/* * Universal Host Controller Interface driver for USB. * * Maintainer: Alan Stern <stern@rowland.harvard.edu> * * (C) Copyright 1999 Linus Torvalds * (C) Copyright 1999-2002 Johannes Erdfelt, johannes@erdfelt.com * (C) Copyright 1999 Randy Dunlap * (C) Copyright 1999 Georg Acher, acher@in.tum.de * (C) Copyright 1999 Deti Fliegl, deti@fliegl.de * (C) Copyright 1999 Thomas Sailer, sailer@ife.ee.ethz.ch * (C) Copyright 1999 Roman Weissgaerber, weissg@vienna.at * (C) Copyright 2000 Yggdrasil Computing, Inc. (port of new PCI interface * support from usb-ohci.c by Adam Richter, adam@yggdrasil.com). * (C) Copyright 1999 Gregory P. Smith (from usb-ohci.c) * (C) Copyright 2004-2007 Alan Stern, stern@rowland.harvard.edu * * Intel documents this fairly well, and as far as I know there * are no royalties or anything like that, but even so there are * people who decided that they want to do the same thing in a * completely different way. * */ #include <linux/module.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/unistd.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/debugfs.h> #include <linux/pm.h> #include <linux/dmapool.h> #include <linux/dma-mapping.h> #include <linux/usb.h> #include <linux/usb/hcd.h> #include <linux/bitops.h> #include <linux/dmi.h> #include <asm/uaccess.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/system.h> #include "uhci-hcd.h" /* * Version Information */ #define DRIVER_AUTHOR \ "Linus 'Frodo Rabbit' Torvalds, Johannes Erdfelt, " \ "Randy Dunlap, Georg Acher, Deti Fliegl, Thomas Sailer, " \ "Roman Weissgaerber, Alan Stern" #define DRIVER_DESC "USB Universal Host Controller Interface driver" /* for flakey hardware, ignore overcurrent indicators */ static bool ignore_oc; module_param(ignore_oc, bool, S_IRUGO); MODULE_PARM_DESC(ignore_oc, "ignore hardware overcurrent indications"); /* * debug = 0, no debugging messages * debug = 1, dump failed URBs except for stalls * debug = 2, dump all failed URBs (including stalls) * show all queues in /sys/kernel/debug/uhci/[pci_addr] * debug = 3, show all TDs in URBs when dumping */ #ifdef DEBUG #define DEBUG_CONFIGURED 1 static int debug = 1; module_param(debug, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(debug, "Debug level"); #else #define DEBUG_CONFIGURED 0 #define debug 0 #endif static char *errbuf; #define ERRBUF_LEN (32 * 1024) static struct kmem_cache *uhci_up_cachep; /* urb_priv */ static void suspend_rh(struct uhci_hcd *uhci, enum uhci_rh_state new_state); static void wakeup_rh(struct uhci_hcd *uhci); static void uhci_get_current_frame_number(struct uhci_hcd *uhci); /* * Calculate the link pointer DMA value for the first Skeleton QH in a frame. */ static __hc32 uhci_frame_skel_link(struct uhci_hcd *uhci, int frame) { int skelnum; /* * The interrupt queues will be interleaved as evenly as possible. * There's not much to be done about period-1 interrupts; they have * to occur in every frame. But we can schedule period-2 interrupts * in odd-numbered frames, period-4 interrupts in frames congruent * to 2 (mod 4), and so on. This way each frame only has two * interrupt QHs, which will help spread out bandwidth utilization. * * ffs (Find First bit Set) does exactly what we need: * 1,3,5,... => ffs = 0 => use period-2 QH = skelqh[8], * 2,6,10,... => ffs = 1 => use period-4 QH = skelqh[7], etc. * ffs >= 7 => not on any high-period queue, so use * period-1 QH = skelqh[9]. * Add in UHCI_NUMFRAMES to insure at least one bit is