/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/sched.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/rbtree.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "transaction.h"

#undef DEBUG

/*
 * This is the implementation for the generic read ahead framework.
 *
 * To trigger a readahead, btrfs_reada_add must be called. It will start
 * a read ahead for the given range [start, end) on tree root. The returned
 * handle can either be used to wait on the readahead to finish
 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
 *
 * The read ahead works as follows:
 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
 * reada_start_machine will then search for extents to prefetch and trigger
 * some reads. When a read finishes for a node, all contained node/leaf
 * pointers that lie in the given range will also be enqueued. The reads will
 * be triggered in sequential order, thus giving a big win over a naive
 * enumeration. It will also make use of multi-device layouts. Each disk
 * will have its on read pointer and all disks will by utilized in parallel.
 * Also will no two disks read both sides of a mirror simultaneously, as this
 * would waste seeking capacity. Instead both disks will read different parts
 * of the filesystem.
 * Any number of readaheads can be started in parallel. The read order will be
 * determined globally, i.e. 2 parallel readaheads will normally finish faster
 * than the 2 started one after another.
 */

#define MAX_MIRRORS 2
#define MAX_IN_FLIGHT 6

struct reada_extctl {
	struct list_head	list;
	struct reada_control	*rc;
	u64			generation;
};

struct reada_extent {
	u64			logical;
	struct btrfs_key	top;
	u32			blocksize;
	int			err;
	struct list_head	extctl;
	struct kref		refcnt;
	spinlock_t		lock;
	struct reada_zone	*zones[MAX_MIRRORS];
	int			nzones;
	struct btrfs_device	*scheduled_for;
};

struct reada_zone {
	u64			start;
	u64			end;
	u64			elems;
	struct list_head	list;
	spinlock_t		lock;
	int			locked;
	struct btrfs_device	*device;
	struct btrfs_device	*devs[MAX_MIRRORS]; /* full list, incl self */
	int			ndevs;
	struct kref		refcnt;
};

struct reada_machine_work {
	struct btrfs_work	work;
	struct btrfs_fs_info	*fs_info;
};

static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
static void reada_control_release(struct kref *kref);
static void reada_zone_release(struct kref *kref);
static void reada_start_machine(struct btrfs_fs_info *fs_info);
static void __reada_start_machine(struct btrfs_fs_info *fs_info);

static int reada_add_block(struct reada_control *rc, u64 logical,
			   struct btrfs_key *top, int level, u64 generation);

/* recurses */
/* in case of err, eb might be NULL */
static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
			    u64 start, int err)
{
	int level = 0;
	int nritems;
	int i;
	u64 bytenr;
	u64 generation;
	struct reada_extent *re;
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct list_head list;
	unsigned long index = start >> PAGE_CACHE_SHIFT;
	struct btrfs_device *for_dev;

	if (eb)
		level = btrfs_header_level(eb);

	/* find extent */
	spin_lock(&fs_info->reada_lock);
	re = radix_tree_lookup(&fs_info->reada_tree, index);
	if (re)
		kref_get(&re->refcnt);
	spin_unlock(&fs_info->reada_lock);

	if (!re)
		return -1;

	spin_lock(&re->lock);
	/*
	 * just take the full list from the extent. afterwards we
	 * don't need the lock anymore
	 */
	list_replace_init(&re->extctl, &list);
	for_dev = re->scheduled_for;
	re->scheduled_for = NULL;
	spin_unlock(&re->lock);

	if (err == 0) {
		nritems = level ? btrfs_header_nritems(eb) : 0;
		generation = btrfs_header_generation(eb);
		/*
		 * FIXME: currently we just set nritems to 0 if this is a leaf,
		 * effectively ignoring the content. In a next step we could
		 * trigger more readahead depending from the content, e.g.
		 * fetch the checksums for the extents in the leaf.
		 */
	} else {
		/*
		 * this is the error case, the extent buffer has not been
		 * read correctly. We won't access anything from it and
		 * just cleanup our data structures. Effectively this will
		 * cut the branch below this node from read ahead.
		 */
		nritems = 0;
		generation = 0;
	}

	for (i = 0; i < nritems; i++) {
		struct reada_extctl *rec;
		u64 n_gen;
		struct btrfs_key key;
		struct btrfs_key next_key;

		btrfs_node_key_to_cpu(eb, &key, i);
		if (i + 1 < nritems)
			btrfs_node_key_to_cpu(eb, &next_key, i + 1);
		else
			next_key = re->top;
		bytenr = btrfs_node_blockptr(eb, i);
		n_gen = btrfs_node_ptr_generation(eb, i);

		list_for_each_entry(rec, &list, list) {
			struct reada_control *rc = rec->rc;

