/* * MSM MDDI Transport * * Copyright (C) 2007 Google Incorporated * Copyright (C) 2007 QUALCOMM Incorporated * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/gfp.h> #include <linux/spinlock.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/sched.h> #include <mach/msm_iomap.h> #include <mach/irqs.h> #include <mach/board.h> #include <mach/msm_fb.h> #include "mddi_hw.h" #define FLAG_DISABLE_HIBERNATION 0x0001 #define FLAG_HAVE_CAPS 0x0002 #define FLAG_HAS_VSYNC_IRQ 0x0004 #define FLAG_HAVE_STATUS 0x0008 #define CMD_GET_CLIENT_CAP 0x0601 #define CMD_GET_CLIENT_STATUS 0x0602 union mddi_rev { unsigned char raw[MDDI_REV_BUFFER_SIZE]; struct mddi_rev_packet hdr; struct mddi_client_status status; struct mddi_client_caps caps; struct mddi_register_access reg; }; struct reg_read_info { struct completion done; uint32_t reg; uint32_t status; uint32_t result; }; struct mddi_info { uint16_t flags; uint16_t version; char __iomem *base; int irq; struct clk *clk; struct msm_mddi_client_data client_data; /* buffer for rev encap packets */ void *rev_data; dma_addr_t rev_addr; struct mddi_llentry *reg_write_data; dma_addr_t reg_write_addr; struct mddi_llentry *reg_read_data; dma_addr_t reg_read_addr; size_t rev_data_curr; spinlock_t int_lock; uint32_t int_enable; uint32_t got_int; wait_queue_head_t int_wait; struct mutex reg_write_lock; struct mutex reg_read_lock; struct reg_read_info *reg_read; struct mddi_client_caps caps; struct mddi_client_status status; void (*power_client)(struct msm_mddi_client_data *, int); /* client device published to bind us to the * appropriate mddi_client driver */ char client_name[20]; struct platform_device client_pdev; }; static void mddi_init_rev_encap(struct mddi_info *mddi); #define mddi_readl(r) readl(mddi->base + (MDDI_##r)) #define mddi_writel(v, r) writel((v), mddi->base + (MDDI_##r)) void mddi_activate_link(struct msm_mddi_client_data *cdata) { struct mddi_info *mddi = container_of(cdata, struct mddi_info, client_data); mddi_writel(MDDI_CMD_LINK_ACTIVE, CMD); } static void mddi_handle_link_list_done(struct mddi_info *mddi) { } static void mddi_reset_rev_encap_ptr(struct mddi_info *mddi) { printk(KERN_INFO "mddi: resetting rev ptr\n"); mddi->rev_data_curr = 0; mddi_writel(mddi->rev_addr, REV_PTR); mddi_writel(mddi->rev_addr, REV_PTR); mddi_writel(MDDI_CMD_FORCE_NEW_REV_PTR, CMD); } static void mddi_handle_rev_data(struct mddi_info *mddi, union mddi_rev *rev) { int i; struct reg_read_info *ri; if ((rev->hdr.length <= MDDI_REV_BUFFER_SIZE - 2) && (rev->hdr.length >= sizeof(struct mddi_rev_packet) - 2)) { switch (rev->hdr.type) { case TYPE_CLIENT_CAPS: memcpy(&mddi->caps, &rev->caps, sizeof(struct mddi_client_caps)); mddi->flags |= FLAG_HAVE_CAPS; wake_up(&mddi->int_wait); break; case TYPE_CLIENT_STATUS: memcpy(&mddi->status, &rev->status, sizeof(struct mddi_client_status)); mddi->flags |= FLAG_HAVE_STATUS; wake_up(&mddi->int_wait); break; case TYPE_REGISTER_ACCESS: ri = mddi->reg_read; if (ri == 0) { printk(KERN_INFO "rev: got reg %x = %x without " " pending read\n", rev->reg.register_address, rev->reg.register_data_list); break; } if (ri->reg != rev->reg.register_address) { printk(KERN_INFO "rev: got reg %x = %x for " "wrong register, expected " "%x\n", rev->reg.register_address, rev->reg.register_data_list, ri->reg); break; } mddi->reg_read = NULL; ri->status = 0; ri->result = rev->reg.register_data_list; complete(&ri->done); break; default: printk(KERN_INFO "rev: unknown reverse packet: " "len=%04x