/* * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the GNU General Public License version 2. */ #include <linux/sched.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/completion.h> #include <linux/buffer_head.h> #include <linux/blkdev.h> #include <linux/kthread.h> #include <linux/export.h> #include <linux/namei.h> #include <linux/mount.h> #include <linux/gfs2_ondisk.h> #include <linux/quotaops.h> #include "gfs2.h" #include "incore.h" #include "bmap.h" #include "glock.h" #include "glops.h" #include "inode.h" #include "recovery.h" #include "rgrp.h" #include "super.h" #include "sys.h" #include "util.h" #include "log.h" #include "quota.h" #include "dir.h" #include "trace_gfs2.h" #define DO 0 #define UNDO 1 /** * gfs2_tune_init - Fill a gfs2_tune structure with default values * @gt: tune * */ static void gfs2_tune_init(struct gfs2_tune *gt) { spin_lock_init(>->gt_spin); gt->gt_quota_simul_sync = 64; gt->gt_quota_warn_period = 10; gt->gt_quota_scale_num = 1; gt->gt_quota_scale_den = 1; gt->gt_new_files_jdata = 0; gt->gt_max_readahead = 1 << 18; gt->gt_complain_secs = 10; } static struct gfs2_sbd *init_sbd(struct super_block *sb) { struct gfs2_sbd *sdp; sdp = kzalloc(sizeof(struct gfs2_sbd), GFP_KERNEL); if (!sdp) return NULL; sb->s_fs_info = sdp; sdp->sd_vfs = sb; set_bit(SDF_NOJOURNALID, &sdp->sd_flags); gfs2_tune_init(&sdp->sd_tune); init_waitqueue_head(&sdp->sd_glock_wait); atomic_set(&sdp->sd_glock_disposal, 0); init_completion(&sdp->sd_locking_init); spin_lock_init(&sdp->sd_statfs_spin); spin_lock_init(&sdp->sd_rindex_spin); mutex_init(&sdp->sd_rindex_mutex); sdp->sd_rindex_tree.rb_node = NULL; INIT_LIST_HEAD(&sdp->sd_jindex_list); spin_lock_init(&sdp->sd_jindex_spin); mutex_init(&sdp->sd_jindex_mutex); INIT_LIST_HEAD(&sdp->sd_quota_list); mutex_init(&sdp->sd_quota_mutex); init_waitqueue_head(&sdp->sd_quota_wait); INIT_LIST_HEAD(&sdp->sd_trunc_list); spin_lock_init(&sdp->sd_trunc_lock); spin_lock_init(&sdp->sd_log_lock); atomic_set(&sdp->sd_log_pinned, 0); INIT_LIST_HEAD(&sdp->sd_log_le_buf); INIT_LIST_HEAD(&sdp->sd_log_le_revoke); INIT_LIST_HEAD(&sdp->sd_log_le_rg); INIT_LIST_HEAD(&sdp->sd_log_le_databuf); INIT_LIST_HEAD(&sdp->sd_log_le_ordered); init_waitqueue_head(&sdp->sd_log_waitq); init_waitqueue_head(&sdp->sd_logd_waitq); spin_lock_init(&sdp->sd_ail_lock); INIT_LIST_HEAD(&sdp->sd_ail1_list); INIT_LIST_HEAD(&sdp->sd_ail2_list); init_rwsem(&sdp->sd_log_flush_lock); atomic_set(&sdp->sd_log_in_flight, 0); init_waitqueue_head(&sdp->sd_log_flush_wait); INIT_LIST_HEAD(&sdp->sd_revoke_list); mutex_init(&sdp->sd_freeze_lock); return sdp; } /** * gfs2_check_sb - Check superblock * @sdp: the filesystem * @sb: The superblock * @silent: Don't print a message if the check fails * * Checks the version code of the FS is one that we understand how to * read and that the sizes of the various on-disk structures have not * changed. */ static int gfs2_check_sb(struct gfs2_sbd *sdp, int silent) { struct gfs2_sb_host *sb = &sdp->sd_sb; if (sb->sb_magic != GFS2_MAGIC || sb->sb_type != GFS2_METATYPE_SB) { if (!silent) printk(KERN_WARNING "GFS2: not a GFS2 filesystem\n"); return -EINVAL; } /* If format numbers match exactly, we're done. */ if (sb->sb_fs_format == GFS2_FORMAT_FS && sb->sb_multihost_format == GFS2_FORMAT_MULTI) return 0; fs_warn(sdp, "Unknown on-disk format, unable to mount\n"); return -EINVAL; } static void end_bio_io_page(struct bio *bio, int error) { struct page *page = bio->bi_private; if (!error) SetPageUptodate(page); else printk(KERN_WARNING "gfs2: error %d reading superblock\n", error); unlock_page(page); } static void gfs2_sb_in(struct gfs2_sbd *sdp, const void *buf) { struct gfs2_sb_host *sb = &sdp->sd_sb; struct super_block *s = sdp->sd_vfs; const struct gfs2_sb *str = buf; sb->sb_magic = be32_to_cpu(str->sb_header.mh_magic); sb->sb_type = be32_to_cpu(str->sb_header.mh_type); sb->sb_format = be32_to_cpu(str->sb_header.mh_format); sb->sb_fs_format = be32_to_cpu(str->sb_fs_format); sb->sb_multihost_format = be32_to_cpu(str->sb_multihost_format); sb->sb_bsize = be32_to_cpu(str->sb_bsize); sb->sb_bsize_shift = be32_to_cpu(str->sb_bsize_shift); sb->sb_master_dir.no_addr = be64_to_cpu(str->sb_master_dir.no_addr); sb->sb_master_dir.no_formal_ino = be64_to_cpu(str->sb_master_dir.no_formal_ino); sb->sb_root_dir.no_addr = be64_to_cpu(str->sb_root_dir.no_addr); sb->sb_root_dir.no_formal_ino = be64_to_cpu(str->sb_root_dir.no_formal_ino); memcpy(sb->sb_lockproto, str->sb_lockproto, GFS2_LOCKNAME_LEN); memcpy(sb->sb_locktable, str->sb_locktable, GFS2_LOCKNAME_LEN); memcpy(s->s_uuid, str->sb_uuid, 16); } /** * gfs2_read_super - Read the gfs2 super block from disk * @sdp: The GFS2 super block * @sector: The location of the super block * @error: The error code to return * * This uses the bio functions to read the super block from disk * because we want to be 100% sure that we never read cached data. * A super block is read twice only during each GFS2 mount and is * never written to by the filesystem. The first time its read no * locks are held, and the only details which are looked at are those * relating to the locking protocol. Once locking is up and working, * the sb is read again under the lock to establish the location of * the master directory (contains pointers to journals etc) and the * root directory. * * Returns: 0 on success or error */ static int gfs2_read_super(struct gfs2_sbd *sdp, sector_t sector, int silent) { struct super_block *sb = sdp->sd_vfs; struct gfs2_sb *p; struct page *page; struct bio *bio; page = alloc_page(GFP_NOFS); if (unlikely(!page)) return -ENOBUFS; ClearPageUptodate(page); ClearPageDirty(page); lock_page(page); bio = bio_alloc(GFP_NOFS, 1); bio->bi_sector = sector * (sb->s_blocksize >> 9); bio->bi_bdev = sb->s_bdev; bio_add_page(bio, page, PAGE_SIZE, 0); bio->bi_end_io = end_bio_io_page; bio->bi_private = page; submit_bio(READ_SYNC | REQ_META, bio); wait_on_page_locked(page); bio_put(bio); if (!PageUptodate(page)) { __free_page(page); return -EIO; } p = kmap(page); gfs2_sb_in(sdp, p); kunmap(page); __free_page(page); return gfs2_check_sb(sdp, silent); } /** * gfs2_read_sb - Read super block * @sdp: The GFS2 superblock * @silent: Don't print message if mount fails * */ static int gfs2_read_sb(struct gfs2_sbd *sdp, int silent) { u32 hash_blocks, ind_blocks, leaf_blocks; u32 tmp_blocks; unsigned int x; int error; error = gfs2_read_super(sdp, GFS2_SB_ADDR >> sdp->sd_fsb2bb_shift, silent); if (error) { if (!silent) fs_err(sdp, "can't read superblock\n"); return error; } sdp->sd_fsb2bb_shift = sdp->sd_sb.sb_bsize_shift - GFS2_BASIC_BLOCK_SHIFT; sdp->sd_fsb2bb = 1 << sdp->sd_fsb2bb_shift; sdp->sd_diptrs = (sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) / sizeof(u64); sdp->sd_inptrs = (sdp->sd_sb.sb_bsize - sizeof(struct gfs2_meta_header)) / sizeof(u64); sdp->sd_jbsize = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_meta_header); sdp->sd_hash_bsize = sdp->sd_sb.sb_bsize / 2; sdp->sd_hash_bsize_shift = sdp->sd_sb.sb_bsize_shift - 1; sdp->sd_hash_ptrs = sdp->sd_hash_bsize / sizeof(u64); sdp->sd_qc_per_block = (sdp->sd_sb.sb_bsize - sizeof(struct gfs2_meta_header)) / sizeof(struct gfs2_quota_change); /* Compute maximum reservation required to add a entry to a directory */ hash_blocks = DIV_ROUND_UP(sizeof(u64) * (1 << GFS2_DIR_MAX_DEPTH), sdp->sd_jbsize); ind_blocks = 0; for (tmp_blocks = hash_blocks; tmp_blocks > sdp->sd_diptrs;) { tmp_blocks = DIV_ROUND_UP(tmp_blocks, sdp->sd_inptrs); ind_blocks += tmp_blocks; } leaf_blocks = 2 + GFS2_DIR_MAX_DEPTH; sdp->sd_max_dirres = hash_blocks + ind_blocks + leaf_blocks; sdp->sd_heightsize[0] = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode); sdp->sd_heightsize[1] = sdp->sd_sb.sb_bsize * sdp->sd_diptrs; for (x = 2;; x++) { u64 space, d; u32 m; space = sdp->sd_heightsize[x - 1] * sdp->sd_inptrs; d = space; m = do_div(d, sdp->sd_inptrs); if (d != sdp->sd_heightsize[x - 1] || m) break; sdp->sd_heightsize[x] = space; } sdp->sd_max_height = x; sdp->sd_heightsize[x] = ~0; gfs2_assert(sdp, sdp->sd_max_height <= GFS2_MAX_META_HEIGHT); sdp->sd_jheightsize[0] = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode); sdp->sd_jheightsize[1] = sdp->sd_jbsize * sdp->sd_diptrs; for (x = 2;; x++) { u64 space, d; u32 m; space = sdp->sd_jheightsize[x - 1] * sdp->sd_inptrs; d = space; m = do_div(d, sdp->sd_inptrs); if (d != sdp->sd_jheightsize[x - 1] || m) break; sdp->sd_jheightsize[x] = space; } sdp->sd_max_jheight = x; sdp->sd_jheightsize[x] = ~0; gfs2_assert(sdp, sdp->sd_max_jheight <= GFS2_MAX_META_HEIGHT); return 0; } static int init_names(struct gfs2_sbd *sdp, int silent) { char *proto, *table; int error = 0; proto = sdp->sd_args.ar_lockproto; table = sdp->sd_args.ar_locktable; /* Try to autodetect */ if (!proto[0] || !table[0]) { error = gfs2_read_super(sdp, GFS2_SB_ADDR >> sdp->sd_fsb2bb_shift, silent); if (error) return error; if (!proto[0]) proto = sdp->sd_sb.sb_lockproto; if (!table[0]) table = sdp->sd_sb.sb_locktable; } if (!table[0]) table = sdp->sd_vfs->s_id; strlcpy(sdp->sd_proto_name, proto, GFS2_FSNAME_LEN); strlcpy(sdp->sd_table_name, table, GFS2_FSNAME_LEN); table = sdp->sd_table_name; while ((table = strchr(table, '/'))) *table = '_'; return error; } static int init_locking(struct gfs2_sbd *sdp, struct gfs2_holder *mount_gh, int undo) { int error = 0; if (undo) goto fail_trans; error = gfs2_glock_nq_num(sdp, GFS2_MOUNT_LOCK, &gfs2_nondisk_glops, LM_ST_EXCLUSIVE, LM_FLAG_NOEXP | GL_NOCACHE, mount_gh); if (error) { fs_err(sdp, "can't acquire mount glock: %d\n", error); goto fail; } error = gfs2_glock_nq_num(sdp, GFS2_LIVE_LOCK, &gfs2_nondisk_glops, LM_ST_SHARED, LM_FLAG_NOEXP | GL_EXACT, &sdp->sd_live_gh); if (error) { fs_err(sdp, "can't acquire live glock: %d\n", error); goto fail_mount; } error = gfs2_glock_get(sdp, GFS2_RENAME_LOCK, &gfs2_nondisk_glops, CREATE, &sdp->sd_rename_gl); if (error) { fs_err(sdp, "can't create rename glock: %d\n", error); goto fail_live; } error = gfs2_glock_get(sdp, GFS2_TRANS_LOCK, &gfs2_trans_glops, CREATE, &sdp->sd_trans_gl); if (error) { fs_err(sdp, "can't create transaction glock: %d\n", error); goto fail_rename; } return 0; fail_trans: gfs2_glock_put(sdp->sd_trans_gl); fail_rename: gfs2_glock_put(sdp->sd_rename_gl); fail_live: gfs2_glock_dq_uninit(&sdp->sd_live_gh); fail_mount: gfs2_glock_dq_uninit(mount_gh); fail: return error; } static int gfs2_lookup_root(struct super_block *sb, struct dentry **dptr, u64 no_addr, const char *name) { struct gfs2_sbd *sdp = sb->s_fs_info; struct dentry *dentry; struct inode *inode; inode = gfs2_inode_lookup(sb, DT_DIR, no_addr, 0, 0); if (IS_ERR(inode)) { fs_err(sdp, "can't read in %s inode: %ld\n", name, PTR_ERR(inode)); return PTR_ERR(inode); } dentry = d_alloc_root(inode); if (!dentry) { fs_err(sdp, "can't alloc %s dentry\n", name); iput(inode); return -ENOMEM; } *dptr = dentry; return 0; } static int init_sb(struct gfs2_sbd *sdp, int silent) { struct super_block *sb = sdp->sd_vfs; struct gfs2_holder sb_gh; u64 no_addr; int ret; ret = gfs2_glock_nq_num(sdp, GFS2_SB_LOCK, &gfs2_meta_glops, LM_ST_SHARED, 0, &sb_gh); if (ret) { fs_err(sdp, "can't acquire superblock glock: %d\n", ret); return ret; } ret = gfs2_read_sb(sdp, silent); if (ret) { fs_err(sdp, "can't read superblock: %d\n", ret); goto out; } /* Set up the buffer cache and SB for real */ if (sdp->sd_sb.sb_bsize < bdev_logical_block_size(sb->s_bdev)) { ret = -EINVAL; fs_err(sdp, "FS block size (%u) is too small for device " "block size (%u)\n", sdp->sd_sb.sb_bsize, bdev_logical_block_size(sb->s_bdev)); goto out; } if (sdp->sd_sb.sb_bsize > PAGE_SIZE) { ret = -EINVAL; fs_err(sdp, "FS block size (%u) is too big for machine " "page size (%u)\n", sdp->sd_sb.sb_bsize, (unsigned int)PAGE_SIZE); goto out; } sb_set_blocksize(sb, sdp->sd_sb.sb_bsize); /* Get the root inode */ no_addr = sdp->sd_sb.sb_root_dir.no_addr; ret = gfs2_lookup_root(sb, &sdp->sd_root_dir, no_addr, "root"); if (ret) goto out; /* Get the master inode */ no_addr = sdp->sd_sb.sb_master_dir.no_addr; ret = gfs2_lookup_root(sb, &sdp->sd_master_dir, no_addr, "master"); if (ret) { dput(sdp->sd_root_dir); goto out; } sb->s_root = dget(sdp->sd_args.ar_meta ? sdp->sd_master_dir : sdp->sd_root_dir); out: gfs2_glock_dq_uninit(&sb_gh); return ret; } /** * map_journal_extents - create a reusable "extent" mapping from all logical * blocks to all physical blocks for the given journal. This will save * us time when writing journal blocks. Most