c) 2010 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * S3C24XX USB 2.0 High-speed USB controller gadget driver * * The S3C24XX USB 2.0 high-speed USB controller supports upto 9 endpoints. * Each endpoint can be configured as either in or out endpoint. Endpoints * can be configured for Bulk or Interrupt transfer mode. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/clk.h> #include <linux/usb/ch9.h> #include <linux/usb/gadget.h> #include <linux/usb/otg.h> #include <linux/prefetch.h> #include <linux/platform_data/s3c-hsudc.h> #include <linux/regulator/consumer.h> #include <mach/regs-s3c2443-clock.h> #define S3C_HSUDC_REG(x) (x) /* Non-Indexed Registers */ #define S3C_IR S3C_HSUDC_REG(0x00) /* Index Register */ #define S3C_EIR S3C_HSUDC_REG(0x04) /* EP Intr Status */ #define S3C_EIR_EP0 (1<<0) #define S3C_EIER S3C_HSUDC_REG(0x08) /* EP Intr Enable */ #define S3C_FAR S3C_HSUDC_REG(0x0c) /* Gadget Address */ #define S3C_FNR S3C_HSUDC_REG(0x10) /* Frame Number */ #define S3C_EDR S3C_HSUDC_REG(0x14) /* EP Direction */ #define S3C_TR S3C_HSUDC_REG(0x18) /* Test Register */ #define S3C_SSR S3C_HSUDC_REG(0x1c) /* System Status */ #define S3C_SSR_DTZIEN_EN (0xff8f) #define S3C_SSR_ERR (0xff80) #define S3C_SSR_VBUSON (1 << 8) #define S3C_SSR_HSP (1 << 4) #define S3C_SSR_SDE (1 << 3) #define S3C_SSR_RESUME (1 << 2) #define S3C_SSR_SUSPEND (1 << 1) #define S3C_SSR_RESET (1 << 0) #define S3C_SCR S3C_HSUDC_REG(0x20) /* System Control */ #define S3C_SCR_DTZIEN_EN (1 << 14) #define S3C_SCR_RRD_EN (1 << 5) #define S3C_SCR_SUS_EN (1 << 1) #define S3C_SCR_RST_EN (1 << 0) #define S3C_EP0SR S3C_HSUDC_REG(0x24) /* EP0 Status */ #define S3C_EP0SR_EP0_LWO (1 << 6) #define S3C_EP0SR_STALL (1 << 4) #define S3C_EP0SR_TX_SUCCESS (1 << 1) #define S3C_EP0SR_RX_SUCCESS (1 << 0) #define S3C_EP0CR S3C_HSUDC_REG(0x28) /* EP0 Control */ #define S3C_BR(_x) S3C_HSUDC_REG(0x60 + (_x * 4)) /* Indexed Registers */ #define S3C_ESR S3C_HSUDC_REG(0x2c) /* EPn Status */ #define S3C_ESR_FLUSH (1 << 6) #define S3C_ESR_STALL (1 << 5) #define S3C_ESR_LWO (1 << 4) #define S3C_ESR_PSIF_ONE (1 << 2) #define S3C_ESR_PSIF_TWO (2 << 2) #define S3C_ESR_TX_SUCCESS (1 << 1) #define S3C_ESR_RX_SUCCESS (1 << 0) #define S3C_ECR S3C_HSUDC_REG(0x30) /* EPn Control */ #define S3C_ECR_DUEN (1 << 7) #define S3C_ECR_FLUSH (1 << 6) #define S3C_ECR_STALL (1 << 1) #define S3C_ECR_IEMS (1 << 0) #define S3C_BRCR S3C_HSUDC_REG(0x34) /* Read Count */ #define S3C_BWCR S3C_HSUDC_REG(0x38) /* Write Count */ #define S3C_MPR S3C_HSUDC_REG(0x3c) /* Max Pkt Size */ #define WAIT_FOR_SETUP (0) #define DATA_STATE_XMIT (1) #define DATA_STATE_RECV (2) static const char * const s3c_hsudc_supply_names[] = { "vdda", /* analog phy supply, 3.3V */ "vddi", /* digital phy supply, 1.2V */ "vddosc", /* oscillator supply, 1.8V - 3.3V */ }; /** * struct s3c_hsudc_ep - Endpoint representation used by driver. * @ep: USB gadget layer representation of device endpoint. * @name: Endpoint name (as required by ep autoconfiguration). * @dev: Reference to the device controller to which this EP belongs. * @desc: Endpoint descriptor obtained from the gadget driver. * @queue: Transfer request queue for the endpoint. * @stopped: Maintains state of endpoint, set if EP is halted. * @bEndpointAddress: EP address (including direction bit). * @fifo: Base address of EP FIFO. */ struct s3c_hsudc_ep { struct usb_ep ep; char name[20]; struct s3c_hsudc *dev; const struct usb_endpoint_descriptor *desc; struct list_head queue; u8 stopped; u8 wedge; u8 bEndpointAddress; void __iomem *fifo; }; /** * struct s3c_hsudc_req - Driver encapsulation of USB gadget transfer request. * @req: Reference to USB gadget transfer request. * @queue: Used for inserting this request to the endpoint request queue. */ struct s3c_hsudc_req { struct usb_request req; struct list_head queue; }; /** * struct s3c_hsudc - Driver's abstraction of the device controller. * @gadget: Instance of usb_gadget which is referenced by gadget driver. * @driver: Reference to currenty active gadget driver. * @dev: The device reference used by probe function. * @lock: Lock to synchronize the usage of Endpoints (EP's are indexed). * @regs: Remapped base address of controller's register space. * @mem_rsrc: Device memory resource used for remapping device register space. * irq: IRQ number used by the controller. * uclk: Reference to the controller clock. * ep0state: Current state of EP0. * ep: List of endpoints supported by the