type=%04x CURR_REV_PTR=%x\n", rev->hdr.length, rev->hdr.type, mddi_readl(CURR_REV_PTR)); for (i = 0; i < rev->hdr.length + 2; i++) { if ((i % 16) == 0) printk(KERN_INFO "\n"); printk(KERN_INFO " %02x", rev->raw[i]); } printk(KERN_INFO "\n"); mddi_reset_rev_encap_ptr(mddi); } } else { printk(KERN_INFO "bad rev length, %d, CURR_REV_PTR %x\n", rev->hdr.length, mddi_readl(CURR_REV_PTR)); mddi_reset_rev_encap_ptr(mddi); } } static void mddi_wait_interrupt(struct mddi_info *mddi, uint32_t intmask); static void mddi_handle_rev_data_avail(struct mddi_info *mddi) { uint32_t rev_data_count; uint32_t rev_crc_err_count; struct reg_read_info *ri; size_t prev_offset; uint16_t length; union mddi_rev *crev = mddi->rev_data + mddi->rev_data_curr; /* clear the interrupt */ mddi_writel(MDDI_INT_REV_DATA_AVAIL, INT); rev_data_count = mddi_readl(REV_PKT_CNT); rev_crc_err_count = mddi_readl(REV_CRC_ERR); if (rev_data_count > 1) printk(KERN_INFO "rev_data_count %d\n", rev_data_count); if (rev_crc_err_count) { printk(KERN_INFO "rev_crc_err_count %d, INT %x\n", rev_crc_err_count, mddi_readl(INT)); ri = mddi->reg_read; if (ri == 0) { printk(KERN_INFO "rev: got crc error without pending " "read\n"); } else { mddi->reg_read = NULL; ri->status = -EIO; ri->result = -1; complete(&ri->done); } } if (rev_data_count == 0) return; prev_offset = mddi->rev_data_curr; length = *((uint8_t *)mddi->rev_data + mddi->rev_data_curr); mddi->rev_data_curr++; if (mddi->rev_data_curr == MDDI_REV_BUFFER_SIZE) mddi->rev_data_curr = 0; length += *((uint8_t *)mddi->rev_data + mddi->rev_data_curr) << 8; mddi->rev_data_curr += 1 + length; if (mddi->rev_data_curr >= MDDI_REV_BUFFER_SIZE) mddi->rev_data_curr = mddi->rev_data_curr % MDDI_REV_BUFFER_SIZE; if (length > MDDI_REV_BUFFER_SIZE - 2) { printk(KERN_INFO "mddi: rev data length greater than buffer" "size\n"); mddi_reset_rev_encap_ptr(mddi); return; } if (prev_offset + 2 + length >= MDDI_REV_BUFFER_SIZE) { union mddi_rev tmprev; size_t rem = MDDI_REV_BUFFER_SIZE - prev_offset; memcpy(&tmprev.raw[0], mddi->rev_data + prev_offset, rem); memcpy(&tmprev.raw[rem], mddi->rev_data, 2 + length - rem); mddi_handle_rev_data(mddi, &tmprev); } else { mddi_handle_rev_data(mddi, crev); } if (prev_offset < MDDI_REV_BUFFER_SIZE / 2 && mddi->rev_data_curr >= MDDI_REV_BUFFER_SIZE / 2) { mddi_writel(mddi->rev_addr, REV_PTR); } } static irqreturn_t mddi_isr(int irq, void *data) { struct msm_mddi_client_data *cdata = data; struct mddi_info *mddi = container_of(cdata, struct mddi_info, client_data); uint32_t active, status; spin_lock(&mddi->int_lock); active = mddi_readl(INT); status = mddi_readl(STAT); mddi_writel(active, INT); /* ignore any interrupts we have disabled */ active &= mddi->int_enable; mddi->got_int |= active; wake_up(&mddi->int_wait); if (active & MDDI_INT_PRI_LINK_LIST_DONE) { mddi->int_enable &= (~MDDI_INT_PRI_LINK_LIST_DONE); mddi_handle_link_list_done(mddi); } if (active & MDDI_INT_REV_DATA_AVAIL) mddi_handle_rev_data_avail(mddi); if (active & ~MDDI_INT_NEED_CLEAR) mddi->int_enable &= ~(active & ~MDDI_INT_NEED_CLEAR); if (active & MDDI_INT_LINK_ACTIVE) { mddi->int_enable &= (~MDDI_INT_LINK_ACTIVE); mddi->int_enable |= MDDI_INT_IN_HIBERNATION; } if (active & MDDI_INT_IN_HIBERNATION) { mddi->int_enable &= (~MDDI_INT_IN_HIBERNATION); mddi->int_enable |= MDDI_INT_LINK_ACTIVE; } mddi_writel(mddi->int_enable, INTEN); spin_unlock(&mddi->int_lock); return IRQ_HANDLED; } static long mddi_wait_interrupt_timeout(struct mddi_info *mddi, uint32_t intmask, int