/* * Driver for A2 audio system used in SGI machines * Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de> * * Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which * was based on code from Ulf Carlsson * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/platform_device.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/module.h> #include <asm/sgi/hpc3.h> #include <asm/sgi/ip22.h> #include <sound/core.h> #include <sound/control.h> #include <sound/pcm.h> #include <sound/pcm-indirect.h> #include <sound/initval.h> #include "hal2.h" static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ module_param(index, int, 0444); MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard."); module_param(id, charp, 0444); MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard."); MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio"); MODULE_AUTHOR("Thomas Bogendoerfer"); MODULE_LICENSE("GPL"); #define H2_BLOCK_SIZE 1024 #define H2_BUF_SIZE 16384 struct hal2_pbus { struct hpc3_pbus_dmacregs *pbus; int pbusnr; unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */ }; struct hal2_desc { struct hpc_dma_desc desc; u32 pad; /* padding */ }; struct hal2_codec { struct snd_pcm_indirect pcm_indirect; struct snd_pcm_substream *substream; unsigned char *buffer; dma_addr_t buffer_dma; struct hal2_desc *desc; dma_addr_t desc_dma; int desc_count; struct hal2_pbus pbus; int voices; /* mono/stereo */ unsigned int sample_rate; unsigned int master; /* Master frequency */ unsigned short mod; /* MOD value */ unsigned short inc; /* INC value */ }; #define H2_MIX_OUTPUT_ATT 0 #define H2_MIX_INPUT_GAIN 1 struct snd_hal2 { struct snd_card *card; struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */ struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */ struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */ struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */ struct hal2_codec dac; struct hal2_codec adc; }; #define H2_INDIRECT_WAIT(regs) while (hal2_read(®s->isr) & H2_ISR_TSTATUS); #define H2_READ_ADDR(addr) (addr | (1<<7)) #define H2_WRITE_ADDR(addr) (addr) static inline u32 hal2_read(u32 *reg) { return __raw_readl(reg); } static inline void hal2_write(u32 val, u32 *reg) { __raw_writel(val, reg); } static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr) { u32 ret; struct hal2_ctl_regs *regs = hal2->ctl_regs; hal2_write(H2_READ_ADDR(addr), ®s->iar); H2_INDIRECT_WAIT(regs); ret = hal2_read(®s->idr0) & 0xffff; hal2_write(H2_READ_ADDR(addr) | 0x1, ®s->iar); H2_INDIRECT_WAIT(regs); ret |= (hal2_read(®s->idr0) & 0xffff) << 16; return ret; } static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val) { struct hal2_ctl_regs *regs = hal2->ctl_regs; hal2_write(val, ®s->idr0); hal2_write(0, ®s->idr1); hal2_write(0, ®s->idr2); hal2_write(0, ®s->idr3); hal2_write(H2_WRITE_ADDR(addr), ®s->iar); H2_INDIRECT_WAIT(regs); } static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val) { struct hal2_ctl_regs *regs = hal2->ctl_regs; hal2_write(val & 0xffff, ®s->idr0); hal2_write(val >> 16, ®s->idr1); hal2_write(0, ®s->idr2); hal2_write(0, ®s->idr3); hal2_write(H2_WRITE_ADDR(addr), ®s->iar); H2_INDIRECT_WAIT(regs); } static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit) { struct hal2_ctl_regs *regs = hal2->ctl_regs; hal2_write(H2_READ_ADDR(addr), ®s->iar); H2_INDIRECT_WAIT(regs); hal2_write((hal2_read(®s->idr0) & 0xffff) | bit, ®s->idr0); hal2_write(0, ®s->idr1); hal2_write(0, ®s->idr2); hal2_write(0, ®s->idr3); hal2_write(H2_WRITE_ADDR(addr), ®s->iar); H2_INDIRECT_WAIT(regs); } static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit) { struct hal2_ctl_regs *regs = hal2->ctl_regs; hal2_write(H2_READ_ADDR(addr), ®s->iar); H2_INDIRECT_WAIT(regs); hal2_write((hal2_read(®s->idr0) & 0xffff) & ~bit, ®s->idr0); hal2_write(0, ®s->idr1); hal2_write(0, ®s->idr2); hal2_write(0, ®s->idr3); hal2_write(H2_WRITE_ADDR(addr), ®s->iar); H2_INDIRECT_WAIT(regs); } static int hal2_gain_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; switch ((int)kcontrol->private_value) { case H2_MIX_OUTPUT_ATT: uinfo->value.integer.max = 31; break; case H2_MIX_INPUT_GAIN: uinfo->value.integer.max = 15; break; } return 0; } static int hal2_gain_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol); u32 tmp; int l, r; switch ((int)kcontrol->private_value) { case H2_MIX_OUTPUT_ATT: tmp = hal2_i_read32(hal2, H2I_DAC_C2); if (tmp & H2I_C2_MUTE) { l = 0; r = 0; } else { l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31); r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31); } break; case H2_MIX_INPUT_GAIN: tmp = hal2_i_read32(hal2, H2I_ADC_C2); l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15; r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15; break; } ucontrol->value.integer.value[0] = l; ucontrol->value.integer.value[1] = r; return 0; } static int hal2_gain_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol); u32 old, new; int l, r; l = ucontrol->value.integer.value[0]; r = ucontrol->value.integer.value[1]; switch ((int)kcontrol->private_value) { case H2_MIX_OUTPUT_ATT: old = hal2_i_read32(hal2, H2I_DAC_C2); new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE); if (l | r) { l = 31 - l; r = 31 - r; new |= (l << H2I_C2_L_ATT_SHIFT); new |= (r << H2I_C2_R_ATT_SHIFT); } else new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE; hal2_i_write32(hal2, H2I_DAC_C2, new); break; case H2_MIX_INPUT_GAIN: old = hal2_i_read32(hal2, H2I_ADC_C2); new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M); new |= (l << H2I_C2_L_GAIN_SHIFT); new |= (r << H2I_C2_R_GAIN_SHIFT); hal2_i_write32(hal2, H2I_ADC_C2, new); break; } return old != new; } static struct snd_kcontrol_new hal2_ctrl_headphone __devinitdata = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Headphone Playback Volume", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .private_value = H2_MIX_OUTPUT_ATT, .info = hal2_gain_info, .get = hal2_gain_get, .put = hal2_gain_put, }; static struct snd_kcontrol_new hal2_ctrl_mic __devinitdata = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Mic Capture Volume", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .private_value = H2_MIX_INPUT_GAIN, .info = hal2_gain_info, .get = hal2_gain_get, .put = hal2_gain_put, }; static int __devinit hal2_mixer_create(struct snd_hal2 *hal2) { int err; /* mute DAC */ hal2_i_write32(hal2, H2I_DAC_C2, H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE); /* mute ADC */ hal2_i_write32(hal2, H2I_ADC_C2, 0); err = snd_ctl_add(hal2->card, snd_ctl_new1(&hal2_ctrl_headphone, hal2)); if (err < 0) return err; err = snd_ctl_add(hal2->card, snd_ctl_new1(&hal2_ctrl_mic, hal2)); if (err < 0) return err; return 0; } static irqreturn_t hal2_interrupt(int irq, void *dev_id) { struct snd_hal2 *hal2 = dev_id; irqreturn_t ret = IRQ_NONE; /* decide what caused this interrupt */ if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) { snd_pcm_period_elapsed(hal2->dac.substream); ret = IRQ_HANDLED; } if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) { snd_pcm_period_elapsed(hal2->adc.substream); ret = IRQ_HANDLED; } return ret; } static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate) { unsigned short mod; if (44100 % rate < 48000 % rate) { mod = 4 * 44100 / rate; codec->master = 44100; } else { mod = 4 * 48000 / rate; codec->master = 48000; } codec->inc = 4; codec->mod = mod; rate = 4 * codec->master / mod; return rate; } static void hal2_set_dac_rate(struct snd_hal2 *hal2) { unsigned int master = hal2->dac.master; int inc = hal2->dac.inc; int mod = hal2->dac.mod; hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0); hal2_i_write32(hal2, H2I_BRES1_C2, ((0xffff & (inc - mod - 1)) << 16) | inc); } static void hal2_set_adc_rate(struct snd_hal2 *hal2) { unsigned int master = hal2->adc.master; int inc = hal2->adc.inc; int mod = hal2->adc.mod; hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0); hal2_i_write32(hal2, H2I_BRES2_C2, ((0xffff & (inc - mod - 1)) << 16) | inc); } static void hal2_setup_dac(struct snd_hal2 *hal2) { unsigned int fifobeg, fifoend, highwater, sample_size; struct hal2_pbus *pbus = &hal2->dac.pbus; /* Now we set up some PBUS information. The PBUS needs information about * what portion of the fifo it will use. If it's receiving or * transmitting, and finally whether the stream is little endian or big * endian. The information is written later, on the start call. */ sample_size = 2 * hal2->dac.voices; /* Fifo should be set to hold exactly four samples. Highwater mark * should be set to two samples. */ highwater = (sample_size * 2) >> 1; /* halfwords */ fifobeg = 0; /* playback is first */ fifoend = (sample_size * 4) >> 3; /* doublewords */ pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD | (highwater << 8) | (fifobeg << 16) | (fifoend << 24); /* We disable everything before we do anything at all */ pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX); /* Setup the HAL2 for playback */ hal2_set_dac_rate(hal2); /* Set