controller. */ struct s3c_hsudc { struct usb_gadget gadget; struct usb_gadget_driver *driver; struct device *dev; struct s3c24xx_hsudc_platdata *pd; struct otg_transceiver *transceiver; struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsudc_supply_names)]; spinlock_t lock; void __iomem *regs; struct resource *mem_rsrc; int irq; struct clk *uclk; int ep0state; struct s3c_hsudc_ep ep[]; }; #define ep_maxpacket(_ep) ((_ep)->ep.maxpacket) #define ep_is_in(_ep) ((_ep)->bEndpointAddress & USB_DIR_IN) #define ep_index(_ep) ((_ep)->bEndpointAddress & \ USB_ENDPOINT_NUMBER_MASK) static const char driver_name[] = "s3c-udc"; static const char ep0name[] = "ep0-control"; static inline struct s3c_hsudc_req *our_req(struct usb_request *req) { return container_of(req, struct s3c_hsudc_req, req); } static inline struct s3c_hsudc_ep *our_ep(struct usb_ep *ep) { return container_of(ep, struct s3c_hsudc_ep, ep); } static inline struct s3c_hsudc *to_hsudc(struct usb_gadget *gadget) { return container_of(gadget, struct s3c_hsudc, gadget); } static inline void set_index(struct s3c_hsudc *hsudc, int ep_addr) { ep_addr &= USB_ENDPOINT_NUMBER_MASK; writel(ep_addr, hsudc->regs + S3C_IR); } static inline void __orr32(void __iomem *ptr, u32 val) { writel(readl(ptr) | val, ptr); } static void s3c_hsudc_init_phy(void) { u32 cfg; cfg = readl(S3C2443_PWRCFG) | S3C2443_PWRCFG_USBPHY; writel(cfg, S3C2443_PWRCFG); cfg = readl(S3C2443_URSTCON); cfg |= (S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST); writel(cfg, S3C2443_URSTCON); mdelay(1); cfg = readl(S3C2443_URSTCON); cfg &= ~(S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST); writel(cfg, S3C2443_URSTCON); cfg = readl(S3C2443_PHYCTRL); cfg &= ~(S3C2443_PHYCTRL_CLKSEL | S3C2443_PHYCTRL_DSPORT); cfg |= (S3C2443_PHYCTRL_EXTCLK | S3C2443_PHYCTRL_PLLSEL); writel(cfg, S3C2443_PHYCTRL); cfg = readl(S3C2443_PHYPWR); cfg &= ~(S3C2443_PHYPWR_FSUSPEND | S3C2443_PHYPWR_PLL_PWRDN | S3C2443_PHYPWR_XO_ON | S3C2443_PHYPWR_PLL_REFCLK | S3C2443_PHYPWR_ANALOG_PD); cfg |= S3C2443_PHYPWR_COMMON_ON; writel(cfg, S3C2443_PHYPWR); cfg = readl(S3C2443_UCLKCON); cfg |= (S3C2443_UCLKCON_DETECT_VBUS | S3C2443_UCLKCON_FUNC_CLKEN | S3C2443_UCLKCON_TCLKEN); writel(cfg, S3C2443_UCLKCON); } static void s3c_hsudc_uninit_phy(void) { u32 cfg; cfg = readl(S3C2443_PWRCFG) & ~S3C2443_PWRCFG_USBPHY; writel(cfg, S3C2443_PWRCFG); writel(S3C2443_PHYPWR_FSUSPEND, S3C2443_PHYPWR); cfg = readl(S3C2443_UCLKCON) & ~S3C2443_UCLKCON_FUNC_CLKEN; writel(cfg, S3C2443_UCLKCON); } /** * s3c_hsudc_complete_request - Complete a transfer request. * @hsep: Endpoint to which the request belongs. * @hsreq: Transfer request to be completed. * @status: Transfer completion status for the transfer request. */ static void s3c_hsudc_complete_request(struct s3c_hsudc_ep *hsep, struct s3c_hsudc_req *hsreq, int status) { unsigned int stopped = hsep->stopped; struct s3c_hsudc *hsudc = hsep->dev; list_del_init(&hsreq->queue); hsreq->req.status = status; if (!ep_index(hsep)) { hsudc->ep0state = WAIT_FOR_SETUP; hsep->bEndpointAddress &= ~USB_DIR_IN; } hsep->stopped = 1; spin_unlock(&hsudc->lock); if (hsreq->req.complete != NULL) hsreq->req.complete(&hsep->ep, &hsreq->req); spin_lock(&hsudc->lock); hsep->stopped = stopped; } /** * s3c_hsudc_nuke_ep - Terminate all requests queued for a endpoint. * @hsep: Endpoint for which queued requests have to be terminated. * @status: Transfer completion status for the transfer request. */ static void s3c_hsudc_nuke_ep(struct s3c_hsudc_ep *hsep, int status) { struct s3c_hsudc_req *hsreq; while (!list_empty(&hsep->queue)) { hsreq = list_entry(hsep->queue.next, struct s3c_hsudc_req, queue); s3c_hsudc_complete_request(hsep, hsreq, status); } } /** * s3c_hsudc_stop_activity - Stop activity on all endpoints. * @hsudc: Device controller for which EP activity is to be stopped. * @driver: Reference to the gadget driver which is currently active. * * All the endpoints are stopped and any pending transfer requests if any on * the endpoint are terminated. */ static void s3c_hsudc_stop_activity(struct s3c_hsudc *hsudc) { struct s3c_hsudc_ep *hsep; int epnum; hsudc->gadget.speed = USB_SPEED_UNKNOWN; for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) { hsep = &hsudc->ep[epnum]; hsep->stopped = 1; s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN); } } /** * s3c_hsudc_read_setup_pkt - Read the received setup packet from EP0 fifo. * @hsudc: Device controller from which setup packet is