/* * linux/fs/ufs/inode.c * * Copyright (C) 1998 * Daniel Pirkl <daniel.pirkl@email.cz> * Charles University, Faculty of Mathematics and Physics * * from * * linux/fs/ext2/inode.c * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * from * * linux/fs/minix/inode.c * * Copyright (C) 1991, 1992 Linus Torvalds * * Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993 * Big-endian to little-endian byte-swapping/bitmaps by * David S. Miller (davem@caip.rutgers.edu), 1995 */ #include <asm/uaccess.h> #include <asm/system.h> #include <linux/errno.h> #include <linux/fs.h> #include <linux/time.h> #include <linux/stat.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/buffer_head.h> #include <linux/writeback.h> #include "ufs_fs.h" #include "ufs.h" #include "swab.h" #include "util.h" static u64 ufs_frag_map(struct inode *inode, sector_t frag, bool needs_lock); static int ufs_block_to_path(struct inode *inode, sector_t i_block, sector_t offsets[4]) { struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi; int ptrs = uspi->s_apb; int ptrs_bits = uspi->s_apbshift; const long direct_blocks = UFS_NDADDR, indirect_blocks = ptrs, double_blocks = (1 << (ptrs_bits * 2)); int n = 0; UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks); if (i_block < direct_blocks) { offsets[n++] = i_block; } else if ((i_block -= direct_blocks) < indirect_blocks) { offsets[n++] = UFS_IND_BLOCK; offsets[n++] = i_block; } else if ((i_block -= indirect_blocks) < double_blocks) { offsets[n++] = UFS_DIND_BLOCK; offsets[n++] = i_block >> ptrs_bits; offsets[n++] = i_block & (ptrs - 1); } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { offsets[n++] = UFS_TIND_BLOCK; offsets[n++] = i_block >> (ptrs_bits * 2); offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); offsets[n++] = i_block & (ptrs - 1); } else { ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big"); } return n; } /* * Returns the location of the fragment from * the beginning of the filesystem. */ static u64 ufs_frag_map(struct inode *inode, sector_t frag, bool needs_lock) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift; int shift = uspi->s_apbshift-uspi->s_fpbshift; sector_t offsets[4], *p; int depth = ufs_block_to_path(inode, frag >> uspi->s_fpbshift, offsets); u64 ret = 0L; __fs32 block; __fs64 u2_block = 0L; unsigned flags = UFS_SB(sb)->s_flags; u64 temp = 0L; UFSD(": frag = %llu depth = %d\n", (unsigned long long)frag, depth); UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n", uspi->s_fpbshift, uspi->s_apbmask, (unsigned long long)mask); if (depth == 0) return 0; p = offsets; if (needs_lock) lock_ufs(sb); if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) goto ufs2; block = ufsi->i_u1.i_data[*p++]; if (!block) goto out; while (--depth) { struct buffer_head *bh; sector_t n = *p++; bh = sb_bread(sb, uspi->s_sbbase + fs32_to_cpu(sb, block)+(n>>shift)); if (!bh) goto out; block = ((__fs32 *) bh->b_data)[n & mask]; brelse (bh); if (!block) goto out; } ret = (u64) (uspi->s_sbbase + fs32_to_cpu(sb, block) + (frag & uspi->s_fpbmask)); goto out; ufs2: u2_block = ufsi->i_u1.u2_i_data[*p++]; if (!u2_block) goto out; while (--depth) { struct buffer_head *bh; sector_t n = *p++; temp = (u64)(uspi->s_sbbase) + fs64_to_cpu(sb, u2_block); bh = sb_bread(sb, temp +(u64) (n>>shift)); if (!bh) goto out; u2_block = ((__fs64 *)bh->b_data)[n & mask]; brelse(bh); if (!u2_block) goto out; } temp = (u64)uspi->s_sbbase + fs64_to_cpu(sb, u2_block); ret = temp + (u64) (frag & uspi->s_fpbmask); out: if (needs_lock) unlock_ufs(sb); return ret; } /** * ufs_inode_getfrag() - allocate new fragment(s) * @inode - pointer to inode * @fragment - number of `fragment' which hold pointer * to new allocated fragment(s) * @new_fragment - number of new allocated fragment(s) * @required - how many fragment(s) we require * @err - we set it if something wrong * @phys - pointer to where we save physical number of new allocated fragments, * NULL if we allocate not data(indirect blocks for example). * @new - we set it if we allocate new block * @locked_page - for ufs_new_fragments() */ static struct buffer_head * ufs_inode_getfrag(struct inode *inode, u64 fragment, sector_t new_fragment, unsigned int required, int *err, long *phys, int *new, struct page *locked_page) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; struct buffer_head * result; unsigned blockoff, lastblockoff; u64 tmp, goal, lastfrag, block, lastblock; void *p, *p2; UFSD("ENTER, ino %lu, fragment %llu, new_fragment %llu, required %u, " "metadata %d\n", inode->i_ino, (unsigned long long)fragment, (unsigned long long)new_fragment, required, !phys); /* TODO : to be done for write support