			/*
			 * if the generation doesn't match, just ignore this
			 * extctl. This will probably cut off a branch from
			 * prefetch. Alternatively one could start a new (sub-)
			 * prefetch for this branch, starting again from root.
			 * FIXME: move the generation check out of this loop
			 */
#ifdef DEBUG
			if (rec->generation != generation) {
				printk(KERN_DEBUG "generation mismatch for "
						"(%llu,%d,%llu) %llu != %llu\n",
				       key.objectid, key.type, key.offset,
				       rec->generation, generation);
			}
#endif
			if (rec->generation == generation &&
			    btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
			    btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
				reada_add_block(rc, bytenr, &next_key,
						level - 1, n_gen);
		}
	}
	/*
	 * free extctl records
	 */
	while (!list_empty(&list)) {
		struct reada_control *rc;
		struct reada_extctl *rec;

		rec = list_first_entry(&list, struct reada_extctl, list);
		list_del(&rec->list);
		rc = rec->rc;
		kfree(rec);

		kref_get(&rc->refcnt);
		if (atomic_dec_and_test(&rc->elems)) {
			kref_put(&rc->refcnt, reada_control_release);
			wake_up(&rc->wait);
		}
		kref_put(&rc->refcnt, reada_control_release);

		reada_extent_put(fs_info, re);	/* one ref for each entry */
	}
	reada_extent_put(fs_info, re);	/* our ref */
	if (for_dev)
		atomic_dec(&for_dev->reada_in_flight);

	return 0;
}

/*
 * start is passed separately in case eb in NULL, which may be the case with
 * failed I/O
 */
int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
			 u64 start, int err)
{
	int ret;

	ret = __readahead_hook(root, eb, start, err);

	reada_start_machine(root->fs_info);

	return ret;
}

static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
					  struct btrfs_device *dev, u64 logical,
					  struct btrfs_bio *bbio)
{
	int ret;
	int looped = 0;
	struct reada_zone *zone;
	struct btrfs_block_group_cache *cache = NULL;
	u64 start;
	u64 end;
	int i;

again:
	zone = NULL;
	spin_lock(&fs_info->reada_lock);
	ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
				     logical >> PAGE_CACHE_SHIFT, 1);
	if (ret == 1)
		kref_get(&zone->refcnt);
	spin_unlock(&fs_info->reada_lock);

	if (ret == 1) {
		if (logical >= zone->start && logical < zone->end)
			return zone;
		spin_lock(&fs_info->reada_lock);
		kref_put(&zone->refcnt, reada_zone_release);
		spin_unlock(&fs_info->reada_lock);
	}

	if (looped)
		return NULL;

	cache = btrfs_lookup_block_group(fs_info, logical);
	if (!cache)
		return NULL;

	start = cache->key.objectid;
	end = start + cache->key.offset - 1;
	btrfs_put_block_group(cache);

	zone = kzalloc(sizeof(*zone), GFP_NOFS);
	if (!zone)
		return NULL;

	zone->start = start;
	zone->end = end;
	INIT_LIST_HEAD(&zone->list);
	spin_lock_init(&zone->lock);
	zone->locked = 0;
	kref_init(&zone->refcnt);
	zone->elems = 0;
	zone->device = dev; /* our device always sits at index 0 */
	for (i = 0; i < bbio->num_stripes; ++i) {
		/* bounds have already been checked */
		zone->devs[i] = bbio->stripes[i].dev;
	}
	zone->ndevs = bbio->num_stripes;

	spin_lock(&fs_info->reada_lock);
	ret = radix_tree_insert(&dev->reada_zones,
				(unsigned long)zone->end >> PAGE_CACHE_SHIFT,
				zone);
	spin_unlock(&fs_info->reada_lock);