to be read. * @buf: The buffer into which the setup packet is read. * * The setup packet received in the EP0 fifo is read and stored into a * given buffer address. */ static void s3c_hsudc_read_setup_pkt(struct s3c_hsudc *hsudc, u16 *buf) { int count; count = readl(hsudc->regs + S3C_BRCR); while (count--) *buf++ = (u16)readl(hsudc->regs + S3C_BR(0)); writel(S3C_EP0SR_RX_SUCCESS, hsudc->regs + S3C_EP0SR); } /** * s3c_hsudc_write_fifo - Write next chunk of transfer data to EP fifo. * @hsep: Endpoint to which the data is to be written. * @hsreq: Transfer request from which the next chunk of data is written. * * Write the next chunk of data from a transfer request to the endpoint FIFO. * If the transfer request completes, 1 is returned, otherwise 0 is returned. */ static int s3c_hsudc_write_fifo(struct s3c_hsudc_ep *hsep, struct s3c_hsudc_req *hsreq) { u16 *buf; u32 max = ep_maxpacket(hsep); u32 count, length; bool is_last; void __iomem *fifo = hsep->fifo; buf = hsreq->req.buf + hsreq->req.actual; prefetch(buf); length = hsreq->req.length - hsreq->req.actual; length = min(length, max); hsreq->req.actual += length; writel(length, hsep->dev->regs + S3C_BWCR); for (count = 0; count < length; count += 2) writel(*buf++, fifo); if (count != max) { is_last = true; } else { if (hsreq->req.length != hsreq->req.actual || hsreq->req.zero) is_last = false; else is_last = true; } if (is_last) { s3c_hsudc_complete_request(hsep, hsreq, 0); return 1; } return 0; } /** * s3c_hsudc_read_fifo - Read the next chunk of data from EP fifo. * @hsep: Endpoint from which the data is to be read. * @hsreq: Transfer request to which the next chunk of data read is written. * * Read the next chunk of data from the endpoint FIFO and a write it to the * transfer request buffer. If the transfer request completes, 1 is returned, * otherwise 0 is returned. */ static int s3c_hsudc_read_fifo(struct s3c_hsudc_ep *hsep, struct s3c_hsudc_req *hsreq) { struct s3c_hsudc *hsudc = hsep->dev; u32 csr, offset; u16 *buf, word; u32 buflen, rcnt, rlen; void __iomem *fifo = hsep->fifo; u32 is_short = 0; offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR; csr = readl(hsudc->regs + offset); if (!(csr & S3C_ESR_RX_SUCCESS)) return -EINVAL; buf = hsreq->req.buf + hsreq->req.actual; prefetchw(buf); buflen = hsreq->req.length - hsreq->req.actual; rcnt = readl(hsudc->regs + S3C_BRCR); rlen = (csr & S3C_ESR_LWO) ? (rcnt * 2 - 1) : (rcnt * 2); hsreq->req.actual += min(rlen, buflen); is_short = (rlen < hsep->ep.maxpacket); while (rcnt-- != 0) { word = (u16)readl(fifo); if (buflen) { *buf++ = word; buflen--; } else { hsreq->req.status = -EOVERFLOW; } } writel(S3C_ESR_RX_SUCCESS, hsudc->regs + offset); if (is_short || hsreq->req.actual == hsreq->req.length) { s3c_hsudc_complete_request(hsep, hsreq, 0); return 1; } return 0; } /** * s3c_hsudc_epin_intr - Handle in-endpoint interrupt. * @hsudc - Device controller for which the interrupt is to be handled. * @ep_idx - Endpoint number on which an interrupt is pending. * * Handles interrupt for a in-endpoint. The interrupts that are handled are * stall and data transmit complete interrupt. */ static void s3c_hsudc_epin_intr(struct s3c_hsudc *hsudc, u32 ep_idx) { struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx]; struct s3c_hsudc_req *hsreq; u32 csr; csr = readl((u32)hsudc->regs + S3C_ESR); if (csr & S3C_ESR_STALL) { writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR); return; } if (csr & S3C_ESR_TX_SUCCESS) { writel(S3C_ESR_TX_SUCCESS, hsudc->regs + S3C_ESR); if (list_empty(&hsep->queue)) return; hsreq = list_entry(hsep->queue.next, struct s3c_hsudc_req, queue); if ((s3c_hsudc_write_fifo(hsep, hsreq) == 0) && (csr & S3C_ESR_PSIF_TWO)) s3c_hsudc_write_fifo(hsep, hsreq); } } /** * s3c_hsudc_epout_intr - Handle out-endpoint interrupt. * @hsudc - Device controller for which the interrupt is to be handled. * @ep_idx - Endpoint number on which an interrupt is pending. * * Handles interrupt for a out-endpoint. The interrupts that are handled are * stall, flush and data ready interrupt. */ static void s3c_hsudc_epout_intr(struct s3c_hsudc *hsudc, u32 ep_idx) { struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx]; struct s3c_hsudc_req *hsreq; u32 csr; csr = readl((u32)hsudc->regs + S3C_ESR); if (csr & S3C_ESR_STALL) { writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR); return; } if (csr & S3C_ESR_FLUSH) { __orr32(hsudc->regs + S3C_ECR, S3C_ECR_FLUSH); return; } if (csr & S3C_ESR_RX_SUCCESS) { if (list_empty(&hsep->queue)) return; hsreq = list_entry(hsep->queue.next, struct s3c_hsudc_req, queue); if (((s3c_hsudc_read_fifo(hsep, hsreq)) == 0) && (csr & S3C_ESR_PSIF_TWO)) s3c_hsudc_read_fifo(hsep, hsreq); } } /** s3c_hsudc_set_halt - Set or clear a endpoint halt. * @_ep: Endpoint on which halt has to be set or cleared. * @value: 1 for setting halt on endpoint, 0 to clear halt. * * Set or clear endpoint halt. If halt is set, the endpoint is stopped. * If halt is cleared, for in-endpoints, if there are any pending * transfer requests, transfers are started. */ static int s3c_hsudc_set_halt(struct usb_ep *_ep, int value) { struct s3c_hsudc_ep *hsep = our_ep(_ep); struct s3c_hsudc *hsudc = hsep->dev; struct s3c_hsudc_req *hsreq; unsigned long irqflags; u32 ecr; u32 offset; if (value && ep_is_in(hsep) && !list_empty(&hsep->queue)) return -EAGAIN; spin_lock_irqsave(&hsudc->lock, irqflags); set_index(hsudc, ep_index(hsep)); offset = (ep_index(hsep)) ? S3C_ECR : S3C_EP0CR; ecr = readl(hsudc->regs + offset); if (value) { ecr |= S3C_ECR_STALL; if (ep_index(hsep)) ecr |= S3C_ECR_FLUSH; hsep->stopped = 1; } else { ecr &= ~S3C_ECR_STALL; hsep->stopped = hsep->wedge = 0; } writel(ecr, hsudc->regs + offset); if (ep_is_in(hsep) && !list_empty(&hsep->queue) && !value) { hsreq = list_entry(hsep->queue.next, struct s3c_hsudc_req, queue); if (hsreq) s3c_hsudc_write_fifo(hsep, hsreq); } spin_unlock_irqrestore(&hsudc->lock, irqflags); return 0; } /** s3c_hsudc_set_wedge - Sets the halt feature with the clear requests ignored * @_ep: Endpoint on which wedge has to be set. * * Sets the halt feature with the clear requests ignored. */ static int s3c_hsudc_set_wedge(struct usb_ep *_ep) { struct s3c_hsudc_ep *hsep = our_ep(_ep); if (!hsep) return -EINVAL; hsep->wedge = 1; return usb_ep_set_halt(_ep); } /** s3c_hsudc_handle_reqfeat - Handle set feature or clear feature requests. * @_ep: Device controller on which the set/clear feature needs to be handled. * @ctrl: Control request as received on the endpoint 0. * * Handle set feature or clear feature control requests on the control endpoint. */ static int s3c_hsudc_handle_reqfeat(struct s3c_hsudc *hsudc, struct usb_ctrlrequest *ctrl) { struct s3c_hsudc_ep *hsep; bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); u8 ep_num = ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK; if (ctrl->bRequestType == USB_RECIP_ENDPOINT) { hsep = &hsudc->ep[ep_num]; switch (le16_to_cpu(ctrl->wValue)) { case USB_ENDPOINT_HALT: if (set || (!set && !hsep->wedge)) s3c_hsudc_set_halt(&hsep->ep, set); return 0; } } return -ENOENT; } /** * s3c_hsudc_process_req_status - Handle get status control request. * @hsudc: Device controller on which get status request has be handled. * @ctrl: Control request as received on the endpoint 0. * * Handle get status control request received on control endpoint. */ static void s3c_hsudc_process_req_status(struct s3c_hsudc *hsudc, struct usb_ctrlrequest *ctrl) { struct s3c_hsudc_ep *hsep0 = &hsudc->ep[0]; struct s3c_hsudc_req hsreq; struct s3c_hsudc_ep *hsep; __le16 reply; u8 epnum; switch (ctrl->bRequestType & USB_RECIP_MASK) { case USB_RECIP_DEVICE: reply = cpu_to_le16(0); break; case USB_RECIP_INTERFACE: reply = cpu_to_le16(0); break; case USB_RECIP_ENDPOINT: epnum = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK; hsep = &hsudc->ep[epnum]; reply = cpu_to_le16(hsep->stopped ? 1 : 0); break; } INIT_LIST_HEAD(&hsreq.queue); hsreq.req.length = 2; hsreq.req.buf = &reply; hsreq.req.actual = 0; hsreq.req.complete = NULL; s3c_hsudc_write_fifo(hsep0, &hsreq); } /** * s3c_hsudc_process_setup - Process control request received on endpoint 0. * @hsudc: Device controller on which control request has been received. * * Read the control request received on endpoint 0, decode it and handle * the request. */ static void s3c_hsudc_process_setup(struct s3c_hsudc *hsudc) { struct s3c_hsudc_ep *hsep = &hsudc->ep[0]; struct usb_ctrlrequest ctrl = {0}; int ret; s3c_hsudc_nuke_ep(hsep, -EPROTO); s3c_hsudc_read_setup_pkt(hsudc, (u16 *)&ctrl); if (ctrl.bRequestType & USB_DIR_IN) { hsep->bEndpointAddress |= USB_DIR_IN; hsudc->ep0state = DATA_STATE_XMIT; } else { hsep->bEndpointAddress &= ~USB_DIR_IN; hsudc->ep0state = DATA_STATE_RECV; } switch (ctrl.bRequest) { case USB_REQ_SET_ADDRESS: if (ctrl.bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) break; hsudc->ep0state = WAIT_FOR_SETUP; return; case USB_REQ_GET_STATUS: if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD) break; s3c_hsudc_process_req_status(hsudc, &ctrl); return; case USB_REQ_SET_FEATURE: case USB_REQ_CLEAR_FEATURE: if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD) break; s3c_hsudc_handle_reqfeat(hsudc, &ctrl); hsudc->ep0state = WAIT_FOR_SETUP; return; } if (hsudc->driver) { spin_unlock(&hsudc->lock); ret = hsudc->driver->setup(&hsudc->gadget, &ctrl); spin_lock(&hsudc->lock); if (ctrl.bRequest == USB_REQ_SET_CONFIGURATION) { hsep->bEndpointAddress &= ~USB_DIR_IN; hsudc->ep0state = WAIT_FOR_SETUP; } if (ret < 0) { dev_err(hsudc->dev, "setup failed, returned %d\n", ret); s3c_hsudc_set_halt(&hsep->ep, 1); hsudc->ep0state = WAIT_FOR_SETUP; hsep->bEndpointAddress &= ~USB_DIR_IN; } } } /** s3c_hsudc_handle_ep0_intr - Handle endpoint 0 interrupt. * @hsudc: Device controller on which endpoint 0 interrupt has occured. * * Handle endpoint 0 interrupt when it occurs. EP0 interrupt could occur * when a stall handshake is sent to host or data is sent/received on * endpoint 0. */ static void s3c_hsudc_handle_ep0_intr(struct s3c_hsudc *hsudc) { struct s3c_hsudc_ep *hsep = &hsudc->ep[0]; struct s3c_hsudc_req *hsreq; u32 csr = readl(hsudc->regs + S3C_EP0SR); u32 ecr; if (csr & S3C_EP0SR_STALL) { ecr = readl(hsudc->regs + S3C_EP0CR); ecr &= ~(S3C_ECR_STALL | S3C_ECR_FLUSH); writel(ecr, hsudc->regs + S3C_EP0CR); writel(S3C_EP0SR_STALL, hsudc->regs + S3C_EP0SR); hsep->stopped = 0; s3c_hsudc_nuke_ep(hsep, -ECONNABORTED); hsudc->ep0state = WAIT_FOR_SETUP; hsep->bEndpointAddress &= ~USB_DIR_IN; return; } if (csr & S3C_EP0SR_TX_SUCCESS) { writel(S3C_EP0SR_TX_SUCCESS, hsudc->regs + S3C_EP0SR); if (ep_is_in(hsep)) { if (list_empty(&hsep->queue)) return; hsreq = list_entry(hsep->queue.next, struct s3c_hsudc_req, queue); s3c_hsudc_write_fifo(hsep, hsreq); } } if (csr & S3C_EP0SR_RX_SUCCESS) { if (hsudc->ep0state == WAIT_FOR_SETUP) s3c_hsudc_process_setup(hsudc); else { if (!ep_is_in(hsep)) { if (list_empty(&hsep->queue)) return; hsreq = list_entry(hsep->queue.next, struct s3c_hsudc_req, queue); s3c_hsudc_read_fifo(hsep, hsreq); } } } } /** * s3c_hsudc_ep_enable - Enable a endpoint. * @_ep: The endpoint to be enabled. * @desc: Endpoint descriptor. * * Enables a endpoint when called from the gadget driver. Endpoint stall if * any is cleared, transfer type is configured and endpoint interrupt is * enabled. */ static int s3c_hsudc_ep_enable(struct usb_ep *_ep, const struct usb_endpoint_descriptor *desc) { struct s3c_hsudc_ep *hsep; struct s3c_hsudc *hsudc; unsigned long flags; u32 ecr = 0; hsep = container_of(_ep, struct s3c_hsudc_ep, ep); if (!_ep || !desc || hsep->desc || _ep->name == ep0name || desc->bDescriptorType != USB_DT_ENDPOINT || hsep->bEndpointAddress != desc->bEndpointAddress || ep_maxpacket(hsep) < usb_endpoint_maxp(desc)) return -EINVAL; if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK && usb_endpoint_maxp(desc) != ep_maxpacket(hsep)) || !desc->wMaxPacketSize) return -ERANGE; hsudc = hsep->dev; if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN) return -ESHUTDOWN; spin_lock_irqsave(&hsudc->lock, flags); set_index(hsudc, hsep->bEndpointAddress); ecr |= ((usb_endpoint_xfer_int(desc)) ? S3C_ECR_IEMS : S3C_ECR_DUEN); writel(ecr, hsudc->regs + S3C_ECR); hsep->stopped = hsep->wedge = 0; hsep->desc = desc; hsep->ep.maxpacket = usb_endpoint_maxp(desc); s3c_hsudc_set_halt(_ep, 0); __set_bit(ep_index(hsep), hsudc->regs + S3C_EIER); spin_unlock_irqrestore(&hsudc->lock, flags); return 0; } /** * s3c_hsudc_ep_disable - Disable a endpoint. * @_ep: The endpoint to be disabled. * @desc: Endpoint descriptor. * * Disables a endpoint when called from the gadget driver. */ static int s3c_hsudc_ep_disable(struct usb_ep *_ep) { struct s3c_hsudc_ep *hsep = our_ep(_ep); struct s3c_hsudc *hsudc = hsep->dev; unsigned long flags; if (!