set. */ skelnum = 8 - (int) __ffs(frame | UHCI_NUMFRAMES); if (skelnum <= 1) skelnum = 9; return LINK_TO_QH(uhci, uhci->skelqh[skelnum]); } #include "uhci-debug.c" #include "uhci-q.c" #include "uhci-hub.c" /* * Finish up a host controller reset and update the recorded state. */ static void finish_reset(struct uhci_hcd *uhci) { int port; /* HCRESET doesn't affect the Suspend, Reset, and Resume Detect * bits in the port status and control registers. * We have to clear them by hand. */ for (port = 0; port < uhci->rh_numports; ++port) uhci_writew(uhci, 0, USBPORTSC1 + (port * 2)); uhci->port_c_suspend = uhci->resuming_ports = 0; uhci->rh_state = UHCI_RH_RESET; uhci->is_stopped = UHCI_IS_STOPPED; clear_bit(HCD_FLAG_POLL_RH, &uhci_to_hcd(uhci)->flags); } /* * Last rites for a defunct/nonfunctional controller * or one we don't want to use any more. */ static void uhci_hc_died(struct uhci_hcd *uhci) { uhci_get_current_frame_number(uhci); uhci->reset_hc(uhci); finish_reset(uhci); uhci->dead = 1; /* The current frame may already be partway finished */ ++uhci->frame_number; } /* * Initialize a controller that was newly discovered or has lost power * or otherwise been reset while it was suspended. In none of these cases * can we be sure of its previous state. */ static void check_and_reset_hc(struct uhci_hcd *uhci) { if (uhci->check_and_reset_hc(uhci)) finish_reset(uhci); } #if defined(CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC) /* * The two functions below are generic reset functions that are used on systems * that do not have keyboard and mouse legacy support. We assume that we are * running on such a system if CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC is defined. */ /* * Make sure the controller is completely inactive, unable to * generate interrupts or do DMA. */ static void uhci_generic_reset_hc(struct uhci_hcd *uhci) { /* Reset the HC - this will force us to get a * new notification of any already connected * ports due to the virtual disconnect that it * implies. */ uhci_writew(uhci, USBCMD_HCRESET, USBCMD); mb(); udelay(5); if (uhci_readw(uhci, USBCMD) & USBCMD_HCRESET) dev_warn(uhci_dev(uhci), "HCRESET not completed yet!\n"); /* Just to be safe, disable interrupt requests and * make sure the controller is stopped. */ uhci_writew(uhci, 0, USBINTR); uhci_writew(uhci, 0, USBCMD); } /* * Initialize a controller that was newly discovered or has just been * resumed. In either case we can't be sure of its previous state. * * Returns: 1 if the controller was reset, 0 otherwise. */ static int uhci_generic_check_and_reset_hc(struct uhci_hcd *uhci) { unsigned int cmd, intr; /* * When restarting a suspended controller, we expect all the * settings to be the same as we left them: * * Controller is stopped and configured with EGSM set; * No interrupts enabled except possibly Resume Detect. * * If any of these conditions are violated we do a complete reset. */ cmd = uhci_readw(uhci, USBCMD); if ((cmd & USBCMD_RS) || !(cmd & USBCMD_CF) || !