journals will have only one * extent that maps all their logical blocks. That's because gfs2.mkfs * arranges the journal blocks sequentially to maximize performance. * So the extent would map the first block for the entire file length. * However, gfs2_jadd can happen while file activity is happening, so * those journals may not be sequential. Less likely is the case where * the users created their own journals by mounting the metafs and * laying it out. But it's still possible. These journals might have * several extents. * * TODO: This should be done in bigger chunks rather than one block at a time, * but since it's only done at mount time, I'm not worried about the * time it takes. */ static int map_journal_extents(struct gfs2_sbd *sdp) { struct gfs2_jdesc *jd = sdp->sd_jdesc; unsigned int lb; u64 db, prev_db; /* logical block, disk block, prev disk block */ struct gfs2_inode *ip = GFS2_I(jd->jd_inode); struct gfs2_journal_extent *jext = NULL; struct buffer_head bh; int rc = 0; prev_db = 0; for (lb = 0; lb < i_size_read(jd->jd_inode) >> sdp->sd_sb.sb_bsize_shift; lb++) { bh.b_state = 0; bh.b_blocknr = 0; bh.b_size = 1 << ip->i_inode.i_blkbits; rc = gfs2_block_map(jd->jd_inode, lb, &bh, 0); db = bh.b_blocknr; if (rc || !db) { printk(KERN_INFO "GFS2 journal mapping error %d: lb=" "%u db=%llu\n", rc, lb, (unsigned long long)db); break; } if (!prev_db || db != prev_db + 1) { jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_KERNEL); if (!jext) { printk(KERN_INFO "GFS2 error: out of memory " "mapping journal extents.\n"); rc = -ENOMEM; break; } jext->dblock = db; jext->lblock = lb; jext->blocks = 1; list_add_tail(&jext->extent_list, &jd->extent_list); } else { jext->blocks++; } prev_db = db; } return rc; } static void gfs2_others_may_mount(struct gfs2_sbd *sdp) { char *message = "FIRSTMOUNT=Done"; char *envp[] = { message, NULL }; fs_info(sdp, "first mount done, others may mount\n"); if (sdp->sd_lockstruct.ls_ops->lm_first_done) sdp->sd_lockstruct.ls_ops->lm_first_done(sdp); kobject_uevent_env(&sdp->sd_kobj, KOBJ_CHANGE, envp); } /** * gfs2_jindex_hold - Grab a lock on the jindex * @sdp: The GFS2 superblock * @ji_gh: the holder for the jindex glock * * Returns: errno */ static int gfs2_jindex_hold(struct gfs2_sbd *sdp, struct gfs2_holder *ji_gh) { struct gfs2_inode *dip = GFS2_I(sdp->sd_jindex); struct qstr name; char buf[20]; struct gfs2_jdesc *jd; int error; name.name = buf; mutex_lock(&sdp->sd_jindex_mutex); for (;;) { error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, ji_gh); if (error) break; name.len = sprintf(buf, "journal%u", sdp->sd_journals); name.hash = gfs2_disk_hash(name.name, name.len); error = gfs2_dir_check(sdp->sd_jindex, &name, NULL); if (error == -ENOENT) { error = 0; break; } gfs2_glock_dq_uninit(ji_gh); if (error) break; error = -ENOMEM; jd = kzalloc(sizeof(struct gfs2_jdesc), GFP_KERNEL); if (!jd) break; INIT_LIST_HEAD(&jd->extent_list); INIT_WORK(&jd->jd_work, gfs2_recover_func); jd->jd_inode = gfs2_lookupi(sdp->sd_jindex, &name, 1); if (!jd->jd_inode || IS_ERR(jd->jd_inode)) { if (!jd->jd_inode) error = -ENOENT; else error = PTR_ERR(jd->jd_inode); kfree(jd); break; } spin_lock(&sdp->sd_jindex_spin); jd->jd_jid = sdp->sd_journals++; list_add_tail(&jd->jd_list, &sdp->sd_jindex_list); spin_unlock(&sdp->sd_jindex_spin); } mutex_unlock(&sdp->sd_jindex_mutex); return error; } static int init_journal(struct gfs2_sbd *sdp, int undo) { struct inode *master = sdp->sd_master_dir->d_inode; struct gfs2_holder ji_gh; struct gfs2_inode *ip; int jindex = 1; int error = 0; if (undo) { jindex = 0; goto fail_jinode_gh; } sdp->sd_jindex = gfs2_lookup_simple(master, "jindex"); if (IS_ERR(sdp->sd_jindex)) { fs_err(sdp, "can't lookup journal index: %d\n", error); return PTR_ERR(sdp->sd_jindex); } /* Load in the journal index special file */ error = gfs2_jindex_hold(sdp, &ji_gh); if (error) { fs_err(sdp, "can't read journal index: %d\n", error); goto fail; } error = -EUSERS; if (!gfs2_jindex_size(sdp)) { fs_err(sdp, "no journals!