_ep || !hsep->desc) return -EINVAL; spin_lock_irqsave(&hsudc->lock, flags); set_index(hsudc, hsep->bEndpointAddress); __clear_bit(ep_index(hsep), hsudc->regs + S3C_EIER); s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN); hsep->desc = 0; hsep->stopped = 1; spin_unlock_irqrestore(&hsudc->lock, flags); return 0; } /** * s3c_hsudc_alloc_request - Allocate a new request. * @_ep: Endpoint for which request is allocated (not used). * @gfp_flags: Flags used for the allocation. * * Allocates a single transfer request structure when called from gadget driver. */ static struct usb_request *s3c_hsudc_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags) { struct s3c_hsudc_req *hsreq; hsreq = kzalloc(sizeof *hsreq, gfp_flags); if (!hsreq) return 0; INIT_LIST_HEAD(&hsreq->queue); return &hsreq->req; } /** * s3c_hsudc_free_request - Deallocate a request. * @ep: Endpoint for which request is deallocated (not used). * @_req: Request to be deallocated. * * Allocates a single transfer request structure when called from gadget driver. */ static void s3c_hsudc_free_request(struct usb_ep *ep, struct usb_request *_req) { struct s3c_hsudc_req *hsreq; hsreq = container_of(_req, struct s3c_hsudc_req, req); WARN_ON(!list_empty(&hsreq->queue)); kfree(hsreq); } /** * s3c_hsudc_queue - Queue a transfer request for the endpoint. * @_ep: Endpoint for which the request is queued. * @_req: Request to be queued. * @gfp_flags: Not used. * * Start or enqueue a request for a endpoint when called from gadget driver. */ static int s3c_hsudc_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags) { struct s3c_hsudc_req *hsreq; struct s3c_hsudc_ep *hsep; struct s3c_hsudc *hsudc; unsigned long flags; u32 offset; u32 csr; hsreq = container_of(_req, struct s3c_hsudc_req, req); if ((!_req || !_req->complete || !_req->buf || !list_empty(&hsreq->queue))) return -EINVAL; hsep = container_of(_ep, struct s3c_hsudc_ep, ep); hsudc = hsep->dev; if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN) return -ESHUTDOWN; spin_lock_irqsave(&hsudc->lock, flags); set_index(hsudc, hsep->bEndpointAddress); _req->status = -EINPROGRESS; _req->actual = 0; if (!ep_index(hsep) && _req->length == 0) { hsudc->ep0state = WAIT_FOR_SETUP; s3c_hsudc_complete_request(hsep, hsreq, 0); spin_unlock_irqrestore(&hsudc->lock, flags); return 0; } if (list_empty(&hsep->queue) && !hsep->stopped) { offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR; if (ep_is_in(hsep)) { csr = readl((u32)hsudc->regs + offset); if (!(csr & S3C_ESR_TX_SUCCESS) && (s3c_hsudc_write_fifo(hsep, hsreq) == 1)) hsreq = 0; } else { csr = readl((u32)hsudc->regs + offset); if ((csr & S3C_ESR_RX_SUCCESS) && (s3c_hsudc_read_fifo(hsep, hsreq) == 1)) hsreq = 0; } } if (hsreq != 0) list_add_tail(&hsreq->queue, &hsep->queue); spin_unlock_irqrestore(&hsudc->lock, flags); return 0; } /** * s3c_hsudc_dequeue - Dequeue a transfer request from an endpoint. * @_ep: Endpoint from which the request is dequeued. * @_req: Request to be dequeued. * * Dequeue a request from a endpoint when called from gadget driver. */ static int s3c_hsudc_dequeue(struct usb_ep *_ep, struct usb_request *_req) { struct s3c_hsudc_ep *hsep = our_ep(_ep); struct s3c_hsudc *hsudc = hsep->dev; struct s3c_hsudc_req *hsreq; unsigned long flags; hsep = container_of(_ep, struct s3c_hsudc_ep, ep); if (!_ep || hsep->ep.name == ep0name) return -EINVAL; spin_lock_irqsave(&hsudc->lock, flags); list_for_each_entry(hsreq, &hsep->queue, queue) { if (&hsreq->req == _req) break; } if (&hsreq->req != _req) { spin_unlock_irqrestore(&hsudc->lock, flags); return -EINVAL; } set_index(hsudc, hsep->bEndpointAddress); s3c_hsudc_complete_request(hsep, hsreq, -ECONNRESET); spin_unlock_irqrestore(&hsudc->lock, flags); return 0; } static struct usb_ep_ops s3c_hsudc_ep_ops = { .enable = s3c_hsudc_ep_enable, .disable = s3c_hsudc_ep_disable, .alloc_request = s3c_hsudc_alloc_request, .free_request = s3c_hsudc_free_request, .queue = s3c_hsudc_queue, .dequeue = s3c_hsudc_dequeue, .set_halt = s3c_hsudc_set_halt, .set_wedge = s3c_hsudc_set_wedge, }; /** * s3c_hsudc_initep - Initialize a endpoint to default state. * @hsudc - Reference to the device controller. * @hsep - Endpoint to be initialized. * @epnum - Address to be assigned to the endpoint. * * Initialize a endpoint with default configuration. */ static void s3c_hsudc_initep(struct s3c_hsudc *hsudc, struct s3c_hsudc_ep *hsep, int epnum) { char *dir; if ((epnum % 2) == 0) { dir = "out"; } else { dir = "in"; hsep->bEndpointAddress = USB_DIR_IN; } hsep->bEndpointAddress |= epnum; if (epnum) snprintf(hsep->name, sizeof(hsep->name), "ep%d%s", epnum, dir); else snprintf(hsep->name, sizeof(hsep->name), "%s", ep0name); INIT_LIST_HEAD(&hsep->queue); INIT_LIST_HEAD(&hsep->ep.ep_list); if (epnum) list_add_tail(&hsep->ep.ep_list, &hsudc->gadget.ep_list); hsep->dev = hsudc; hsep->ep.name = hsep->name; hsep->ep.maxpacket = epnum ? 