(cmd & USBCMD_EGSM)) { dev_dbg(uhci_dev(uhci), "%s: cmd = 0x%04x\n", __func__, cmd); goto reset_needed; } intr = uhci_readw(uhci, USBINTR); if (intr & (~USBINTR_RESUME)) { dev_dbg(uhci_dev(uhci), "%s: intr = 0x%04x\n", __func__, intr); goto reset_needed; } return 0; reset_needed: dev_dbg(uhci_dev(uhci), "Performing full reset\n"); uhci_generic_reset_hc(uhci); return 1; } #endif /* CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC */ /* * Store the basic register settings needed by the controller. */ static void configure_hc(struct uhci_hcd *uhci) { /* Set the frame length to the default: 1 ms exactly */ uhci_writeb(uhci, USBSOF_DEFAULT, USBSOF); /* Store the frame list base address */ uhci_writel(uhci, uhci->frame_dma_handle, USBFLBASEADD); /* Set the current frame number */ uhci_writew(uhci, uhci->frame_number & UHCI_MAX_SOF_NUMBER, USBFRNUM); /* perform any arch/bus specific configuration */ if (uhci->configure_hc) uhci->configure_hc(uhci); } static int resume_detect_interrupts_are_broken(struct uhci_hcd *uhci) { /* If we have to ignore overcurrent events then almost by definition * we can't depend on resume-detect interrupts. */ if (ignore_oc) return 1; return uhci->resume_detect_interrupts_are_broken ? uhci->resume_detect_interrupts_are_broken(uhci) : 0; } static int global_suspend_mode_is_broken(struct uhci_hcd *uhci) { return uhci->global_suspend_mode_is_broken ? uhci->global_suspend_mode_is_broken(uhci) : 0; } static void suspend_rh(struct uhci_hcd *uhci, enum uhci_rh_state new_state) __releases(uhci->lock) __acquires(uhci->lock) { int auto_stop; int int_enable, egsm_enable, wakeup_enable; struct usb_device *rhdev = uhci_to_hcd(uhci)->self.root_hub; auto_stop = (new_state == UHCI_RH_AUTO_STOPPED); dev_dbg(&rhdev->dev, "%s%s\n", __func__, (auto_stop ? " (auto-stop)" : "")); /* Start off by assuming Resume-Detect interrupts and EGSM work * and that remote wakeups should be enabled. */ egsm_enable = USBCMD_EGSM; int_enable = USBINTR_RESUME; wakeup_enable = 1; /* * In auto-stop mode, we must be able to detect new connections. * The user can force us to poll by disabling remote wakeup; * otherwise we will use the EGSM/RD mechanism. */ if (auto_stop) { if (!device_may_wakeup(&rhdev->dev)) egsm_enable = int_enable = 0; } #ifdef CONFIG_PM /* * In bus-suspend mode, we use the wakeup setting specified * for the root hub. */ else { if (!rhdev->do_remote_wakeup) wakeup_enable = 0; } #endif /* * UHCI doesn't distinguish between wakeup requests from downstream * devices and local connect/disconnect events. There's no way to * enable one without the other; both are controlled by EGSM. Thus * if wakeups are disallowed then EGSM must be turned off -- in which * case remote wakeup requests from downstream during system sleep * will be lost. * * In addition, if EGSM is broken then we can't use it. Likewise, * if Resume-Detect interrupts are broken then we can't use them. * * Finally, neither EGSM nor RD is useful by itself. Without EGSM, * the RD status bit will never get set. Without RD, the controller * won't generate interrupts to tell the system about wakeup events. */ if (!wakeup_enable || global_suspend_mode_is_broken(uhci) || resume_detect_interrupts_are_broken(uhci)) egsm_enable = int_enable = 0; uhci->RD_enable = !!int_enable; uhci_writew(uhci, int_enable, USBINTR); uhci_writew(uhci, egsm_enable | USBCMD_CF, USBCMD); mb(); udelay(5); /* If we're auto-stopping then no devices have been attached * for a while, so there shouldn't be any active URBs and the * controller should stop after a few microseconds. Otherwise * we will give the controller one frame to stop. */ if (!auto_stop && !(uhci_readw(uhci, USBSTS) & USBSTS_HCH)) { uhci->rh_state = UHCI_RH_SUSPENDING; spin_unlock_irq(&uhci->lock); msleep(1); spin_lock_irq(&uhci->lock); if (uhci->dead) return; } if (!(uhci_readw(uhci, USBSTS) & USBSTS_HCH)) dev_warn(uhci_dev(uhci), "Controller not stopped yet!