\n"); goto fail_jindex; } if (sdp->sd_args.ar_spectator) { sdp->sd_jdesc = gfs2_jdesc_find(sdp, 0); atomic_set(&sdp->sd_log_blks_free, sdp->sd_jdesc->jd_blocks); atomic_set(&sdp->sd_log_thresh1, 2*sdp->sd_jdesc->jd_blocks/5); atomic_set(&sdp->sd_log_thresh2, 4*sdp->sd_jdesc->jd_blocks/5); } else { if (sdp->sd_lockstruct.ls_jid >= gfs2_jindex_size(sdp)) { fs_err(sdp, "can't mount journal #%u\n", sdp->sd_lockstruct.ls_jid); fs_err(sdp, "there are only %u journals (0 - %u)\n", gfs2_jindex_size(sdp), gfs2_jindex_size(sdp) - 1); goto fail_jindex; } sdp->sd_jdesc = gfs2_jdesc_find(sdp, sdp->sd_lockstruct.ls_jid); error = gfs2_glock_nq_num(sdp, sdp->sd_lockstruct.ls_jid, &gfs2_journal_glops, LM_ST_EXCLUSIVE, LM_FLAG_NOEXP, &sdp->sd_journal_gh); if (error) { fs_err(sdp, "can't acquire journal glock: %d\n", error); goto fail_jindex; } ip = GFS2_I(sdp->sd_jdesc->jd_inode); error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_NOEXP | GL_EXACT | GL_NOCACHE, &sdp->sd_jinode_gh); if (error) { fs_err(sdp, "can't acquire journal inode glock: %d\n", error); goto fail_journal_gh; } error = gfs2_jdesc_check(sdp->sd_jdesc); if (error) { fs_err(sdp, "my journal (%u) is bad: %d\n", sdp->sd_jdesc->jd_jid, error); goto fail_jinode_gh; } atomic_set(&sdp->sd_log_blks_free, sdp->sd_jdesc->jd_blocks); atomic_set(&sdp->sd_log_thresh1, 2*sdp->sd_jdesc->jd_blocks/5); atomic_set(&sdp->sd_log_thresh2, 4*sdp->sd_jdesc->jd_blocks/5); /* Map the extents for this journal's blocks */ map_journal_extents(sdp); } trace_gfs2_log_blocks(sdp, atomic_read(&sdp->sd_log_blks_free)); if (sdp->sd_lockstruct.ls_first) { unsigned int x; for (x = 0; x < sdp->sd_journals; x++) { error = gfs2_recover_journal(gfs2_jdesc_find(sdp, x), true); if (error) { fs_err(sdp, "error recovering journal %u: %d\n", x, error); goto fail_jinode_gh; } } gfs2_others_may_mount(sdp); } else if (!sdp->sd_args.ar_spectator) { error = gfs2_recover_journal(sdp->sd_jdesc, true); if (error) { fs_err(sdp, "error recovering my journal: %d\n", error); goto fail_jinode_gh; } } set_bit(SDF_JOURNAL_CHECKED, &sdp->sd_flags); gfs2_glock_dq_uninit(&ji_gh); jindex = 0; return 0; fail_jinode_gh: if (!sdp->sd_args.ar_spectator) gfs2_glock_dq_uninit(&sdp->sd_jinode_gh); fail_journal_gh: if (!sdp->sd_args.ar_spectator) gfs2_glock_dq_uninit(&sdp->sd_journal_gh); fail_jindex: gfs2_jindex_free(sdp); if (jindex) gfs2_glock_dq_uninit(&ji_gh); fail: iput(sdp->sd_jindex); return error; } static int init_inodes(struct gfs2_sbd *sdp, int undo) { int error = 0; struct inode *master = sdp->sd_master_dir->d_inode; if (undo) goto fail_qinode; error = init_journal(sdp, undo); if (error) goto fail; /* Read in the master statfs inode */ sdp->sd_statfs_inode = gfs2_lookup_simple(master, "statfs"); if (IS_ERR(sdp->sd_statfs_inode)) { error = PTR_ERR(sdp->sd_statfs_inode); fs_err(sdp, "can't read in statfs inode: %d\n", error); goto fail_journal; } /* Read in the resource index inode */ sdp->sd_rindex = gfs2_lookup_simple(master, "rindex"); if (IS_ERR(sdp->sd_rindex)) { error = PTR_ERR(sdp->sd_rindex); fs_err(sdp, "can't get resource index inode: %d\n", error); goto fail_statfs; } sdp->sd_rindex_uptodate = 0; /* Read in the quota inode */ sdp->sd_quota_inode = gfs2_lookup_simple(master, "quota"); if (IS_ERR(sdp->sd_quota_inode)) { error = PTR_ERR(sdp->sd_quota_inode); fs_err(sdp, "can't get quota file inode: %d\n", error); goto fail_rindex; } error = gfs2_rindex_update(sdp); if (error) goto fail_qinode; return 0; fail_qinode: iput(sdp->sd_quota_inode); fail_rindex: gfs2_clear_rgrpd(sdp); iput(sdp->sd_rindex); fail_statfs: iput(sdp->sd_statfs_inode); fail_journal: init_journal(sdp, UNDO); fail: return error; } static int init_per_node(struct gfs2_sbd *sdp, int undo) { struct inode *pn = NULL; char buf[30]; int error = 0; struct gfs2_inode *ip; struct inode *master = sdp->sd_master_dir->d_inode; if (sdp->sd_args.ar_spectator) return 0; if (undo) goto fail_qc_gh; pn = gfs2_lookup_simple(master, "per_node"); if (IS_ERR(pn)) { error = PTR_ERR(pn); fs_err(sdp, "can't find per_node directory: %d\n", error); return error; } sprintf(buf, "statfs_change%u", sdp->sd_jdesc->jd_jid); sdp->sd_sc_inode = gfs2_lookup_simple(pn, buf); if (IS_ERR(sdp->sd_sc_inode)) { error = PTR_ERR(sdp->sd_sc_inode); fs_err(sdp, "can't find