timeout) { unsigned long irq_flags; spin_lock_irqsave(&mddi->int_lock, irq_flags); mddi->got_int &= ~intmask; mddi->int_enable |= intmask; mddi_writel(mddi->int_enable, INTEN); spin_unlock_irqrestore(&mddi->int_lock, irq_flags); return wait_event_timeout(mddi->int_wait, mddi->got_int & intmask, timeout); } static void mddi_wait_interrupt(struct mddi_info *mddi, uint32_t intmask) { if (mddi_wait_interrupt_timeout(mddi, intmask, HZ/10) == 0) printk(KERN_INFO "mddi_wait_interrupt %d, timeout " "waiting for %x, INT = %x, STAT = %x gotint = %x\n", current->pid, intmask, mddi_readl(INT), mddi_readl(STAT), mddi->got_int); } static void mddi_init_rev_encap(struct mddi_info *mddi) { memset(mddi->rev_data, 0xee, MDDI_REV_BUFFER_SIZE); mddi_writel(mddi->rev_addr, REV_PTR); mddi_writel(MDDI_CMD_FORCE_NEW_REV_PTR, CMD); mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND); } void mddi_set_auto_hibernate(struct msm_mddi_client_data *cdata, int on) { struct mddi_info *mddi = container_of(cdata, struct mddi_info, client_data); mddi_writel(MDDI_CMD_POWERDOWN, CMD); mddi_wait_interrupt(mddi, MDDI_INT_IN_HIBERNATION); mddi_writel(MDDI_CMD_HIBERNATE | !!on, CMD); mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND); } static uint16_t mddi_init_registers(struct mddi_info *mddi) { mddi_writel(0x0001, VERSION); mddi_writel(MDDI_HOST_BYTES_PER_SUBFRAME, BPS); mddi_writel(0x0003, SPM); /* subframes per media */ mddi_writel(0x0005, TA1_LEN); mddi_writel(MDDI_HOST_TA2_LEN, TA2_LEN); mddi_writel(0x0096, DRIVE_HI); /* 0x32 normal, 0x50 for Toshiba display */ mddi_writel(0x0050, DRIVE_LO); mddi_writel(0x003C, DISP_WAKE); /* wakeup counter */ mddi_writel(MDDI_HOST_REV_RATE_DIV, REV_RATE_DIV); mddi_writel(MDDI_REV_BUFFER_SIZE, REV_SIZE); mddi_writel(MDDI_MAX_REV_PKT_SIZE, REV_ENCAP_SZ); /* disable periodic rev encap */ mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP, CMD); mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND); if (mddi_readl(PAD_CTL) == 0) { /* If we are turning on band gap, need to wait 5us before * turning on the rest of the PAD */ mddi_writel(0x08000, PAD_CTL); udelay(5); } /* Recommendation from PAD hw team */ mddi_writel(0xa850f, PAD_CTL); /* Need an even number for counts */ mddi_writel(0x60006, DRIVER_START_CNT); mddi_set_auto_hibernate(&mddi->client_data, 0); mddi_writel(MDDI_CMD_DISP_IGNORE, CMD); mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND); mddi_init_rev_encap(mddi); return mddi_readl(CORE_VER) & 0xffff; } static void mddi_suspend(struct msm_mddi_client_data *cdata) { struct mddi_info *mddi = container_of(cdata, struct mddi_info, client_data); /* turn off the client */ if (mddi->power_client) mddi->power_client(&mddi->client_data, 0); /* turn off the link */ mddi_writel(MDDI_CMD_RESET, CMD); mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND); /* turn off the clock */ clk_disable(mddi->clk); } static void mddi_resume(struct msm_mddi_client_data *cdata) { struct mddi_info *mddi = container_of(cdata, struct mddi_info, client_data); mddi_set_auto_hibernate(&mddi->client_data, 0); /* turn on the client */ if (mddi->power_client) mddi->power_client(&mddi->client_data, 1); /* turn on the clock */ clk_enable(mddi->clk); /* set up the local registers */ mddi->rev_data_curr = 0; mddi_init_registers(mddi); mddi_writel(mddi->int_enable, INTEN); mddi_writel(MDDI_CMD_LINK_ACTIVE, CMD); mddi_writel(MDDI_CMD_SEND_RTD, CMD); mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND); mddi_set_auto_hibernate(&mddi->client_data, 