	if (ret) {
		kfree(zone);
		looped = 1;
		goto again;
	}

	return zone;
}

static struct reada_extent *reada_find_extent(struct btrfs_root *root,
					      u64 logical,
					      struct btrfs_key *top, int level)
{
	int ret;
	int looped = 0;
	struct reada_extent *re = NULL;
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
	struct btrfs_bio *bbio = NULL;
	struct btrfs_device *dev;
	u32 blocksize;
	u64 length;
	int nzones = 0;
	int i;
	unsigned long index = logical >> PAGE_CACHE_SHIFT;

again:
	spin_lock(&fs_info->reada_lock);
	re = radix_tree_lookup(&fs_info->reada_tree, index);
	if (re)
		kref_get(&re->refcnt);
	spin_unlock(&fs_info->reada_lock);

	if (re || looped)
		return re;

	re = kzalloc(sizeof(*re), GFP_NOFS);
	if (!re)
		return NULL;

	blocksize = btrfs_level_size(root, level);
	re->logical = logical;
	re->blocksize = blocksize;
	re->top = *top;
	INIT_LIST_HEAD(&re->extctl);
	spin_lock_init(&re->lock);
	kref_init(&re->refcnt);

	/*
	 * map block
	 */
	length = blocksize;
	ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length, &bbio, 0);
	if (ret || !bbio || length < blocksize)
		goto error;

	if (bbio->num_stripes > MAX_MIRRORS) {
		printk(KERN_ERR "btrfs readahead: more than %d copies not "
				"supported", MAX_MIRRORS);
		goto error;
	}

	for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
		struct reada_zone *zone;

		dev = bbio->stripes[nzones].dev;
		zone = reada_find_zone(fs_info, dev, logical, bbio);
		if (!zone)
			break;

		re->zones[nzones] = zone;
		spin_lock(&zone->lock);
		if (!zone->elems)
			kref_get(&zone->refcnt);
		++zone->elems;
		spin_unlock(&zone->lock);
		spin_lock(&fs_info->reada_lock);
		kref_put(&zone->refcnt, reada_zone_release);
		spin_unlock(&fs_info->reada_lock);
	}
	re->nzones = nzones;
	if (nzones == 0) {
		/* not a single zone found, error and out */
		goto error;
	}

	/* insert extent in reada_tree + all per-device trees, all or nothing */
	spin_lock(&fs_info->reada_lock);
	ret = radix_tree_insert(&fs_info->reada_tree, index, re);
	if (ret) {
		spin_unlock(&fs_info->reada_lock);
		if (ret != -ENOMEM) {
			/* someone inserted the extent in the meantime */
			looped = 1;
		}
		goto error;
	}
	for (i = 0; i < nzones; ++i) {
		dev = bbio->stripes[i].dev;
		ret = radix_tree_insert(&dev->reada_extents, index, re);
		if (ret) {
			while (--i >= 0) {
				dev = bbio->stripes[i].dev;
				BUG_ON(dev == NULL);
				radix_tree_delete(&dev->reada_extents, index);
			}
			BUG_ON(fs_info == NULL);
			radix_tree_delete(&fs_info->reada_tree, index);
			spin_unlock(&fs_info->reada_lock);
			goto error;
		}
	}
	spin_unlock(&fs_info->reada_lock);

	kfree(bbio);
	return re;

error:
	while (nzones) {
		struct reada_zone *zone;

		--nzones;
		zone = re->zones[nzones];
		kref_get(&zone->refcnt);
		spin_lock(&zone->lock);
		--zone->elems;
		if (zone->elems == 0) {
			/*
			 * no fs_info->reada_lock needed, as this can't be
			 * the last ref
			 */
			kref_put(&zone->refcnt, reada_zone_release);
		}
		spin_unlock(&zone->lock);

		spin_lock(&fs_info->reada_lock);
		kref_put(&zone->refcnt, reada_zone_release);
		spin_unlock(&fs_info->reada_lock);
	}
	kfree(bbio);
	kfree(re);
	if (looped)
		goto again;
	return NULL;
}

static void reada_kref_dummy(struct kref *kr)
{
}

static void reada_extent_put(struct btrfs_fs_info *fs_info,
			     struct reada_extent *re)
{
	int i;
	unsigned long index = re->logical >> PAGE_CACHE_SHIFT;

	spin_lock(&fs_info->reada_lock);
	if (!kref_put(&re->refcnt, reada_kref_dummy)) {
		spin_unlock(&fs_info->reada_lock);
		return;
	}