endianess */ hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX); /* Set DMA bus */ hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr)); /* We are using 1st Bresenham clock generator for playback */ hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT) | (1 << H2I_C1_CLKID_SHIFT) | (hal2->dac.voices << H2I_C1_DATAT_SHIFT)); } static void hal2_setup_adc(struct snd_hal2 *hal2) { unsigned int fifobeg, fifoend, highwater, sample_size; struct hal2_pbus *pbus = &hal2->adc.pbus; sample_size = 2 * hal2->adc.voices; highwater = (sample_size * 2) >> 1; /* halfwords */ fifobeg = (4 * 4) >> 3; /* record is second */ fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */ pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD | (highwater << 8) | (fifobeg << 16) | (fifoend << 24); pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR); /* Setup the HAL2 for record */ hal2_set_adc_rate(hal2); /* Set endianess */ hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR); /* Set DMA bus */ hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr)); /* We are using 2nd Bresenham clock generator for record */ hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT) | (2 << H2I_C1_CLKID_SHIFT) | (hal2->adc.voices << H2I_C1_DATAT_SHIFT)); } static void hal2_start_dac(struct snd_hal2 *hal2) { struct hal2_pbus *pbus = &hal2->dac.pbus; pbus->pbus->pbdma_dptr = hal2->dac.desc_dma; pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT; /* enable DAC */ hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX); } static void hal2_start_adc(struct snd_hal2 *hal2) { struct hal2_pbus *pbus = &hal2->adc.pbus; pbus->pbus->pbdma_dptr = hal2->adc.desc_dma; pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT; /* enable ADC */ hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR); } static inline void hal2_stop_dac(struct snd_hal2 *hal2) { hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; /* The HAL2 itself may remain enabled safely */ } static inline void hal2_stop_adc(struct snd_hal2 *hal2) { hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; } static int hal2_alloc_dmabuf(struct hal2_codec *codec) { struct hal2_desc *desc; dma_addr_t desc_dma, buffer_dma; int count = H2_BUF_SIZE / H2_BLOCK_SIZE; int i; codec->buffer = dma_alloc_noncoherent(NULL, H2_BUF_SIZE, &buffer_dma, GFP_KERNEL); if (!codec->buffer) return -ENOMEM; desc = dma_alloc_noncoherent(NULL, count * sizeof(struct hal2_desc), &desc_dma, GFP_KERNEL); if (!desc) { dma_free_noncoherent(NULL, H2_BUF_SIZE, codec->buffer, buffer_dma); return -ENOMEM; } codec->buffer_dma = buffer_dma; codec->desc_dma = desc_dma; codec->desc = desc; for (i = 0; i < count; i++) { desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE; desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE; desc->desc.pnext = (i == count - 1) ? desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc); desc++; } dma_cache_sync(NULL, codec->desc, count * sizeof(struct hal2_desc), DMA_TO_DEVICE); codec->desc_count = count; return 0; } static void hal2_free_dmabuf(struct hal2_codec *codec) { dma_free_noncoherent(NULL, codec->desc_count * sizeof(struct hal2_desc), codec->desc, codec->desc_dma); dma_free_noncoherent(NULL, H2_BUF_SIZE, codec->buffer, codec->buffer_dma); } static struct snd_pcm_hardware hal2_pcm_hw = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER), .formats = SNDRV_PCM_FMTBIT_S16_BE, .rates = SNDRV_PCM_RATE_8000_48000, .rate_min = 8000, .rate_max = 48000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = 65536, .period_bytes_min = 1024, .period_bytes_max = 65536, .periods_min = 2, .periods_max = 1024, }; static int hal2_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { int err; err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params)); if (err < 0) return err; return 0; } static int hal2_pcm_hw_free(struct snd_pcm_substream *substream) { return snd_pcm_lib_free_pages(substream); } static int hal2_playback_open(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); int err; runtime->hw = hal2_pcm_hw; err = hal2_alloc_dmabuf(&hal2->dac); if (err) return err; return 0; } static int hal2_playback_close(struct snd_pcm_substream *substream) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); hal2_free_dmabuf(&hal2->dac); return 0; } static int hal2_playback_prepare(struct snd_pcm_substream *substream) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct hal2_codec *dac = &hal2->dac; dac->voices = runtime->channels; dac->sample_rate = hal2_compute_rate(dac, runtime->rate); memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect)); dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE; dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); dac->substream = substream; hal2_setup_dac(hal2); return 0; } static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); switch (cmd) { case SNDRV_PCM_TRIGGER_START: hal2->dac.pcm_indirect.hw_io = hal2->dac.buffer_dma; hal2->dac.pcm_indirect.hw_data = 0; substream->ops->ack(substream); hal2_start_dac(hal2); break; case SNDRV_PCM_TRIGGER_STOP: hal2_stop_dac(hal2); break; default: return -EINVAL; } return 0; } static snd_pcm_uframes_t hal2_playback_pointer(struct snd_pcm_substream *substream) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); struct hal2_codec *dac = &hal2->dac; return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect, dac->pbus.pbus->pbdma_bptr); } static void hal2_playback_transfer(struct snd_pcm_substream *substream, struct snd_pcm_indirect *rec, size_t bytes) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); unsigned char *buf = hal2->dac.buffer + rec->hw_data; memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes); dma_cache_sync(NULL, buf, bytes, DMA_TO_DEVICE); } static int hal2_playback_ack(struct snd_pcm_substream *substream) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); struct hal2_codec *dac = &hal2->dac; dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2; snd_pcm_indirect_playback_transfer(substream, &dac->pcm_indirect, hal2_playback_transfer); return 0; } static int hal2_capture_open(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); struct hal2_codec *adc = &hal2->adc; int err; runtime->hw = hal2_pcm_hw; err = hal2_alloc_dmabuf(adc); if (err) return err; return 0; } static int hal2_capture_close(struct snd_pcm_substream *substream) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); hal2_free_dmabuf(&hal2->adc); return 0; } static int hal2_capture_prepare(struct snd_pcm_substream *substream) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct hal2_codec *adc = &hal2->adc; adc->voices = runtime->channels; adc->sample_rate = hal2_compute_rate(adc, runtime->rate); memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect)); adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE; adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2; adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); adc->substream = substream; hal2_setup_adc(hal2); return 0; } static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); switch (cmd) { case SNDRV_PCM_TRIGGER_START: hal2->adc.pcm_indirect.hw_io = hal2->adc.buffer_dma; hal2->adc.pcm_indirect.hw_data = 0; printk(KERN_DEBUG "buffer_dma %x\n", hal2->adc.buffer_dma); hal2_start_adc(hal2); break; case SNDRV_PCM_TRIGGER_STOP: hal2_stop_adc(hal2); break; default: return -EINVAL; } return 0; } static snd_pcm_uframes_t hal2_capture_pointer(struct snd_pcm_substream *substream) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); struct hal2_codec *adc = &hal2->adc; return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect, adc->pbus.pbus->pbdma_bptr); } static void hal2_capture_transfer(struct snd_pcm_substream *substream, struct snd_pcm_indirect *rec, size_t bytes) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); unsigned char *buf = hal2->adc.buffer + rec->hw_data; dma_cache_sync(NULL, buf, bytes, DMA_FROM_DEVICE); memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes); } static int hal2_capture_ack(struct snd_pcm_substream *substream) { struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); struct hal2_codec *adc = &hal2->adc; snd_pcm_indirect_capture_transfer(substream, &adc->pcm_indirect, hal2_capture_transfer); return 0; } static struct snd_pcm_ops hal2_playback_ops = { .open = hal2_playback_open, .close = hal2_playback_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = hal2_pcm_hw_params, .hw_free = hal2_pcm_hw_free, .prepare = hal2_playback_prepare, .trigger = hal2_playback_trigger, .pointer = hal2_playback_pointer, .ack = hal2_playback_ack, }; static struct snd_pcm_ops hal2_capture_ops = { .open = hal2_capture_open, .close = hal2_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = hal2_pcm_hw_params, .hw_free = hal2_pcm_hw_free, .prepare = hal2_capture_prepare, .trigger = hal2_capture_trigger, .pointer = hal2_capture_pointer, .ack = hal2_capture_ack, }; static int __devinit hal2_pcm_create(struct snd_hal2 *hal2) { struct snd_pcm *pcm; int err; /* create first