1); } static int __init mddi_get_client_caps(struct mddi_info *mddi) { int i, j; /* clear any stale interrupts */ mddi_writel(0xffffffff, INT); mddi->int_enable = MDDI_INT_LINK_ACTIVE | MDDI_INT_IN_HIBERNATION | MDDI_INT_PRI_LINK_LIST_DONE | MDDI_INT_REV_DATA_AVAIL | MDDI_INT_REV_OVERFLOW | MDDI_INT_REV_OVERWRITE | MDDI_INT_RTD_FAILURE; mddi_writel(mddi->int_enable, INTEN); mddi_writel(MDDI_CMD_LINK_ACTIVE, CMD); mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND); for (j = 0; j < 3; j++) { /* the toshiba vga panel does not respond to get * caps unless you SEND_RTD, but the first SEND_RTD * will fail... */ for (i = 0; i < 4; i++) { uint32_t stat; mddi_writel(MDDI_CMD_SEND_RTD, CMD); mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND); stat = mddi_readl(STAT); printk(KERN_INFO "mddi cmd send rtd: int %x, stat %x, " "rtd val %x\n", mddi_readl(INT), stat, mddi_readl(RTD_VAL)); if ((stat & MDDI_STAT_RTD_MEAS_FAIL) == 0) break; msleep(1); } mddi_writel(CMD_GET_CLIENT_CAP, CMD); mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND); wait_event_timeout(mddi->int_wait, mddi->flags & FLAG_HAVE_CAPS, HZ / 100); if (mddi->flags & FLAG_HAVE_CAPS) break; printk(KERN_INFO "mddi_init, timeout waiting for caps\n"); } return mddi->flags & FLAG_HAVE_CAPS; } /* link must be active when this is called */ int mddi_check_status(struct mddi_info *mddi) { int ret = -1, retry = 3; mutex_lock(&mddi->reg_read_lock); mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP | 1, CMD); mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND); do { mddi->flags &= ~FLAG_HAVE_STATUS; mddi_writel(CMD_GET_CLIENT_STATUS, CMD); mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND); wait_event_timeout(mddi->int_wait, mddi->flags & FLAG_HAVE_STATUS, HZ / 100); if (mddi->flags & FLAG_HAVE_STATUS) { if (mddi->status.crc_error_count) printk(KERN_INFO "mddi status: crc_error " "count: %d\n", mddi->status.crc_error_count); else ret = 0; break; } else printk(KERN_INFO "mddi status: failed to get client " "status\n"); mddi_writel(MDDI_CMD_SEND_RTD, CMD); mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND); } while (--retry); mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP | 0, CMD); mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND); mutex_unlock(&mddi->reg_read_lock); return ret; } void mddi_remote_write(struct msm_mddi_client_data *cdata, uint32_t val, uint32_t reg) { struct mddi_info *mddi = container_of(cdata, struct mddi_info, client_data); struct mddi_llentry *ll; struct mddi_register_access *ra; mutex_lock(&mddi->reg_write_lock); ll = mddi->reg_write_data; ra = &(ll->u.r); ra->length = 14 + 4; ra->type = TYPE_REGISTER_ACCESS; ra->client_id = 0; ra->read_write_info = MDDI_WRITE | 1; ra->crc16 = 0; ra->register_address = reg; ra->register_data_list = val; ll->flags = 1; ll->header_count = 14; ll->data_count = 4; ll->data = mddi->reg_write_addr + offsetof(struct mddi_llentry, u.r.register_data_list); ll->next = 0; ll->reserved = 0; mddi_writel(mddi->reg_write_addr, PRI_PTR); mddi_wait_interrupt(mddi, MDDI_INT_PRI_LINK_LIST_DONE); mutex_unlock(&mddi->reg_write_lock); } uint32_t mddi_remote_read(struct msm_mddi_client_data *cdata, uint32_t reg) { struct mddi_info *mddi = container_of(cdata, struct mddi_info, client_data); struct mddi_llentry *ll; struct mddi_register_access *ra; struct reg_read_info ri; unsigned s; int retry_count = 2; unsigned long irq_flags; mutex_lock(&mddi->reg_read_lock); ll = mddi->reg_read_data; ra = &(ll->u.r); ra->length = 14; ra->type = TYPE_REGISTER_ACCESS; ra->client_id = 0; ra->read_write_info = MDDI_READ | 1; ra->crc16 = 0; ra->register_address = reg; ll->flags = 0x11; ll->header_count = 14; ll->data_count = 0; ll->data = 0; ll->next = 0; ll->reserved = 0; s = mddi_readl(STAT); ri.reg = reg; ri.status = -1; do { init_completion(&ri.done); mddi->reg_read = &ri; mddi_writel(mddi->reg_read_addr, PRI_PTR); mddi_wait_interrupt(mddi, MDDI_INT_PRI_LINK_LIST_DONE); /* Enable Periodic Reverse Encapsulation. */ mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP | 1, CMD); mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND); if (wait_for_completion_timeout(&ri.done, HZ/10) == 0 && !ri.done.done) { printk(KERN_INFO "mddi_remote_read(%x) timeout " "(%d %d %d)\n", reg, ri.status, ri.result, ri.done.done); spin_lock_irqsave(&mddi->int_lock, irq_flags); mddi->reg_read = NULL; spin_unlock_irqrestore(&mddi->int_lock, irq_flags); ri.status = -1; ri.result = -1; } if (ri.status == 0) break; mddi_writel(MDDI_CMD_SEND_RTD, CMD); mddi_writel(MDDI_CMD_LINK_ACTIVE, CMD); mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND); printk(KERN_INFO "mddi_remote_read: failed, sent " "MDDI_CMD_SEND_RTD: int %x, stat %x, rtd val %x " "curr_rev_ptr %x\n", mddi_readl(INT), mddi_readl(STAT), mddi_readl(RTD_VAL), mddi_readl(CURR_REV_PTR)); } while (retry_count-- > 0); /* Disable Periodic Reverse Encapsulation. */ mddi_writel(MDDI_CMD_PERIODIC_REV_ENCAP | 0, CMD); mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND); mddi->reg_read = NULL; mutex_unlock(&mddi->reg_read_lock); return ri.result; } static struct mddi_info mddi_info[2]; static int __init mddi_clk_setup(struct platform_device *pdev, struct mddi_info *mddi, unsigned long clk_rate) { int ret; /* set up the clocks */ mddi->clk = clk_get(&pdev->dev, "mddi_clk"); if (IS_ERR(mddi->clk)) { printk(KERN_INFO "mddi: failed to get clock\n"); return PTR_ERR(mddi->clk); } ret = clk_enable(mddi->clk); if (ret) goto fail; ret = clk_set_rate(mddi->clk, clk_rate); if (ret) goto fail; return 0; fail: clk_put(mddi->clk); return ret; } static int __init mddi_rev_data_setup(struct mddi_info *mddi) { void *dma; dma_addr_t dma_addr; /* set up dma buffer */ dma = dma_alloc_coherent(NULL, 0x1000, &dma_addr, GFP_KERNEL); if (dma == 0) return -ENOMEM; mddi->rev_data = dma; mddi->rev_data_curr = 0; mddi->rev_addr = dma_addr; mddi->reg_write_data = dma + MDDI_REV_BUFFER_SIZE; mddi->reg_write_addr = dma_addr + MDDI_REV_BUFFER_SIZE; mddi->reg_read_data = mddi->reg_write_data + 1; mddi->reg_read_addr = mddi->reg_write_addr + sizeof(*mddi->reg_write_data); return 0; } static int __devinit mddi_probe(struct platform_device *pdev) { struct msm_mddi_platform_data *pdata = pdev->dev.platform_data; struct mddi_info *mddi = &mddi_info[pdev->id]; struct resource *resource; int ret, i; resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!resource) { printk(KERN_ERR "mddi: no associated mem resource!\n"); return -ENOMEM; } mddi->base = ioremap(resource->start, resource_size(resource)); if (!mddi->base) { printk(KERN_ERR "mddi: failed to remap base!\n"); ret = -EINVAL; goto error_ioremap; } resource = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!resource) { printk(KERN_ERR "mddi: no associated irq resource!