	radix_tree_delete(&fs_info->reada_tree, index);
	for (i = 0; i < re->nzones; ++i) {
		struct reada_zone *zone = re->zones[i];

		radix_tree_delete(&zone->device->reada_extents, index);
	}

	spin_unlock(&fs_info->reada_lock);

	for (i = 0; i < re->nzones; ++i) {
		struct reada_zone *zone = re->zones[i];

		kref_get(&zone->refcnt);
		spin_lock(&zone->lock);
		--zone->elems;
		if (zone->elems == 0) {
			/* no fs_info->reada_lock needed, as this can't be
			 * the last ref */
			kref_put(&zone->refcnt, reada_zone_release);
		}
		spin_unlock(&zone->lock);

		spin_lock(&fs_info->reada_lock);
		kref_put(&zone->refcnt, reada_zone_release);
		spin_unlock(&fs_info->reada_lock);
	}
	if (re->scheduled_for)
		atomic_dec(&re->scheduled_for->reada_in_flight);

	kfree(re);
}

static void reada_zone_release(struct kref *kref)
{
	struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);

	radix_tree_delete(&zone->device->reada_zones,
			  zone->end >> PAGE_CACHE_SHIFT);

	kfree(zone);
}

static void reada_control_release(struct kref *kref)
{
	struct reada_control *rc = container_of(kref, struct reada_control,
						refcnt);

	kfree(rc);
}

static int reada_add_block(struct reada_control *rc, u64 logical,
			   struct btrfs_key *top, int level, u64 generation)
{
	struct btrfs_root *root = rc->root;
	struct reada_extent *re;
	struct reada_extctl *rec;

	re = reada_find_extent(root, logical, top, level); /* takes one ref */
	if (!re)
		return -1;

	rec = kzalloc(sizeof(*rec), GFP_NOFS);
	if (!rec) {
		reada_extent_put(root->fs_info, re);
		return -1;
	}

	rec->rc = rc;
	rec->generation = generation;
	atomic_inc(&rc->elems);

	spin_lock(&re->lock);
	list_add_tail(&rec->list, &re->extctl);
	spin_unlock(&re->lock);

	/* leave the ref on the extent */

	return 0;
}

/*
 * called with fs_info->reada_lock held
 */
static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
{
	int i;
	unsigned long index = zone->end >> PAGE_CACHE_SHIFT;

	for (i = 0; i < zone->ndevs; ++i) {
		struct reada_zone *peer;
		peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
		if (peer && peer->device != zone->device)
			peer->locked = lock;
	}
}

/*
 * called with fs_info->reada_lock held
 */
static int reada_pick_zone(struct btrfs_device *dev)
{
	struct reada_zone *top_zone = NULL;
	struct reada_zone *top_locked_zone = NULL;
	u64 top_elems = 0;
	u64 top_locked_elems = 0;
	unsigned long index = 0;
	int ret;

	if (dev->reada_curr_zone) {
		reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
		kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
		dev->reada_curr_zone = NULL;
	}
	/* pick the zone with the most elements */
	while (1) {
		struct reada_zone *zone;

		ret = radix_tree_gang_lookup(&dev->reada_zones,
					     (void **)&zone, index, 1);
		if (ret == 0)
			break;
		index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
		if (zone->locked) {
			if (zone->elems > top_locked_elems) {
				top_locked_elems = zone->elems;
				top_locked_zone = zone;
			}
		} else {
			if (zone->elems > top_elems) {
				top_elems = zone->elems;
				top_zone = zone;
			}
		}
	}
	if (top_zone)
		dev->reada_curr_zone = top_zone;
	else if (top_locked_zone)
		dev->reada_curr_zone = top_locked_zone;
	else
		return 0;

	dev->reada_next = dev->reada_curr_zone->start;
	kref_get(&dev->reada_curr_zone->refcnt);
	reada_peer_zones_set_lock(dev->reada_curr_zone, 1);

	return 1;
}

static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
				   struct btrfs_device *dev)
{
	struct reada_extent *re = NULL;
	int mirror_num = 0;
	struct extent_buffer *eb = NULL;
	u64 logical;
	u32 blocksize;
	int ret;
	int i;
	int need_kick = 0;