pcm device with one outputs and one input */ err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm); if (err < 0) return err; pcm->private_data = hal2; strcpy(pcm->name, "SGI HAL2"); /* set operators */ snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &hal2_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &hal2_capture_ops); snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS, snd_dma_continuous_data(GFP_KERNEL), 0, 1024 * 1024); return 0; } static int hal2_dev_free(struct snd_device *device) { struct snd_hal2 *hal2 = device->device_data; free_irq(SGI_HPCDMA_IRQ, hal2); kfree(hal2); return 0; } static struct snd_device_ops hal2_ops = { .dev_free = hal2_dev_free, }; static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3, int index) { codec->pbus.pbusnr = index; codec->pbus.pbus = &hpc3->pbdma[index]; } static int hal2_detect(struct snd_hal2 *hal2) { unsigned short board, major, minor; unsigned short rev; /* reset HAL2 */ hal2_write(0, &hal2->ctl_regs->isr); /* release reset */ hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N, &hal2->ctl_regs->isr); hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE); rev = hal2_read(&hal2->ctl_regs->rev); if (rev & H2_REV_AUDIO_PRESENT) return -ENODEV; board = (rev & H2_REV_BOARD_M) >> 12; major = (rev & H2_REV_MAJOR_CHIP_M) >> 4; minor = (rev & H2_REV_MINOR_CHIP_M); printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n", board, major, minor); return 0; } static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip) { struct snd_hal2 *hal2; struct hpc3_regs *hpc3 = hpc3c0; int err; hal2 = kzalloc(sizeof(struct snd_hal2), GFP_KERNEL); if (!hal2) return -ENOMEM; hal2->card = card; if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED, "SGI HAL2", hal2)) { printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ); kfree(hal2); return -EAGAIN; } hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0]; hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1]; hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2]; hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3]; if (hal2_detect(hal2) < 0) { kfree(hal2); return -ENODEV; } hal2_init_codec(&hal2->dac, hpc3, 0); hal2_init_codec(&hal2->adc, hpc3, 1); /* * All DMA channel interfaces in HAL2 are designed to operate with * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles * in D5. HAL2 is a 16-bit device which can accept both big and little * endian format. It assumes that even address bytes are on high * portion of PBUS (15:8) and assumes that HPC3 is programmed to * accept a live (unsynchronized) version of P_DREQ_N from HAL2. */ #define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \ (2 << HPC3_DMACFG_D4R_SHIFT) | \ (2 << HPC3_DMACFG_D5R_SHIFT) | \ (0 << HPC3_DMACFG_D3W_SHIFT) | \ (2 << HPC3_DMACFG_D4W_SHIFT) | \ (2 << HPC3_DMACFG_D5W_SHIFT) | \ HPC3_DMACFG_DS16 | \ HPC3_DMACFG_EVENHI | \ HPC3_DMACFG_RTIME | \ (8 << HPC3_DMACFG_BURST_SHIFT) | \ HPC3_DMACFG_DRQLIVE) /* * Ignore what's mentioned in the specification and write value which * works in The Real World (TM) */ hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844; hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844; err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops); if (err < 0) { free_irq(SGI_HPCDMA_IRQ, hal2); kfree(hal2); return err; } *rchip = hal2; return 0; } static int __devinit hal2_probe(struct platform_device *pdev) { struct snd_card *card; struct snd_hal2 *chip; int err; err = snd_card_create(index, id, THIS_MODULE, 0, &card); if (err < 0) return err; err = hal2_create(card, &chip); if (err < 0) { snd_card_free(card); return err; } snd_card_set_dev(card, &pdev->dev); err = hal2_pcm_create(chip); if (err < 0) { snd_card_free(card); return err; } err = hal2_mixer_create(chip); if (err < 0) { snd_card_free(card); return err; } strcpy(card->driver, "SGI HAL2 Audio"); strcpy(card->shortname, "SGI HAL2 Audio"); sprintf(card->longname, "%s irq %i", card->shortname, SGI_HPCDMA_IRQ); err = snd_card_register(card); if (err < 0) { snd_card_free(card); return err; } platform_set_drvdata(pdev, card); return 0; } static int __devexit hal2_remove(struct platform_device *pdev) { struct snd_card *card = platform_get_drvdata(pdev); snd_card_free(card); platform_set_drvdata(pdev, NULL); return 0; } static struct platform_driver hal2_driver = { .probe = hal2_probe, .remove = __devexit_p(hal2_remove), .driver = { .name = "sgihal2", .owner = THIS_MODULE, } }; module_platform_driver(hal2_driver);