if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) goto ufs2; */ block = ufs_fragstoblks (fragment); blockoff = ufs_fragnum (fragment); p = ufs_get_direct_data_ptr(uspi, ufsi, block); goal = 0; repeat: tmp = ufs_data_ptr_to_cpu(sb, p); lastfrag = ufsi->i_lastfrag; if (tmp && fragment < lastfrag) { if (!phys) { result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff); if (tmp == ufs_data_ptr_to_cpu(sb, p)) { UFSD("EXIT, result %llu\n", (unsigned long long)tmp + blockoff); return result; } brelse (result); goto repeat; } else { *phys = uspi->s_sbbase + tmp + blockoff; return NULL; } } lastblock = ufs_fragstoblks (lastfrag); lastblockoff = ufs_fragnum (lastfrag); /* * We will extend file into new block beyond last allocated block */ if (lastblock < block) { /* * We must reallocate last allocated block */ if (lastblockoff) { p2 = ufs_get_direct_data_ptr(uspi, ufsi, lastblock); tmp = ufs_new_fragments(inode, p2, lastfrag, ufs_data_ptr_to_cpu(sb, p2), uspi->s_fpb - lastblockoff, err, locked_page); if (!tmp) { if (lastfrag != ufsi->i_lastfrag) goto repeat; else return NULL; } lastfrag = ufsi->i_lastfrag; } tmp = ufs_data_ptr_to_cpu(sb, ufs_get_direct_data_ptr(uspi, ufsi, lastblock)); if (tmp) goal = tmp + uspi->s_fpb; tmp = ufs_new_fragments (inode, p, fragment - blockoff, goal, required + blockoff, err, phys != NULL ? locked_page : NULL); } else if (lastblock == block) { /* * We will extend last allocated block */ tmp = ufs_new_fragments(inode, p, fragment - (blockoff - lastblockoff), ufs_data_ptr_to_cpu(sb, p), required + (blockoff - lastblockoff), err, phys != NULL ? locked_page : NULL); } else /* (lastblock > block) */ { /* * We will allocate new block before last allocated block */ if (block) { tmp = ufs_data_ptr_to_cpu(sb, ufs_get_direct_data_ptr(uspi, ufsi, block - 1)); if (tmp) goal = tmp + uspi->s_fpb; } tmp = ufs_new_fragments(inode, p, fragment - blockoff, goal, uspi->s_fpb, err, phys != NULL ? locked_page : NULL); } if (!tmp) { if ((!blockoff && ufs_data_ptr_to_cpu(sb, p)) || (blockoff && lastfrag != ufsi->i_lastfrag)) goto repeat; *err = -ENOSPC; return NULL; } if (!phys) { result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff); } else { *phys = uspi->s_sbbase + tmp + blockoff; result = NULL; *err = 0; *new = 1; } inode->i_ctime = CURRENT_TIME_SEC; if (IS_SYNC(inode)) ufs_sync_inode (inode); mark_inode_dirty(inode); UFSD("EXIT, result %llu\n", (unsigned long long)tmp + blockoff); return result; /* This part : To be implemented .... Required only for writing, not required for READ-ONLY. ufs2: u2_block = ufs_fragstoblks(fragment); u2_blockoff = ufs_fragnum(fragment); p = ufsi->i_u1.u2_i_data + block; goal = 0; repeat2: tmp = fs32_to_cpu(sb, *p); lastfrag = ufsi->i_lastfrag; */ } /** * ufs_inode_getblock() - allocate new block * @inode - pointer to inode * @bh - pointer to block which hold "pointer" to new allocated block * @fragment - number of `fragment' which hold pointer * to new allocated block * @new_fragment - number of new allocated fragment * (block will hold this fragment and also uspi->s_fpb-1) * @err - see ufs_inode_getfrag() * @phys - see ufs_inode_getfrag() * @new - see ufs_inode_getfrag() * @locked_page - see ufs_inode_getfrag() */ static struct buffer_head * ufs_inode_getblock(struct inode *inode, struct buffer_head *bh, u64 fragment, sector_t new_fragment, int *err, long *phys, int *new, struct page *locked_page) { struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; struct buffer_head * result; unsigned blockoff; u64 tmp, goal, block; void *p; block = ufs_fragstoblks (fragment); blockoff = ufs_fragnum (fragment); UFSD("ENTER, ino %lu, fragment %llu, new_fragment %llu, metadata %d\n", inode->i_ino, (unsigned long long)fragment, (unsigned long long)new_fragment, !phys); result = NULL; if (!bh) goto out; if (!buffer_uptodate(bh)) { ll_rw_block (READ, 1, &bh); wait_on_buffer (bh); if (!buffer_uptodate(bh)) goto out; } if (uspi->fs_magic == UFS2_MAGIC) p = (__fs64 *)bh->b_data + block; else p = (__fs32 *)bh->b_data + block; repeat: tmp = ufs_data_ptr_to_cpu(sb, p); if (tmp) { if (!phys) { result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff); if (tmp == ufs_data_ptr_to_cpu(sb, p)) goto out; brelse (result); goto repeat; } else { *phys = uspi->s_sbbase + tmp + blockoff; goto out; } } if (block && (uspi->fs_magic == UFS2_MAGIC ? (tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[block-1])) : (tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[block-1])))) goal = tmp + uspi->s_fpb; else goal = bh->b_blocknr + uspi->s_fpb; tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal, uspi->s_fpb, err, locked_page); if (!tmp) { if (ufs_data_ptr_to_cpu(sb, p)) goto