	spin_lock(&fs_info->reada_lock);
	if (dev->reada_curr_zone == NULL) {
		ret = reada_pick_zone(dev);
		if (!ret) {
			spin_unlock(&fs_info->reada_lock);
			return 0;
		}
	}
	/*
	 * FIXME currently we issue the reads one extent at a time. If we have
	 * a contiguous block of extents, we could also coagulate them or use
	 * plugging to speed things up
	 */
	ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
				     dev->reada_next >> PAGE_CACHE_SHIFT, 1);
	if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
		ret = reada_pick_zone(dev);
		if (!ret) {
			spin_unlock(&fs_info->reada_lock);
			return 0;
		}
		re = NULL;
		ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
					dev->reada_next >> PAGE_CACHE_SHIFT, 1);
	}
	if (ret == 0) {
		spin_unlock(&fs_info->reada_lock);
		return 0;
	}
	dev->reada_next = re->logical + re->blocksize;
	kref_get(&re->refcnt);

	spin_unlock(&fs_info->reada_lock);

	/*
	 * find mirror num
	 */
	for (i = 0; i < re->nzones; ++i) {
		if (re->zones[i]->device == dev) {
			mirror_num = i + 1;
			break;
		}
	}
	logical = re->logical;
	blocksize = re->blocksize;

	spin_lock(&re->lock);
	if (re->scheduled_for == NULL) {
		re->scheduled_for = dev;
		need_kick = 1;
	}
	spin_unlock(&re->lock);

	reada_extent_put(fs_info, re);

	if (!need_kick)
		return 0;

	atomic_inc(&dev->reada_in_flight);
	ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize,
			 mirror_num, &eb);
	if (ret)
		__readahead_hook(fs_info->extent_root, NULL, logical, ret);
	else if (eb)
		__readahead_hook(fs_info->extent_root, eb, eb->start, ret);

	if (eb)
		free_extent_buffer(eb);

	return 1;

}

static void reada_start_machine_worker(struct btrfs_work *work)
{
	struct reada_machine_work *rmw;
	struct btrfs_fs_info *fs_info;

	rmw = container_of(work, struct reada_machine_work, work);
	fs_info = rmw->fs_info;

	kfree(rmw);

	__reada_start_machine(fs_info);
}

static void __reada_start_machine(struct btrfs_fs_info *fs_info)
{
	struct btrfs_device *device;
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	u64 enqueued;
	u64 total = 0;
	int i;

	do {
		enqueued = 0;
		list_for_each_entry(device, &fs_devices->devices, dev_list) {
			if (atomic_read(&device->reada_in_flight) <
			    MAX_IN_FLIGHT)
				enqueued += reada_start_machine_dev(fs_info,
								    device);
		}
		total += enqueued;
	} while (enqueued && total < 10000);

	if (enqueued == 0)
		return;

	/*
	 * If everything is already in the cache, this is effectively single
	 * threaded. To a) not hold the caller for too long and b) to utilize
	 * more cores, we broke the loop above after 10000 iterations and now
	 * enqueue to workers to finish it. This will distribute the load to
	 * the cores.
	 */
	for (i = 0; i < 2; ++i)
		reada_start_machine(fs_info);
}

static void reada_start_machine(struct btrfs_fs_info *fs_info)
{
	struct reada_machine_work *rmw;

	rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
	if (!rmw) {
		/* FIXME we cannot handle this properly right now */
		BUG();
	}
	rmw->work.func = reada_start_machine_worker;
	rmw->fs_info = fs_info;

	btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work);
}

#ifdef DEBUG
static void dump_devs(struct btrfs_fs_info *fs_info, int all)
{
	struct btrfs_device *device;
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	unsigned long index;
	int ret;
	int i;
	int j;
	int cnt;

	spin_lock(&fs_info->reada_lock);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
			atomic_read(&device->reada_in_flight));
		index = 0;
		while (1) {
			struct reada_zone *zone;
			ret = radix_tree_gang_lookup(&device->reada_zones,
						     (void **)&zone, index, 1);
			if (ret == 0)
				break;
			printk(KERN_DEBUG "  zone %llu-%llu elems %llu locked "
				"%d devs", zone->start, zone->end, zone->elems,
				zone->locked);
			for (j = 0; j < zone->ndevs; ++j) {
				printk(KERN_CONT " %lld",
					zone->devs[j]->devid);
			}
			if (device->reada_curr_zone == zone)
				printk(KERN_CONT " curr off %llu",
					device->reada_next - zone->start);
			printk(KERN_CONT "\n");
			index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
		}
		cnt = 0;
		index = 0;
		while (all) {
			struct reada_extent *re = NULL;