\n"); ret = -EINVAL; goto error_get_irq_resource; } mddi->irq = resource->start; printk(KERN_INFO "mddi: init() base=0x%p irq=%d\n", mddi->base, mddi->irq); mddi->power_client = pdata->power_client; mutex_init(&mddi->reg_write_lock); mutex_init(&mddi->reg_read_lock); spin_lock_init(&mddi->int_lock); init_waitqueue_head(&mddi->int_wait); ret = mddi_clk_setup(pdev, mddi, pdata->clk_rate); if (ret) { printk(KERN_ERR "mddi: failed to setup clock!\n"); goto error_clk_setup; } ret = mddi_rev_data_setup(mddi); if (ret) { printk(KERN_ERR "mddi: failed to setup rev data!\n"); goto error_rev_data; } mddi->int_enable = 0; mddi_writel(mddi->int_enable, INTEN); ret = request_irq(mddi->irq, mddi_isr, 0, "mddi", &mddi->client_data); if (ret) { printk(KERN_ERR "mddi: failed to request enable irq!\n"); goto error_request_irq; } /* turn on the mddi client bridge chip */ if (mddi->power_client) mddi->power_client(&mddi->client_data, 1); /* initialize the mddi registers */ mddi_set_auto_hibernate(&mddi->client_data, 0); mddi_writel(MDDI_CMD_RESET, CMD); mddi_wait_interrupt(mddi, MDDI_INT_NO_CMD_PKTS_PEND); mddi->version = mddi_init_registers(mddi); if (mddi->version < 0x20) { printk(KERN_ERR "mddi: unsupported version 0x%x\n", mddi->version); ret = -ENODEV; goto error_mddi_version; } /* read the capabilities off the client */ if (!mddi_get_client_caps(mddi)) { printk(KERN_INFO "mddi: no client found\n"); /* power down the panel */ mddi_writel(MDDI_CMD_POWERDOWN, CMD); printk(KERN_INFO "mddi powerdown: stat %x\n", mddi_readl(STAT)); msleep(100); printk(KERN_INFO "mddi powerdown: stat %x\n", mddi_readl(STAT)); return 0; } mddi_set_auto_hibernate(&mddi->client_data, 1); if (mddi->caps.Mfr_Name == 0 && mddi->caps.Product_Code == 0) pdata->fixup(&mddi->caps.Mfr_Name, &mddi->caps.Product_Code); mddi->client_pdev.id = 0; for (i = 0; i < pdata->num_clients; i++) { if (pdata->client_platform_data[i].product_id == (mddi->caps.Mfr_Name << 16 | mddi->caps.Product_Code)) { mddi->client_data.private_client_data = pdata->client_platform_data[i].client_data; mddi->client_pdev.name = pdata->client_platform_data[i].name; mddi->client_pdev.id = pdata->client_platform_data[i].id; /* XXX: possibly set clock */ break; } } if (i >= pdata->num_clients) mddi->client_pdev.name = "mddi_c_dummy"; printk(KERN_INFO "mddi: registering panel %s\n", mddi->client_pdev.name); mddi->client_data.suspend = mddi_suspend; mddi->client_data.resume = mddi_resume; mddi->client_data.activate_link = mddi_activate_link; mddi->client_data.remote_write = mddi_remote_write; mddi->client_data.remote_read = mddi_remote_read; mddi->client_data.auto_hibernate = mddi_set_auto_hibernate; mddi->client_data.fb_resource = pdata->fb_resource; if (pdev->id == 0) mddi->client_data.interface_type = MSM_MDDI_PMDH_INTERFACE; else if (pdev->id == 1) mddi->client_data.interface_type = MSM_MDDI_EMDH_INTERFACE; else { printk(KERN_ERR "mddi: can not determine interface %d!\n", pdev->id); ret = -EINVAL; goto error_mddi_interface; } mddi->client_pdev.dev.platform_data = &mddi->client_data; printk(KERN_INFO "mddi: publish: %s\n", mddi->client_name); platform_device_register(&mddi->client_pdev); return 0; error_mddi_interface: error_mddi_version: free_irq(mddi->irq, 0); error_request_irq: dma_free_coherent(NULL, 0x1000, mddi->rev_data, mddi->rev_addr); error_rev_data: error_clk_setup: error_get_irq_resource: iounmap(mddi->base); error_ioremap: printk(KERN_INFO "mddi: mddi_init() failed (%d)\n", ret); return ret; } static struct platform_driver mddi_driver = { .probe = mddi_probe, .driver = { .name = "msm_mddi" }, }; static int __init _mddi_init(void) { return platform_driver_register(&mddi_driver); } module_init(_mddi_init);