512 : 64; hsep->ep.ops = &s3c_hsudc_ep_ops; hsep->fifo = hsudc->regs + S3C_BR(epnum); hsep->desc = 0; hsep->stopped = 0; hsep->wedge = 0; set_index(hsudc, epnum); writel(hsep->ep.maxpacket, hsudc->regs + S3C_MPR); } /** * s3c_hsudc_setup_ep - Configure all endpoints to default state. * @hsudc: Reference to device controller. * * Configures all endpoints to default state. */ static void s3c_hsudc_setup_ep(struct s3c_hsudc *hsudc) { int epnum; hsudc->ep0state = WAIT_FOR_SETUP; INIT_LIST_HEAD(&hsudc->gadget.ep_list); for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) s3c_hsudc_initep(hsudc, &hsudc->ep[epnum], epnum); } /** * s3c_hsudc_reconfig - Reconfigure the device controller to default state. * @hsudc: Reference to device controller. * * Reconfigures the device controller registers to a default state. */ static void s3c_hsudc_reconfig(struct s3c_hsudc *hsudc) { writel(0xAA, hsudc->regs + S3C_EDR); writel(1, hsudc->regs + S3C_EIER); writel(0, hsudc->regs + S3C_TR); writel(S3C_SCR_DTZIEN_EN | S3C_SCR_RRD_EN | S3C_SCR_SUS_EN | S3C_SCR_RST_EN, hsudc->regs + S3C_SCR); writel(0, hsudc->regs + S3C_EP0CR); s3c_hsudc_setup_ep(hsudc); } /** * s3c_hsudc_irq - Interrupt handler for device controller. * @irq: Not used. * @_dev: Reference to the device controller. * * Interrupt handler for the device controller. This handler handles controller * interrupts and endpoint interrupts. */ static irqreturn_t s3c_hsudc_irq(int irq, void *_dev) { struct s3c_hsudc *hsudc = _dev; struct s3c_hsudc_ep *hsep; u32 ep_intr; u32 sys_status; u32 ep_idx; spin_lock(&hsudc->lock); sys_status = readl(hsudc->regs + S3C_SSR); ep_intr = readl(hsudc->regs + S3C_EIR) & 0x3FF; if (!ep_intr && !(sys_status & S3C_SSR_DTZIEN_EN)) { spin_unlock(&hsudc->lock); return IRQ_HANDLED; } if (sys_status) { if (sys_status & S3C_SSR_VBUSON) writel(S3C_SSR_VBUSON, hsudc->regs + S3C_SSR); if (sys_status & S3C_SSR_ERR) writel(S3C_SSR_ERR, hsudc->regs + S3C_SSR); if (sys_status & S3C_SSR_SDE) { writel(S3C_SSR_SDE, hsudc->regs + S3C_SSR); hsudc->gadget.speed = (sys_status & S3C_SSR_HSP) ? USB_SPEED_HIGH : USB_SPEED_FULL; } if (sys_status & S3C_SSR_SUSPEND) { writel(S3C_SSR_SUSPEND, hsudc->regs + S3C_SSR); if (hsudc->gadget.speed != USB_SPEED_UNKNOWN && hsudc->driver && hsudc->driver->suspend) hsudc->driver->suspend(&hsudc->gadget); } if (sys_status & S3C_SSR_RESUME) { writel(S3C_SSR_RESUME, hsudc->regs + S3C_SSR); if (hsudc->gadget.speed != USB_SPEED_UNKNOWN && hsudc->driver && hsudc->driver->resume) hsudc->driver->resume(&hsudc->gadget); } if (sys_status & S3C_SSR_RESET) { writel(S3C_SSR_RESET, hsudc->regs + S3C_SSR); for (ep_idx = 0; ep_idx < hsudc->pd->epnum; ep_idx++) { hsep = &hsudc->ep[ep_idx]; hsep->stopped = 1; s3c_hsudc_nuke_ep(hsep, -ECONNRESET); } s3c_hsudc_reconfig(hsudc); hsudc->ep0state = WAIT_FOR_SETUP; } } if (ep_intr & S3C_EIR_EP0) { writel(S3C_EIR_EP0, hsudc->regs + S3C_EIR); set_index(hsudc, 0); s3c_hsudc_handle_ep0_intr(hsudc); } ep_intr >>= 1; ep_idx = 1; while (ep_intr) { if (ep_intr & 1) { hsep = &hsudc->ep[ep_idx]; set_index(hsudc, ep_idx); writel(1 << ep_idx, hsudc->regs + S3C_EIR); if (ep_is_in(hsep)) s3c_hsudc_epin_intr(hsudc, ep_idx); else s3c_hsudc_epout_intr(hsudc, ep_idx); } ep_intr >>= 1; ep_idx++; } spin_unlock(&hsudc->lock); return IRQ_HANDLED; } static int s3c_hsudc_start(struct usb_gadget *gadget, struct usb_gadget_driver *driver) { struct s3c_hsudc *hsudc = to_hsudc(gadget); int ret; if (!driver || driver->max_speed < USB_SPEED_FULL || !driver->setup) return -EINVAL; if (!hsudc) return -ENODEV; if (hsudc->driver) return -EBUSY; hsudc->driver = driver; hsudc->gadget.dev.driver = &driver->driver; ret = regulator_bulk_enable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies); if (ret != 0) { dev_err(hsudc->dev, "failed to enable supplies: %d\n", ret); goto err_supplies; } /* connect to bus through transceiver */ if (hsudc->transceiver) { ret = otg_set_peripheral(hsudc->transceiver, &hsudc->gadget); if (ret) { dev_err(hsudc->dev, "%s: can't bind to transceiver\n", hsudc->gadget.name); goto err_otg; } } enable_irq(hsudc->irq); dev_info(hsudc->dev, "bound driver %s\n", driver->driver.name); s3c_hsudc_reconfig(hsudc); s3c_hsudc_init_phy(); if (hsudc->pd->gpio_init) hsudc->pd->gpio_init(); return 0; err_otg: regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies); err_supplies: hsudc->driver = NULL; hsudc->gadget.dev.driver = NULL; return ret; } static int s3c_hsudc_stop(struct usb_gadget *gadget, struct usb_gadget_driver *driver) { struct s3c_hsudc *hsudc = to_hsudc(gadget); unsigned long flags; if (!hsudc) return -ENODEV; if (!driver || driver != hsudc->driver) return -EINVAL; spin_lock_irqsave(&hsudc->lock, flags); hsudc->driver = NULL; hsudc->gadget.dev.driver = NULL; hsudc->gadget.speed = USB_SPEED_UNKNOWN; s3c_hsudc_uninit_phy(); if (hsudc->pd->gpio_uninit) hsudc->pd->gpio_uninit(); s3c_hsudc_stop_activity(hsudc); spin_unlock_irqrestore(&hsudc->lock, flags); if (hsudc->transceiver) (void) otg_set_peripheral(hsudc->transceiver, NULL); disable_irq(hsudc->irq); regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies); dev_info(hsudc->dev, "unregistered gadget driver '%s'\n", driver->driver.name); return 0; } static inline u32 s3c_hsudc_read_frameno(struct s3c_hsudc *hsudc) { return readl(hsudc->regs + S3C_FNR) & 0x3FF; } static int s3c_hsudc_gadget_getframe(struct usb_gadget *gadget) { return s3c_hsudc_read_frameno(to_hsudc(gadget)); } static int s3c_hsudc_vbus_draw(struct usb_gadget *gadget, unsigned mA) { struct s3c_hsudc *hsudc = to_hsudc(gadget); if (!hsudc) return -ENODEV; if (hsudc->transceiver) return otg_set_power(hsudc->transceiver, mA); return -EOPNOTSUPP; } static struct usb_gadget_ops s3c_hsudc_gadget_ops = { .get_frame = s3c_hsudc_gadget_getframe, .udc_start = s3c_hsudc_start, .udc_stop = s3c_hsudc_stop, .vbus_draw = s3c_hsudc_vbus_draw, }; static int __devinit s3c_hsudc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct resource *res; struct s3c_hsudc *hsudc; struct s3c24xx_hsudc_platdata *pd = pdev->dev.platform_data; int ret, i; hsudc = kzalloc(sizeof(struct s3c_hsudc) + sizeof(struct s3c_hsudc_ep) * pd->epnum, GFP_KERNEL); if (!hsudc) { dev_err(dev, "cannot allocate memory\n"); return -ENOMEM; } platform_set_drvdata(pdev, dev); hsudc->dev = dev; hsudc->pd = pdev->dev.platform_data; hsudc->transceiver = otg_get_transceiver(); for (i = 0; i < ARRAY_SIZE(hsudc->supplies); i++) hsudc->supplies[i].supply = s3c_hsudc_supply_names[i]; ret = regulator_bulk_get(dev, ARRAY_SIZE(hsudc->supplies), hsudc->supplies); if (ret != 0) { dev_err(dev, "failed to request supplies: %d\n", ret); goto err_supplies; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(dev, "unable to obtain driver resource data\n"); ret = -ENODEV; goto err_res; } hsudc->mem_rsrc = request_mem_region(res->start, resource_size(res), dev_name(&pdev->dev)); if (!hsudc->mem_rsrc) { dev_err(dev, "failed to reserve register area\n"); ret = -ENODEV; goto err_res; } hsudc->regs = ioremap(res->start, resource_size(res)); if (!hsudc->regs) { dev_err(dev, "error mapping device register area\n"); ret = -EBUSY; goto err_remap; } spin_lock_init(&hsudc->lock); dev_set_name(&hsudc->gadget.dev, "gadget"); hsudc->gadget.max_speed = USB_SPEED_HIGH; hsudc->gadget.ops = &s3c_hsudc_gadget_ops; hsudc->gadget.name = dev_name(dev); hsudc->gadget.dev.parent = dev; hsudc->gadget.dev.dma_mask = dev->dma_mask; hsudc->gadget.ep0 = &hsudc->ep[0].ep; hsudc->gadget.is_otg = 0; hsudc->gadget.is_a_peripheral = 0; hsudc->gadget.speed = USB_SPEED_UNKNOWN; s3c_hsudc_setup_ep(hsudc); ret = platform_get_irq(pdev, 0); if (ret < 0) { dev_err(dev, "unable to obtain IRQ number\n"); goto err_irq; } hsudc->irq = ret; ret = request_irq(hsudc->irq, s3c_hsudc_irq, 0, driver_name, hsudc); if (ret < 0) { dev_err(dev, "irq request failed\n"); goto err_irq; } hsudc->uclk = clk_get(&pdev->dev, "usb-device"); if (IS_ERR(hsudc->uclk)) { dev_err(dev, "failed to find usb-device clock source\n"); ret = PTR_ERR(hsudc->uclk); goto err_clk; } clk_enable(hsudc->uclk); local_irq_disable(); disable_irq(hsudc->irq); local_irq_enable(); ret = device_register(&hsudc->gadget.dev); if (ret) { put_device(&hsudc->gadget.dev); goto err_add_device; } ret = usb_add_gadget_udc(&pdev->dev, &hsudc->gadget); if (ret) goto err_add_udc; return 0; err_add_udc: device_unregister(&hsudc->gadget.dev); err_add_device: clk_disable(hsudc->uclk); clk_put(hsudc->uclk); err_clk: free_irq(hsudc->irq, hsudc); err_irq: iounmap(hsudc->regs); err_remap: release_mem_region(res->start, resource_size(res)); err_res: if (hsudc->transceiver) otg_put_transceiver(hsudc->transceiver); regulator_bulk_free(ARRAY_SIZE(hsudc->supplies), hsudc->supplies); err_supplies: kfree(hsudc); return ret; } static struct platform_driver s3c_hsudc_driver = { .driver = { .owner = THIS_MODULE, .name = "s3c-hsudc", }, .probe = s3c_hsudc_probe, }; module_platform_driver(s3c_hsudc_driver); MODULE_DESCRIPTION("Samsung S3C24XX USB high-speed controller driver"); MODULE_AUTHOR("Thomas Abraham <thomas.ab@samsung.com>"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:s3c-hsudc");