local \"sc\" file: %d\n", error); goto fail; } sprintf(buf, "quota_change%u", sdp->sd_jdesc->jd_jid); sdp->sd_qc_inode = gfs2_lookup_simple(pn, buf); if (IS_ERR(sdp->sd_qc_inode)) { error = PTR_ERR(sdp->sd_qc_inode); fs_err(sdp, "can't find local \"qc\" file: %d\n", error); goto fail_ut_i; } iput(pn); pn = NULL; ip = GFS2_I(sdp->sd_sc_inode); error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &sdp->sd_sc_gh); if (error) { fs_err(sdp, "can't lock local \"sc\" file: %d\n", error); goto fail_qc_i; } ip = GFS2_I(sdp->sd_qc_inode); error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &sdp->sd_qc_gh); if (error) { fs_err(sdp, "can't lock local \"qc\" file: %d\n", error); goto fail_ut_gh; } return 0; fail_qc_gh: gfs2_glock_dq_uninit(&sdp->sd_qc_gh); fail_ut_gh: gfs2_glock_dq_uninit(&sdp->sd_sc_gh); fail_qc_i: iput(sdp->sd_qc_inode); fail_ut_i: iput(sdp->sd_sc_inode); fail: if (pn) iput(pn); return error; } static int init_threads(struct gfs2_sbd *sdp, int undo) { struct task_struct *p; int error = 0; if (undo) goto fail_quotad; p = kthread_run(gfs2_logd, sdp, "gfs2_logd"); error = IS_ERR(p); if (error) { fs_err(sdp, "can't start logd thread: %d\n", error); return error; } sdp->sd_logd_process = p; p = kthread_run(gfs2_quotad, sdp, "gfs2_quotad"); error = IS_ERR(p); if (error) { fs_err(sdp, "can't start quotad thread: %d\n", error); goto fail; } sdp->sd_quotad_process = p; return 0; fail_quotad: kthread_stop(sdp->sd_quotad_process); fail: kthread_stop(sdp->sd_logd_process); return error; } static const match_table_t nolock_tokens = { { Opt_jid, "jid=%d\n", }, { Opt_err, NULL }, }; static const struct lm_lockops nolock_ops = { .lm_proto_name = "lock_nolock", .lm_put_lock = gfs2_glock_free, .lm_tokens = &nolock_tokens, }; /** * gfs2_lm_mount - mount a locking protocol * @sdp: the filesystem * @args: mount arguments * @silent: if 1, don't complain if the FS isn't a GFS2 fs * * Returns: errno */ static int gfs2_lm_mount(struct gfs2_sbd *sdp, int silent) { const struct lm_lockops *lm; struct lm_lockstruct *ls = &sdp->sd_lockstruct; struct gfs2_args *args = &sdp->sd_args; const char *proto = sdp->sd_proto_name; const char *table = sdp->sd_table_name; char *o, *options; int ret; if (!strcmp("lock_nolock", proto)) { lm = &nolock_ops; sdp->sd_args.ar_localflocks = 1; #ifdef CONFIG_GFS2_FS_LOCKING_DLM } else if (!strcmp("lock_dlm", proto)) { lm = &gfs2_dlm_ops; #endif } else { printk(KERN_INFO "GFS2: can't find protocol %s\n", proto); return -ENOENT; } fs_info(sdp, "Trying to join cluster \"%s\", \"%s\"\n", proto, table); ls->ls_ops = lm; ls->ls_first = 1; for (options = args->ar_hostdata; (o = strsep(&options, ":")); ) { substring_t tmp[MAX_OPT_ARGS]; int token, option; if (!o || !*o) continue; token = match_token(o, *lm->lm_tokens, tmp); switch (token) { case Opt_jid: ret = match_int(&tmp[0], &option); if (ret || option < 0) goto hostdata_error; if (test_and_clear_bit(SDF_NOJOURNALID, &sdp->sd_flags)) ls->ls_jid = option; break; case Opt_id: /* Obsolete, but left for backward compat purposes */ break; case Opt_first: ret = match_int(&tmp[0], &option); if (ret || (option != 0 && option != 1)) goto hostdata_error; ls->ls_first = option; break; case Opt_nodir: ret = match_int(&tmp[0], &option); if (ret || (option != 0 && option != 1)) goto hostdata_error; ls->ls_nodir = option; break; case Opt_err: default: hostdata_error: fs_info(sdp, "unknown hostdata (%s)\n", o); return -EINVAL; } } if (lm->lm_mount == NULL) { fs_info(sdp, "Now mounting FS...\n"); complete_all(&sdp->sd_locking_init); return 0; } ret = lm->lm_mount(sdp, table); if (ret == 0) fs_info(sdp, "Joined cluster. Now mounting FS...\n"); complete_all(&sdp->sd_locking_init); return ret; } void gfs2_lm_unmount(struct gfs2_sbd *sdp) { const struct lm_lockops *lm = sdp->sd_lockstruct.ls_ops; if (likely(!test_bit(SDF_SHUTDOWN, &sdp->sd_flags)) && lm->lm_unmount) lm->lm_unmount(sdp); } static int gfs2_journalid_wait(void *word) { if (signal_pending(current)) return -EINTR; schedule(); return 0; } static int wait_on_journal(struct gfs2_sbd *sdp) { if (sdp->sd_lockstruct.ls_ops->lm_mount == NULL) return 0; return wait_on_bit(&sdp->sd_flags, SDF_NOJOURNALID, gfs2_journalid_wait, TASK_INTERRUPTIBLE); } void gfs2_online_uevent(struct gfs2_sbd *sdp) { struct super_block *sb = sdp->sd_vfs; char ro[20]; char spectator[20]; char *envp[] = { ro, spectator, NULL }; sprintf(ro, "RDONLY=%d", (sb->s_flags & MS_RDONLY) ? 