- 根目录:
- drivers
- staging
- omapdrm
- omap_gem.c
/*
* drivers/staging/omapdrm/omap_gem.c
*
* Copyright (C) 2011 Texas Instruments
* Author: Rob Clark <rob.clark@linaro.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/spinlock.h>
#include <linux/shmem_fs.h>
#include "omap_drv.h"
#include "omap_dmm_tiler.h"
/* remove these once drm core helpers are merged */
struct page ** _drm_gem_get_pages(struct drm_gem_object *obj, gfp_t gfpmask);
void _drm_gem_put_pages(struct drm_gem_object *obj, struct page **pages,
bool dirty, bool accessed);
int _drm_gem_create_mmap_offset_size(struct drm_gem_object *obj, size_t size);
/*
* GEM buffer object implementation.
*/
#define to_omap_bo(x) container_of(x, struct omap_gem_object, base)
/* note: we use upper 8 bits of flags for driver-internal flags: */
#define OMAP_BO_DMA 0x01000000 /* actually is physically contiguous */
#define OMAP_BO_EXT_SYNC 0x02000000 /* externally allocated sync object */
#define OMAP_BO_EXT_MEM 0x04000000 /* externally allocated memory */
struct omap_gem_object {
struct drm_gem_object base;
uint32_t flags;
/** width/height for tiled formats (rounded up to slot boundaries) */
uint16_t width, height;
/** roll applied when mapping to DMM */
uint32_t roll;
/**
* If buffer is allocated physically contiguous, the OMAP_BO_DMA flag
* is set and the paddr is valid. Also if the buffer is remapped in
* TILER and paddr_cnt > 0, then paddr is valid. But if you are using
* the physical address and OMAP_BO_DMA is not set, then you should
* be going thru omap_gem_{get,put}_paddr() to ensure the mapping is
* not removed from under your feet.
*
* Note that OMAP_BO_SCANOUT is a hint from userspace that DMA capable
* buffer is requested, but doesn't mean that it is. Use the
* OMAP_BO_DMA flag to determine if the buffer has a DMA capable
* physical address.
*/
dma_addr_t paddr;
/**
* # of users of paddr
*/
uint32_t paddr_cnt;
/**
* tiler block used when buffer is remapped in DMM/TILER.
*/
struct tiler_block *block;
/**
* Array of backing pages, if allocated. Note that pages are never
* allocated for buffers originally allocated from contiguous memory
*/
struct page **pages;
/** addresses corresponding to pages in above array */
dma_addr_t *addrs;
/**
* Virtual address, if mapped.
*/
void *vaddr;
/**
* sync-object allocated on demand (if needed)
*
* Per-buffer sync-object for tracking pending and completed hw/dma
* read and write operations. The layout in memory is dictated by
* the SGX firmware, which uses this information to stall the command
* stream if a surface is not ready yet.
*
* Note that when buffer is used by SGX, the sync-object needs to be
* allocated from a special heap of sync-objects. This way many sync
* objects can be packed in a page, and not waste GPU virtual address
* space. Because of this we have to have a omap_gem_set_sync_object()
* API to allow replacement of the syncobj after it has (potentially)
* already been allocated. A bit ugly but I haven't thought of a
* better alternative.
*/
struct {
uint32_t write_pending;
uint32_t write_complete;
uint32_t read_pending;
uint32_t read_complete;
} *sync;
};
static int get_pages(struct drm_gem_object *obj, struct page ***pages);
static uint64_t mmap_offset(struct drm_gem_object *obj);
/* To deal with userspace mmap'ings of 2d tiled buffers, which (a) are
* not necessarily pinned in TILER all the time, and (b) when they are
* they are not necessarily page aligned, we reserve one or more small
* regions in each of the 2d containers to use as a user-GART where we
* can create a second page-aligned mapping of parts of the buffer
* being accessed from userspace.
*
* Note that we could optimize slightly when we know that multiple
* tiler containers are backed by the same PAT.. but I'll leave that
* for later..
*/
#define NUM_USERGART_ENTRIES 2
struct usergart_entry {
struct tiler_block *block; /* the reserved tiler block */
dma_addr_t paddr;
struct drm_gem_object *obj; /* the current pinned obj */
pgoff_t obj_pgoff; /* page offset of obj currently
mapped in */
};
static struct {
struct usergart_entry entry[NUM_USERGART_ENTRIES];
int height; /* height in rows */
int height_shift; /* ilog2(height in rows) */
int slot_shift; /* ilog2(width per slot) */
int stride_pfn; /* stride in pages */
int last; /* index of last used entry */
} *usergart;
static void evict_entry(struct drm_gem_object *obj,
enum tiler_fmt fmt, struct usergart_entry *entry)
{
if (obj->dev->dev_mapping) {
size_t size = PAGE_SIZE * usergart[fmt].height;
loff_t off = mmap_offset(obj) +
(entry->obj_pgoff << PAGE_SHIFT);
unmap_mapping_range(obj->dev->dev_mapping, off, size, 1);
}
entry->obj = NULL;
}
/* Evict a buffer from usergart, if it is mapped there */
static void evict(struct drm_gem_object *obj)
{
struct omap_gem_object *omap_obj = to_omap_bo(obj);
if (omap_obj->flags & OMAP_BO_TILED) {
enum tiler_fmt fmt = gem2fmt(omap_obj->flags);
int i;
if (!usergart)
return;
for (i = 0; i < NUM_USERGART_ENTRIES; i++) {
struct usergart_entry *entry = &usergart[fmt].entry[i];
if (entry->obj == obj)
evict_entry(obj, fmt, entry);
}
}
}
/* GEM objects can either be allocated from contiguous memory (in which
* case obj->filp==NULL), or w/ shmem backing (obj->filp!=NULL). But non
* contiguous buffers can be remapped in TILER/DMM if they need to be
* contiguous... but we don't do this all the time to reduce pressure
* on TILER/DMM space when we know at allocation time that the buffer
* will need to be scanned out.