repeat; goto out; } if (!phys) { result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff); } else { *phys = uspi->s_sbbase + tmp + blockoff; *new = 1; } mark_buffer_dirty(bh); if (IS_SYNC(inode)) sync_dirty_buffer(bh); inode->i_ctime = CURRENT_TIME_SEC; mark_inode_dirty(inode); UFSD("result %llu\n", (unsigned long long)tmp + blockoff); out: brelse (bh); UFSD("EXIT\n"); return result; } /** * ufs_getfrag_block() - `get_block_t' function, interface between UFS and * readpage, writepage and so on */ int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create) { struct super_block * sb = inode->i_sb; struct ufs_sb_info * sbi = UFS_SB(sb); struct ufs_sb_private_info * uspi = sbi->s_uspi; struct buffer_head * bh; int ret, err, new; unsigned long ptr,phys; u64 phys64 = 0; bool needs_lock = (sbi->mutex_owner != current); if (!create) { phys64 = ufs_frag_map(inode, fragment, needs_lock); UFSD("phys64 = %llu\n", (unsigned long long)phys64); if (phys64) map_bh(bh_result, sb, phys64); return 0; } /* This code entered only while writing ....? */ err = -EIO; new = 0; ret = 0; bh = NULL; if (needs_lock) lock_ufs(sb); UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment); if (fragment > ((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb) << uspi->s_fpbshift)) goto abort_too_big; err = 0; ptr = fragment; /* * ok, these macros clean the logic up a bit and make * it much more readable: */ #define GET_INODE_DATABLOCK(x) \ ufs_inode_getfrag(inode, x, fragment, 1, &err, &phys, &new,\ bh_result->b_page) #define GET_INODE_PTR(x) \ ufs_inode_getfrag(inode, x, fragment, uspi->s_fpb, &err, NULL, NULL,\ bh_result->b_page) #define GET_INDIRECT_DATABLOCK(x) \ ufs_inode_getblock(inode, bh, x, fragment, \ &err, &phys, &new, bh_result->b_page) #define GET_INDIRECT_PTR(x) \ ufs_inode_getblock(inode, bh, x, fragment, \ &err, NULL, NULL, NULL) if (ptr < UFS_NDIR_FRAGMENT) { bh = GET_INODE_DATABLOCK(ptr); goto out; } ptr -= UFS_NDIR_FRAGMENT; if (ptr < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) { bh = GET_INODE_PTR(UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift)); goto get_indirect; } ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift); if (ptr < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) { bh = GET_INODE_PTR(UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift)); goto get_double; } ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift); bh = GET_INODE_PTR(UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift)); bh = GET_INDIRECT_PTR((ptr >> uspi->s_2apbshift) & uspi->s_apbmask); get_double: bh = GET_INDIRECT_PTR((ptr >> uspi->s_apbshift) & uspi->s_apbmask); get_indirect: bh = GET_INDIRECT_DATABLOCK(ptr & uspi->s_apbmask); #undef GET_INODE_DATABLOCK #undef GET_INODE_PTR #undef GET_INDIRECT_DATABLOCK #undef GET_INDIRECT_PTR out: if (err) goto abort; if (new) set_buffer_new(bh_result); map_bh(bh_result, sb, phys); abort: if (needs_lock) unlock_ufs(sb); return err; abort_too_big: ufs_warning(sb, "ufs_get_block", "block > big"); goto abort; } static int ufs_writepage(struct page *page, struct writeback_control *wbc) { return block_write_full_page(page,ufs_getfrag_block,wbc); } static int ufs_readpage(struct file *file, struct page *page) { return block_read_full_page(page,ufs_getfrag_block); } int ufs_prepare_chunk(struct page *page, loff_t pos, unsigned len) { return __block_write_begin(page, pos, len, ufs_getfrag_block); } static int ufs_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { int ret; ret = block_write_begin(mapping, pos, len, flags, pagep, ufs_getfrag_block); if (unlikely(ret)) { loff_t isize = mapping->host->i_size; if (pos + len > isize) vmtruncate(mapping->host, isize); } return ret; } static sector_t ufs_bmap(struct address_space *mapping, sector_t block) { return generic_block_bmap(mapping,block,ufs_getfrag_block); } const struct address_space_operations ufs_aops = { .readpage = ufs_readpage, .writepage = ufs_writepage, .write_begin = ufs_write_begin, .write_end = generic_write_end, .bmap = ufs_bmap }; static void ufs_set_inode_ops(struct inode *inode) { if (S_ISREG(inode->i_mode)) { inode->i_op = &ufs_file_inode_operations; inode->i_fop = &ufs_file_operations; inode->i_mapping->a_ops = &ufs_aops; } else if (S_ISDIR(inode->i_mode)) { inode->i_op = &ufs_dir_inode_operations; inode->i_fop = &ufs_dir_operations; inode->i_mapping->a_ops = &ufs_aops; } else if (S_ISLNK(inode->i_mode)) { if (!inode->i_blocks) inode->i_op = &ufs_fast_symlink_inode_operations; else { inode->i_op = &ufs_symlink_inode_operations; inode->i_mapping->a_ops = &ufs_aops; } } else init_special_inode(inode, inode->i_mode, ufs_get_inode_dev(inode->i_sb, UFS_I(inode))); } static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block *sb = inode->i_sb; umode_t mode; /* * Copy data to the in-core inode. */ inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode); set_nlink(inode, fs16_to_cpu(sb, ufs_inode->ui_nlink)); if (inode->i_nlink == 0) { ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino); return -1; } /* * Linux now has 32-bit uid and gid, so we can support EFT. */ inode->i_uid = ufs_get_inode_uid(sb, ufs_inode); inode->i_gid = ufs_get_inode_gid(sb, ufs_inode); inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size); inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec); inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec); inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec); inode->i_mtime.tv_nsec = 0; inode->i_atime.tv_nsec = 0; inode->i_ctime.tv_nsec = 0; inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks); inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen); ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags); ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow); ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag); if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) { memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr, sizeof(ufs_inode->ui_u2.ui_addr)); } else { memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink, sizeof(ufs_inode->ui_u2.ui_symlink) - 1); ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0; } return 0; } static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block *sb = inode->i_sb; umode_t mode; UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino); /* * Copy data to the in-core inode. */ inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode); set_nlink(inode, fs16_to_cpu(sb, ufs2_inode->ui_nlink)); if (inode->i_nlink == 0) { ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino); return -1; } /* * Linux now has 32-bit uid and gid, so we can support EFT. */ inode->i_uid = fs32_to_cpu(sb, ufs2_inode->ui_uid); inode->i_gid = fs32_to_cpu(sb, ufs2_inode->ui_gid); inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size); inode->i_atime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_atime); inode->i_ctime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_ctime); inode->i_mtime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_mtime); inode->i_atime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_atimensec); inode->i_ctime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_ctimensec); inode->i_mtime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_mtimensec); inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks); inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen); ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags); /* ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow); ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag); */ if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) { memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr, sizeof(ufs2_inode->ui_u2.ui_addr)); } else { memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink, sizeof(ufs2_inode->ui_u2.ui_symlink) - 1); ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0; } return 0; } struct inode *ufs_iget(struct super_block *sb, unsigned long ino) { struct ufs_inode_info *ufsi; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; struct buffer_head * bh; struct inode *inode; int err; UFSD("ENTER, ino %lu\n", ino); if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) { ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n", ino); return ERR_PTR(-EIO); } inode = iget_locked(sb, ino); if (!inode) return ERR_PTR(-ENOMEM); if (!(inode->i_state & I_NEW)) return inode; ufsi = UFS_I(inode); bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino)); if (!bh) { ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino); goto bad_inode; } if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) { struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data; err = ufs2_read_inode(inode, ufs2_inode + ufs_inotofsbo(inode->i_ino)); } else { struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data; err = ufs1_read_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino)); } if (err) goto bad_inode; inode->i_version++; ufsi->i_lastfrag = (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift; ufsi->i_dir_start_lookup = 0; ufsi->i_osync = 0; ufs_set_inode_ops(inode); brelse(bh); UFSD("EXIT\n"); unlock_new_inode(inode); return inode; bad_inode: iget_failed(inode); return ERR_PTR(-EIO); } static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode) { struct super_block *sb = inode->i_sb; struct ufs_inode_info *ufsi = UFS_I(inode); ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode); ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink); ufs_set_inode_uid(sb, ufs_inode, inode->i_uid); ufs_set_inode_gid(sb, ufs_inode, inode->i_gid); ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size); ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec); ufs_inode->ui_atime.tv_usec = 0; ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec); ufs_inode->ui_ctime.tv_usec = 0; ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec); ufs_inode->ui_mtime.tv_usec = 0; ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks); ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags); ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation); if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) { ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow); ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag); } if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */ ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0]; } else if (inode->i_blocks) { memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data, sizeof(ufs_inode->ui_u2.ui_addr)); } else { memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink, sizeof(ufs_inode->ui_u2.ui_symlink)); } if (!inode->i_nlink) memset (ufs_inode, 0, sizeof(struct ufs_inode)); } static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode) { struct super_block *sb = inode->i_sb; struct ufs_inode_info *ufsi = UFS_I(inode); UFSD("ENTER\n"); ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode); ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink); ufs_inode->ui_uid = cpu_to_fs32(sb, inode->i_uid); ufs_inode->ui_gid = cpu_to_fs32(sb, inode->i_gid); ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size); ufs_inode->ui_atime = cpu_to_fs64(sb, inode->i_atime.tv_sec); ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode->i_atime.tv_nsec); ufs_inode->ui_ctime = cpu_to_fs64(sb, inode->i_ctime.tv_sec); ufs_inode->ui_ctimensec = cpu_to_fs32(sb, inode->i_ctime.tv_nsec); ufs_inode->ui_mtime = cpu_to_fs64(sb, inode->i_mtime.tv_sec); ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode->i_mtime.tv_nsec); ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks); ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags); ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation); if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */ ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0]; } else if (inode->i_blocks) { memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data, sizeof(ufs_inode->ui_u2.ui_addr)); } else { memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink, sizeof(ufs_inode->ui_u2.ui_symlink)); } if (!inode->i_nlink) memset (ufs_inode, 0, sizeof(struct ufs2_inode)); UFSD("EXIT\n"); } static int ufs_update_inode(struct inode * inode, int do_sync) { struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; struct buffer_head * bh; UFSD("ENTER, ino %lu\n", inode->i_ino); if (inode->i_ino < UFS_ROOTINO || inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) { ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino); return -1; } bh = sb_bread(sb, ufs_inotofsba(inode->i_ino)); if (!bh) { ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino); return -1; } if (uspi->fs_magic == UFS2_MAGIC) { struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data; ufs2_update_inode(inode, ufs2_inode + ufs_inotofsbo(inode->i_ino)); } else { struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data; ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino)); } mark_buffer_dirty(bh); if (do_sync) sync_dirty_buffer(bh); brelse (bh); UFSD("EXIT\n"); return 0; } int ufs_write_inode(struct inode *inode, struct writeback_control *wbc) { int ret; lock_ufs(inode->i_sb); ret = ufs_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); unlock_ufs(inode->i_sb); return ret; } int ufs_sync_inode (struct inode *inode) { return ufs_update_inode (inode, 1); } void ufs_evict_inode(struct inode * inode) { int want_delete = 0; if (!inode->i_nlink && !is_bad_inode(inode)) want_delete = 1; truncate_inode_pages(&inode->i_data, 0); if (want_delete) { loff_t old_i_size; /*UFS_I(inode)->i_dtime = CURRENT_TIME;*/ lock_ufs(inode->i_sb); mark_inode_dirty(inode); ufs_update_inode(inode, IS_SYNC(inode)); old_i_size = inode->i_size; inode->i_size = 0; if (inode->i_blocks && ufs_truncate(inode, old_i_size)) ufs_warning(inode->i_sb, __func__, "ufs_truncate failed\n"); unlock_ufs(inode->i_sb); } invalidate_inode_buffers(inode); end_writeback(inode); if (want_delete) { lock_ufs(inode->i_sb); ufs_free_inode (inode); unlock_ufs(inode->i_sb); } }