\n"); uhci_get_current_frame_number(uhci); uhci->rh_state = new_state; uhci->is_stopped = UHCI_IS_STOPPED; /* * If remote wakeup is enabled but either EGSM or RD interrupts * doesn't work, then we won't get an interrupt when a wakeup event * occurs. Thus the suspended root hub needs to be polled. */ if (wakeup_enable && (!int_enable || !egsm_enable)) set_bit(HCD_FLAG_POLL_RH, &uhci_to_hcd(uhci)->flags); else clear_bit(HCD_FLAG_POLL_RH, &uhci_to_hcd(uhci)->flags); uhci_scan_schedule(uhci); uhci_fsbr_off(uhci); } static void start_rh(struct uhci_hcd *uhci) { uhci->is_stopped = 0; /* Mark it configured and running with a 64-byte max packet. * All interrupts are enabled, even though RESUME won't do anything. */ uhci_writew(uhci, USBCMD_RS | USBCMD_CF | USBCMD_MAXP, USBCMD); uhci_writew(uhci, USBINTR_TIMEOUT | USBINTR_RESUME | USBINTR_IOC | USBINTR_SP, USBINTR); mb(); uhci->rh_state = UHCI_RH_RUNNING; set_bit(HCD_FLAG_POLL_RH, &uhci_to_hcd(uhci)->flags); } static void wakeup_rh(struct uhci_hcd *uhci) __releases(uhci->lock) __acquires(uhci->lock) { dev_dbg(&uhci_to_hcd(uhci)->self.root_hub->dev, "%s%s\n", __func__, uhci->rh_state == UHCI_RH_AUTO_STOPPED ? " (auto-start)" : ""); /* If we are auto-stopped then no devices are attached so there's * no need for wakeup signals. Otherwise we send Global Resume * for 20 ms. */ if (uhci->rh_state == UHCI_RH_SUSPENDED) { unsigned egsm; /* Keep EGSM on if it was set before */ egsm = uhci_readw(uhci, USBCMD) & USBCMD_EGSM; uhci->rh_state = UHCI_RH_RESUMING; uhci_writew(uhci, USBCMD_FGR | USBCMD_CF | egsm, USBCMD); spin_unlock_irq(&uhci->lock); msleep(20); spin_lock_irq(&uhci->lock); if (uhci->dead) return; /* End Global Resume and wait for EOP to be sent */ uhci_writew(uhci, USBCMD_CF, USBCMD); mb(); udelay(4); if (uhci_readw(uhci, USBCMD) & USBCMD_FGR) dev_warn(uhci_dev(uhci), "FGR not stopped yet!\n"); } start_rh(uhci); /* Restart root hub polling */ mod_timer(&uhci_to_hcd(uhci)->rh_timer, jiffies); } static irqreturn_t uhci_irq(struct usb_hcd *hcd) { struct uhci_hcd *uhci = hcd_to_uhci(hcd); unsigned short status; /* * Read the interrupt status, and write it back to clear the * interrupt cause. Contrary to the UHCI specification, the * "HC Halted" status bit is persistent: it is RO, not R/WC. */ status = uhci_readw(uhci, USBSTS); if (!(status & ~USBSTS_HCH)) /* shared interrupt, not mine */ return IRQ_NONE; uhci_writew(uhci, status, USBSTS); /* Clear it */ if (status & ~(USBSTS_USBINT | USBSTS_ERROR | USBSTS_RD)) { if (status & USBSTS_HSE) dev_err(uhci_dev(uhci), "host system error, " "PCI problems?\n"); if (status & USBSTS_HCPE) dev_err(uhci_dev(uhci), "host controller process " "error, something bad happened!\n"); if (status & USBSTS_HCH) { spin_lock(&uhci->lock); if (uhci->rh_state >= UHCI_RH_RUNNING) { dev_err(uhci_dev(uhci), "host controller halted, " "very bad!\n"); if (debug > 1 && errbuf) { /* Print the schedule for debugging */ uhci_sprint_schedule(uhci, errbuf, ERRBUF_LEN); lprintk(errbuf); } uhci_hc_died(uhci); usb_hc_died(hcd); /* Force a callback in case there are * pending unlinks */ mod_timer(&hcd->rh_timer, jiffies); } spin_unlock(&uhci->lock); } } if (status & USBSTS_RD) usb_hcd_poll_rh_status(hcd); else { spin_lock(&uhci->lock); uhci_scan_schedule(uhci); spin_unlock(&uhci->lock); } return IRQ_HANDLED; } /* * Store the current frame number in uhci->frame_number if the controller * is running. Expand from 11 bits (of which we use only 10) to a * full-sized integer. * * Like many other parts of the driver, this code relies on being polled * more than once per second as long as the controller is running. */ static void uhci_get_current_frame_number(struct uhci_hcd *uhci) { if (!uhci->is_stopped) { unsigned delta; delta = (uhci_readw(uhci, USBFRNUM) - uhci->frame_number) & (UHCI_NUMFRAMES - 1); uhci->frame_number += delta; } } /* * De-allocate all resources */ static void release_uhci(struct uhci_hcd *uhci) { int i; if (DEBUG_CONFIGURED) { spin_lock_irq(&uhci->lock); uhci->is_initialized = 0; spin_unlock_irq(&uhci->lock); debugfs_remove(uhci->dentry); } for (i = 0; i < UHCI_NUM_SKELQH; i++) uhci_free_qh(uhci, uhci->skelqh[i]); uhci_free_td(uhci, uhci->term_td); dma_pool_destroy(uhci->qh_pool); dma_pool_destroy(uhci->td_pool); kfree(uhci->frame_cpu); dma_free_coherent(uhci_dev(uhci), UHCI_NUMFRAMES * sizeof(*uhci->frame), uhci->frame, uhci->frame_dma_handle); } /* * Allocate a frame list, and then setup the skeleton * * The hardware doesn't really know any difference * in the queues, but the order does matter for the * protocols higher up. The order in which the queues * are encountered by the hardware is: * * - All isochronous events are handled before any * of the queues. We don't do that here, because * we'll create the actual TD entries on demand. * - The first queue is the high-period interrupt queue. * - The second queue is the period-1 interrupt and async * (low-speed control, full-speed control, then bulk) queue. * - The third queue is the terminating bandwidth reclamation queue, * which contains no members, loops back to itself, and is present * only when FSBR is on and there are no full-speed control or bulk QHs. */ static int uhci_start(struct usb_hcd *hcd) { struct uhci_hcd *uhci = hcd_to_uhci(hcd); int retval = -EBUSY; int i; struct dentry __maybe_unused *dentry; hcd->uses_new_polling = 1; spin_lock_init(&uhci->lock); setup_timer(&uhci->fsbr_timer, uhci_fsbr_timeout, (unsigned long) uhci); INIT_LIST_HEAD(&uhci->idle_qh_list); init_waitqueue_head(&uhci->waitqh); #ifdef UHCI_DEBUG_OPS dentry = debugfs_create_file(hcd->self.bus_name, S_IFREG|S_IRUGO|S_IWUSR, uhci_debugfs_root, uhci, &uhci_debug_operations); if (!dentry) { dev_err(uhci_dev(uhci), "couldn't create uhci debugfs entry\n"); return -ENOMEM; } uhci->dentry = dentry; #endif uhci->frame = dma_alloc_coherent(uhci_dev(uhci), UHCI_NUMFRAMES * sizeof(*uhci->frame), &uhci->frame_dma_handle, 0); if (!uhci->frame) { dev_err(uhci_dev(uhci), "unable to allocate " "consistent memory for frame list\n"); goto err_alloc_frame; } memset(uhci->frame, 0, UHCI_NUMFRAMES * sizeof(*uhci->frame)); uhci->frame_cpu = kcalloc(UHCI_NUMFRAMES, sizeof(*uhci->frame_cpu), GFP_KERNEL); if (!uhci->frame_cpu) { dev_err(uhci_dev(uhci), "unable to allocate " "memory for frame pointers\n"); goto err_alloc_frame_cpu; } uhci->td_pool = dma_pool_create("uhci_td", uhci_dev(uhci), sizeof(struct uhci_td), 16, 0); if (!uhci->td_pool) { dev_err(uhci_dev(uhci), "unable to create td dma_pool\n"); goto err_create_td_pool; } uhci->qh_pool = dma_pool_create("uhci_qh", uhci_dev(uhci), sizeof(struct uhci_qh), 16, 0); if (!uhci->qh_pool) { dev_err(uhci_dev(uhci), "unable to create qh dma_pool\n"); goto err_create_qh_pool; } uhci->term_td = uhci_alloc_td(uhci); if (!uhci->term_td) { dev_err(uhci_dev(uhci), "unable to allocate terminating TD\n"); goto err_alloc_term_td; } for (i = 0; i < UHCI_NUM_SKELQH; i++) { uhci->skelqh[i] = uhci_alloc_qh(uhci, NULL, NULL); if (!uhci->skelqh[i]) { dev_err(uhci_dev(uhci), "unable to allocate QH\n"); goto err_alloc_skelqh; } } /* * 8 Interrupt queues; link all higher int queues to int1 = async */ for (i = SKEL_ISO + 1; i < SKEL_ASYNC; ++i) uhci->skelqh[i]->link = LINK_TO_QH(uhci, uhci->skel_async_qh); uhci->skel_async_qh->link = UHCI_PTR_TERM(uhci); uhci->skel_term_qh->link = LINK_TO_QH(uhci, uhci->skel_term_qh); /* This dummy TD is to work around a bug in Intel PIIX controllers */ uhci_fill_td(uhci, uhci->term_td, 0, uhci_explen(0) | (0x7f << TD_TOKEN_DEVADDR_SHIFT) | USB_PID_IN, 0); uhci->term_td->link = UHCI_PTR_TERM(uhci); uhci->skel_async_qh->element = uhci->skel_term_qh->element = LINK_TO_TD(uhci, uhci->term_td); /* * Fill the frame list: make all entries point to the proper * interrupt queue. */ for (i = 0; i < UHCI_NUMFRAMES; i++) { /* Only place we don't use the frame list routines */ uhci->frame[i] = uhci_frame_skel_link(uhci, i); } /* * Some architectures require a full mb() to enforce completion of * the memory writes above before the I/O transfers in configure_hc(). */ mb(); configure_hc(uhci); uhci->is_initialized = 1; spin_lock_irq(&uhci->lock); start_rh(uhci); spin_unlock_irq(&uhci->lock); return 0; /* * error exits: */ err_alloc_skelqh: for (i = 0; i < UHCI_NUM_SKELQH; i++) { if (uhci->skelqh[i]) uhci_free_qh(uhci, uhci->skelqh[i]); } uhci_free_td(uhci, uhci->term_td); err_alloc_term_td: dma_pool_destroy(uhci->qh_pool); err_create_qh_pool: dma_pool_destroy(uhci->td_pool); err_create_td_pool: kfree(uhci->frame_cpu); err_alloc_frame_cpu: dma_free_coherent(uhci_dev(uhci), UHCI_NUMFRAMES * sizeof(*uhci->frame), uhci->frame, uhci->frame_dma_handle); err_alloc_frame: debugfs_remove(uhci->dentry); return retval; } static void uhci_stop(struct usb_hcd *hcd) { struct uhci_hcd *uhci = hcd_to_uhci(hcd); spin_lock_irq(&uhci->lock); if (HCD_HW_ACCESSIBLE(hcd) && !uhci->dead) uhci_hc_died(uhci); uhci_scan_schedule(uhci); spin_unlock_irq(&uhci->lock); synchronize_irq(hcd->irq); del_timer_sync(&uhci->fsbr_timer); release_uhci(uhci); } #ifdef CONFIG_PM static int uhci_rh_suspend(struct usb_hcd *hcd) { struct uhci_hcd *uhci = hcd_to_uhci(hcd); int rc = 0; spin_lock_irq(&uhci->lock); if (!HCD_HW_ACCESSIBLE(hcd)) rc = -ESHUTDOWN; else if (uhci->dead) ; /* Dead controllers tell no tales */ /* Once the controller is stopped, port resumes that are already * in progress won't complete. Hence if remote wakeup is enabled * for the root hub and any ports are in the middle of a resume or * remote wakeup, we must fail the suspend. */ else if (hcd->self.root_hub->do_remote_wakeup && uhci->resuming_ports) { dev_dbg(uhci_dev(uhci), "suspend failed because a port " "is resuming\n"); rc = -EBUSY; } else suspend_rh(uhci, UHCI_RH_SUSPENDED); spin_unlock_irq(&uhci->lock); return rc; } static int uhci_rh_resume(struct usb_hcd *hcd) { struct uhci_hcd *uhci = hcd_to_uhci(hcd); int rc = 0; spin_lock_irq(&uhci->lock); if (!HCD_HW_ACCESSIBLE(hcd)) rc = -ESHUTDOWN; else if (!uhci->dead) wakeup_rh(uhci); spin_unlock_irq(&uhci->lock); return rc; } #endif /* Wait until a particular device/endpoint's QH is idle, and free it */ static void uhci_hcd_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *hep) { struct uhci_hcd *uhci = hcd_to_uhci(hcd); struct uhci_qh *qh; spin_lock_irq(&uhci->lock); qh = (struct uhci_qh *) hep->hcpriv; if (qh == NULL) goto done; while (qh->state != QH_STATE_IDLE) { ++uhci->num_waiting; spin_unlock_irq(&uhci->lock); wait_event_interruptible(uhci->waitqh, qh->state == QH_STATE_IDLE); spin_lock_irq(&uhci->lock); --uhci->num_waiting; } uhci_free_qh(uhci, qh); done: spin_unlock_irq(&uhci->lock); } static int uhci_hcd_get_frame_number(struct usb_hcd *hcd) { struct uhci_hcd *uhci = hcd_to_uhci(hcd); unsigned frame_number; unsigned delta; /* Minimize latency by avoiding the spinlock */ frame_number = uhci->frame_number; barrier(); delta = (uhci_readw(uhci, USBFRNUM) - frame_number) & (UHCI_NUMFRAMES - 1); return frame_number + delta; } /* Determines number of ports on controller */ static int uhci_count_ports(struct usb_hcd *hcd) { struct uhci_hcd *uhci = hcd_to_uhci(hcd); unsigned io_size = (unsigned) hcd->rsrc_len; int port; /* The UHCI spec says devices must have 2 ports, and goes on to say * they may have more but gives no way to determine how many there * are. However according to the UHCI spec, Bit 7 of the port * status and control register is always set to 1. So we try to * use this to our advantage. Another common failure mode when * a nonexistent register is addressed is to return all ones, so * we test for that also. */ for (port = 0; port < (io_size - USBPORTSC1) / 2; port++) { unsigned int portstatus; portstatus = uhci_readw(uhci, USBPORTSC1 + (port * 2)); if (!(portstatus & 0x0080) || portstatus == 0xffff) break; } if (debug) dev_info(uhci_dev(uhci), "detected %d ports\n", port); /* Anything greater than 7 is weird so we'll ignore it. */ if (port > UHCI_RH_MAXCHILD) { dev_info(uhci_dev(uhci), "port count misdetected? " "forcing to 2 ports\n"); port = 2; } return port; } static const char hcd_name[] = "uhci_hcd"; #ifdef CONFIG_PCI #include "uhci-pci.c" #define PCI_DRIVER uhci_pci_driver #endif #ifdef CONFIG_SPARC_LEON #include "uhci-grlib.c" #define PLATFORM_DRIVER uhci_grlib_driver #endif #if !defined(PCI_DRIVER) && !defined(PLATFORM_DRIVER) #error "missing bus glue for uhci-hcd" #endif static int __init uhci_hcd_init(void) { int retval = -ENOMEM; if (usb_disabled()) return -ENODEV; printk(KERN_INFO "uhci_hcd: " DRIVER_DESC "%s\n", ignore_oc ? ", overcurrent ignored" : ""); set_bit(USB_UHCI_LOADED, &usb_hcds_loaded); if (DEBUG_CONFIGURED) { errbuf = kmalloc(ERRBUF_LEN, GFP_KERNEL); if (!errbuf) goto errbuf_failed; uhci_debugfs_root = debugfs_create_dir("uhci", usb_debug_root); if (!uhci_debugfs_root) goto debug_failed; } uhci_up_cachep = kmem_cache_create("uhci_urb_priv", sizeof(struct urb_priv), 0, 0, NULL); if (!uhci_up_cachep) goto up_failed; #ifdef PLATFORM_DRIVER retval = platform_driver_register(&PLATFORM_DRIVER); if (retval < 0) goto clean0; #endif #ifdef PCI_DRIVER retval = pci_register_driver(&PCI_DRIVER); if (retval < 0) goto clean1; #endif return 0; #ifdef PCI_DRIVER clean1: #endif #ifdef PLATFORM_DRIVER platform_driver_unregister(&PLATFORM_DRIVER); clean0: #endif kmem_cache_destroy(uhci_up_cachep); up_failed: debugfs_remove(uhci_debugfs_root); debug_failed: kfree(errbuf); errbuf_failed: clear_bit(USB_UHCI_LOADED, &usb_hcds_loaded); return retval; } static void __exit uhci_hcd_cleanup(void) { #ifdef PLATFORM_DRIVER platform_driver_unregister(&PLATFORM_DRIVER); #endif #ifdef PCI_DRIVER pci_unregister_driver(&PCI_DRIVER); #endif kmem_cache_destroy(uhci_up_cachep); debugfs_remove(uhci_debugfs_root); kfree(errbuf); clear_bit(USB_UHCI_LOADED, &usb_hcds_loaded); } module_init(uhci_hcd_init); module_exit(uhci_hcd_cleanup); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");