			ret = radix_tree_gang_lookup(&device->reada_extents,
						     (void **)&re, index, 1);
			if (ret == 0)
				break;
			printk(KERN_DEBUG
				"  re: logical %llu size %u empty %d for %lld",
				re->logical, re->blocksize,
				list_empty(&re->extctl), re->scheduled_for ?
				re->scheduled_for->devid : -1);

			for (i = 0; i < re->nzones; ++i) {
				printk(KERN_CONT " zone %llu-%llu devs",
					re->zones[i]->start,
					re->zones[i]->end);
				for (j = 0; j < re->zones[i]->ndevs; ++j) {
					printk(KERN_CONT " %lld",
						re->zones[i]->devs[j]->devid);
				}
			}
			printk(KERN_CONT "\n");
			index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
			if (++cnt > 15)
				break;
		}
	}

	index = 0;
	cnt = 0;
	while (all) {
		struct reada_extent *re = NULL;

		ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
					     index, 1);
		if (ret == 0)
			break;
		if (!re->scheduled_for) {
			index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
			continue;
		}
		printk(KERN_DEBUG
			"re: logical %llu size %u list empty %d for %lld",
			re->logical, re->blocksize, list_empty(&re->extctl),
			re->scheduled_for ? re->scheduled_for->devid : -1);
		for (i = 0; i < re->nzones; ++i) {
			printk(KERN_CONT " zone %llu-%llu devs",
				re->zones[i]->start,
				re->zones[i]->end);
			for (i = 0; i < re->nzones; ++i) {
				printk(KERN_CONT " zone %llu-%llu devs",
					re->zones[i]->start,
					re->zones[i]->end);
				for (j = 0; j < re->zones[i]->ndevs; ++j) {
					printk(KERN_CONT " %lld",
						re->zones[i]->devs[j]->devid);
				}
			}
		}
		printk(KERN_CONT "\n");
		index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
	}
	spin_unlock(&fs_info->reada_lock);
}
#endif

/*
 * interface
 */
struct reada_control *btrfs_reada_add(struct btrfs_root *root,
			struct btrfs_key *key_start, struct btrfs_key *key_end)
{
	struct reada_control *rc;
	u64 start;
	u64 generation;
	int level;
	struct extent_buffer *node;
	static struct btrfs_key max_key = {
		.objectid = (u64)-1,
		.type = (u8)-1,
		.offset = (u64)-1
	};

	rc = kzalloc(sizeof(*rc), GFP_NOFS);
	if (!rc)
		return ERR_PTR(-ENOMEM);

	rc->root = root;
	rc->key_start = *key_start;
	rc->key_end = *key_end;
	atomic_set(&rc->elems, 0);
	init_waitqueue_head(&rc->wait);
	kref_init(&rc->refcnt);
	kref_get(&rc->refcnt); /* one ref for having elements */

	node = btrfs_root_node(root);
	start = node->start;
	level = btrfs_header_level(node);
	generation = btrfs_header_generation(node);
	free_extent_buffer(node);

	reada_add_block(rc, start, &max_key, level, generation);

	reada_start_machine(root->fs_info);

	return rc;
}

#ifdef DEBUG
int btrfs_reada_wait(void *handle)
{
	struct reada_control *rc = handle;

	while (atomic_read(&rc->elems)) {
		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
				   5 * HZ);
		dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
	}

	dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);

	kref_put(&rc->refcnt, reada_control_release);

	return 0;
}
#else
int btrfs_reada_wait(void *handle)
{
	struct reada_control *rc = handle;

	while (atomic_read(&rc->elems)) {
		wait_event(rc->wait, atomic_read(&rc->elems) == 0);
	}

	kref_put(&rc->refcnt, reada_control_release);

	return 0;
}
#endif

void btrfs_reada_detach(void *handle)
{
	struct reada_control *rc = handle;

	kref_put(&rc->refcnt, reada_control_release);
}