1 : 0); sprintf(spectator, "SPECTATOR=%d", sdp->sd_args.ar_spectator ? 1 : 0); kobject_uevent_env(&sdp->sd_kobj, KOBJ_ONLINE, envp); } /** * fill_super - Read in superblock * @sb: The VFS superblock * @data: Mount options * @silent: Don't complain if it's not a GFS2 filesystem * * Returns: errno */ static int fill_super(struct super_block *sb, struct gfs2_args *args, int silent) { struct gfs2_sbd *sdp; struct gfs2_holder mount_gh; int error; sdp = init_sbd(sb); if (!sdp) { printk(KERN_WARNING "GFS2: can't alloc struct gfs2_sbd\n"); return -ENOMEM; } sdp->sd_args = *args; if (sdp->sd_args.ar_spectator) { sb->s_flags |= MS_RDONLY; set_bit(SDF_RORECOVERY, &sdp->sd_flags); } if (sdp->sd_args.ar_posix_acl) sb->s_flags |= MS_POSIXACL; if (sdp->sd_args.ar_nobarrier) set_bit(SDF_NOBARRIERS, &sdp->sd_flags); sb->s_flags |= MS_NOSEC; sb->s_magic = GFS2_MAGIC; sb->s_op = &gfs2_super_ops; sb->s_d_op = &gfs2_dops; sb->s_export_op = &gfs2_export_ops; sb->s_xattr = gfs2_xattr_handlers; sb->s_qcop = &gfs2_quotactl_ops; sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; sb->s_time_gran = 1; sb->s_maxbytes = MAX_LFS_FILESIZE; /* Set up the buffer cache and fill in some fake block size values to allow us to read-in the on-disk superblock. */ sdp->sd_sb.sb_bsize = sb_min_blocksize(sb, GFS2_BASIC_BLOCK); sdp->sd_sb.sb_bsize_shift = sb->s_blocksize_bits; sdp->sd_fsb2bb_shift = sdp->sd_sb.sb_bsize_shift - GFS2_BASIC_BLOCK_SHIFT; sdp->sd_fsb2bb = 1 << sdp->sd_fsb2bb_shift; sdp->sd_tune.gt_logd_secs = sdp->sd_args.ar_commit; sdp->sd_tune.gt_quota_quantum = sdp->sd_args.ar_quota_quantum; if (sdp->sd_args.ar_statfs_quantum) { sdp->sd_tune.gt_statfs_slow = 0; sdp->sd_tune.gt_statfs_quantum = sdp->sd_args.ar_statfs_quantum; } else { sdp->sd_tune.gt_statfs_slow = 1; sdp->sd_tune.gt_statfs_quantum = 30; } error = init_names(sdp, silent); if (error) goto fail; snprintf(sdp->sd_fsname, GFS2_FSNAME_LEN, "%s", sdp->sd_table_name); gfs2_create_debugfs_file(sdp); error = gfs2_sys_fs_add(sdp); if (error) goto fail; error = gfs2_lm_mount(sdp, silent); if (error) goto fail_sys; error = init_locking(sdp, &mount_gh, DO); if (error) goto fail_lm; error = init_sb(sdp, silent); if (error) goto fail_locking; error = wait_on_journal(sdp); if (error) goto fail_sb; /* * If user space has failed to join the cluster or some similar * failure has occurred, then the journal id will contain a * negative (error) number. This will then be returned to the * caller (of the mount syscall). We do this even for spectator * mounts (which just write a jid of 0 to indicate "ok" even though * the jid is unused in the spectator case) */ if (sdp->sd_lockstruct.ls_jid < 0) { error = sdp->sd_lockstruct.ls_jid; sdp->sd_lockstruct.ls_jid = 0; goto fail_sb; } if (sdp->sd_args.ar_spectator) snprintf(sdp->sd_fsname, GFS2_FSNAME_LEN, "%s.s", sdp->sd_table_name); else snprintf(sdp->sd_fsname, GFS2_FSNAME_LEN, "%s.%u", sdp->sd_table_name, sdp->sd_lockstruct.ls_jid); error = init_inodes(sdp, DO); if (error) goto fail_sb; error = init_per_node(sdp, DO); if (error) goto fail_inodes; error = gfs2_statfs_init(sdp); if (error) { fs_err(sdp, "can't initialize statfs subsystem: %d\n", error); goto fail_per_node; } error = init_threads(sdp, DO); if (error) goto fail_per_node; if (!(sb->s_flags & MS_RDONLY)) { error = gfs2_make_fs_rw(sdp); if (error) { fs_err(sdp, "can't make FS RW: %d\n", error); goto fail_threads; } } gfs2_glock_dq_uninit(&mount_gh); gfs2_online_uevent(sdp); return 0; fail_threads: init_threads(sdp, UNDO); fail_per_node: init_per_node(sdp, UNDO); fail_inodes: init_inodes(sdp, UNDO); fail_sb: if (sdp->sd_root_dir) dput(sdp->sd_root_dir); if (sdp->sd_master_dir) dput(sdp->sd_master_dir); if (sb->s_root) dput(sb->s_root); sb->s_root = NULL; fail_locking: init_locking(sdp, &mount_gh, UNDO); fail_lm: gfs2_gl_hash_clear(sdp); gfs2_lm_unmount(sdp); fail_sys: gfs2_sys_fs_del(sdp); fail: gfs2_delete_debugfs_file(sdp); kfree(sdp); sb->s_fs_info = NULL; return error; } static int set_gfs2_super(struct super_block *s, void *data) { s->s_bdev = data; s->s_dev = s->s_bdev->bd_dev; /* * We set the bdi here to the queue backing, file systems can * overwrite this in ->fill_super() */ s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; return 0; } static int test_gfs2_super(struct super_block *s, void *ptr) { struct block_device *bdev = ptr; return (bdev == s->s_bdev); } /** * gfs2_mount - Get the GFS2 superblock * @fs_type: The GFS2 filesystem type * @flags: Mount flags * @dev_name: The name of the device * @data: The mount arguments * * Q. Why not use get_sb_bdev() ? * A. We need to select one of two root directories to mount, independent * of whether this is the initial, or subsequent, mount of this sb * * Returns: 0 or -ve on error */ static struct dentry *gfs2_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { struct block_device *bdev; struct super_block *s; fmode_t mode = FMODE_READ | FMODE_EXCL; int error; struct gfs2_args args; struct gfs2_sbd *sdp; if (!(flags & MS_RDONLY)) mode |= FMODE_WRITE; bdev = blkdev_get_by_path(dev_name, mode, fs_type); if (IS_ERR(bdev)) return ERR_CAST(bdev); /* * once the super is inserted into the list by sget, s_umount * will protect the lockfs code from trying to start a snapshot * while we are mounting */ mutex_lock(&bdev->bd_fsfreeze_mutex); if (bdev->bd_fsfreeze_count > 0) { mutex_unlock(&bdev->bd_fsfreeze_mutex); error = -EBUSY; goto error_bdev; } s = sget(fs_type, test_gfs2_super, set_gfs2_super, bdev); mutex_unlock(&bdev->bd_fsfreeze_mutex); error = PTR_ERR(s); if (IS_ERR(s)) goto error_bdev; if (s->s_root) blkdev_put(bdev, mode); memset(&args, 0, sizeof(args)); args.ar_quota = GFS2_QUOTA_DEFAULT; args.ar_data = GFS2_DATA_DEFAULT; args.ar_commit = 30; args.ar_statfs_quantum = 30; args.ar_quota_quantum = 60; args.ar_errors = GFS2_ERRORS_DEFAULT; error = gfs2_mount_args(&args, data); if (error) { printk(KERN_WARNING "GFS2: can't parse mount arguments\n"); goto error_super; } if (s->s_root) { error = -EBUSY; if ((flags ^ s->s_flags) & MS_RDONLY) goto error_super; } else { char b[BDEVNAME_SIZE]; s->s_flags = flags; s->s_mode = mode; strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); sb_set_blocksize(s, block_size(bdev)); error = fill_super(s, &args, flags & MS_SILENT ? 1 : 0); if (error) goto error_super; s->s_flags |= MS_ACTIVE; bdev->bd_super = s; } sdp = s->s_fs_info; if (args.ar_meta) return dget(sdp->sd_master_dir); else return dget(sdp->sd_root_dir); error_super: deactivate_locked_super(s); return ERR_PTR(error); error_bdev: blkdev_put(bdev, mode); return ERR_PTR(error); } static int set_meta_super(struct super_block *s, void *ptr) { return -EINVAL; } static struct dentry *gfs2_mount_meta(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { struct super_block *s; struct gfs2_sbd *sdp; struct path path; int error; error = kern_path(dev_name, LOOKUP_FOLLOW, &path); if (error) { printk(KERN_WARNING "GFS2: path_lookup on %s returned error %d\n", dev_name, error); return ERR_PTR(error); } s = sget(&gfs2_fs_type, test_gfs2_super, set_meta_super, path.dentry->d_inode->i_sb->s_bdev); path_put(&path); if (IS_ERR(s)) { printk(KERN_WARNING "GFS2: gfs2 mount does not exist\n"); return ERR_CAST(s); } if ((flags ^ s->s_flags) & MS_RDONLY) { deactivate_locked_super(s); return ERR_PTR(-EBUSY); } sdp = s->s_fs_info; return dget(sdp->sd_master_dir); } static void gfs2_kill_sb(struct super_block *sb) { struct gfs2_sbd *sdp = sb->s_fs_info; if (sdp == NULL) { kill_block_super(sb); return; } gfs2_meta_syncfs(sdp); dput(sdp->sd_root_dir); dput(sdp->sd_master_dir); sdp->sd_root_dir = NULL; sdp->sd_master_dir = NULL; shrink_dcache_sb(sb); kill_block_super(sb); gfs2_delete_debugfs_file(sdp); kfree(sdp); } struct file_system_type gfs2_fs_type = { .name = "gfs2", .fs_flags = FS_REQUIRES_DEV, .mount = gfs2_mount, .kill_sb = gfs2_kill_sb, .owner = THIS_MODULE, }; struct file_system_type gfs2meta_fs_type = { .name = "gfs2meta", .fs_flags = FS_REQUIRES_DEV, .mount = gfs2_mount_meta, .owner = THIS_MODULE, };