*/
static inline bool is_shmem(struct drm_gem_object *obj)
{
return obj->filp != NULL;
}
static DEFINE_SPINLOCK(sync_lock);
/** ensure backing pages are allocated */
static int omap_gem_attach_pages(struct drm_gem_object *obj)
{
struct omap_gem_object *omap_obj = to_omap_bo(obj);
struct page **pages;
WARN_ON(omap_obj->pages);
/* TODO: __GFP_DMA32 .. but somehow GFP_HIGHMEM is coming from the
* mapping_gfp_mask(mapping) which conflicts w/ GFP_DMA32.. probably
* we actually want CMA memory for it all anyways..
*/
pages = _drm_gem_get_pages(obj, GFP_KERNEL);
if (IS_ERR(pages)) {
dev_err(obj->dev->dev, "could not get pages: %ld\n", PTR_ERR(pages));
return PTR_ERR(pages);
}
/* for non-cached buffers, ensure the new pages are clean because
* DSS, GPU, etc. are not cache coherent:
*/
if (omap_obj->flags & (OMAP_BO_WC|OMAP_BO_UNCACHED)) {
int i, npages = obj->size >> PAGE_SHIFT;
dma_addr_t *addrs = kmalloc(npages * sizeof(addrs), GFP_KERNEL);
for (i = 0; i < npages; i++) {
addrs[i] = dma_map_page(obj->dev->dev, pages[i],
0, PAGE_SIZE, DMA_BIDIRECTIONAL);
}
omap_obj->addrs = addrs;
}
omap_obj->pages = pages;
return 0;
}
/** release backing pages */
static void omap_gem_detach_pages(struct drm_gem_object *obj)
{
struct omap_gem_object *omap_obj = to_omap_bo(obj);
/* for non-cached buffers, ensure the new pages are clean because
* DSS, GPU, etc. are not cache coherent:
*/
if (omap_obj->flags & (OMAP_BO_WC|OMAP_BO_UNCACHED)) {
int i, npages = obj->size >> PAGE_SHIFT;
for (i = 0; i < npages; i++) {
dma_unmap_page(obj->dev->dev, omap_obj->addrs[i],
PAGE_SIZE, DMA_BIDIRECTIONAL);
}
kfree(omap_obj->addrs);
omap_obj->addrs = NULL;
}
_drm_gem_put_pages(obj, omap_obj->pages, true, false);
omap_obj->pages = NULL;
}
/** get mmap offset */
static uint64_t mmap_offset(struct drm_gem_object *obj)
{
if (!obj->map_list.map) {
/* Make it mmapable */
size_t size = omap_gem_mmap_size(obj);
int ret = _drm_gem_create_mmap_offset_size(obj, size);
if (ret) {
dev_err(obj->dev->dev, "could not allocate mmap offset");
return 0;
}
}
return (uint64_t)obj->map_list.hash.key << PAGE_SHIFT;
}
uint64_t omap_gem_mmap_offset(struct drm_gem_object *obj)
{
uint64_t offset;
mutex_lock(&obj->dev->struct_mutex);
offset = mmap_offset(obj);
mutex_unlock(&obj->dev->struct_mutex);
return offset;
}
/** get mmap size */
size_t omap_gem_mmap_size(struct drm_gem_object *obj)
{
struct omap_gem_object *omap_obj = to_omap_bo(obj);
size_t size = obj->size;
if (omap_obj->flags & OMAP_BO_TILED) {
/* for tiled buffers, the virtual size has stride rounded up
* to 4kb.. (to hide the fact that row n+1 might start 16kb or
* 32kb later!). But we don't back the entire buffer with
* pages, only the valid picture part.. so need to adjust for
* this in the size used to mmap and generate mmap offset
*/
size = tiler_vsize(gem2fmt(omap_obj->flags),
omap_obj->width, omap_obj->height);
}
return size;
}
/* Normal handling for the case of faulting in non-tiled buffers */
static int fault_1d(struct drm_gem_object *obj,
struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct omap_gem_object *omap_obj = to_omap_bo(obj);
unsigned long pfn;
pgoff_t pgoff;
/* We don't use vmf->pgoff since that has the fake offset: */
pgoff = ((unsigned long)vmf->virtual_address -
vma->vm_start) >> PAGE_SHIFT;
if (omap_obj->pages) {
pfn = page_to_pfn(omap_obj->pages[pgoff]);
} else {
BUG_ON(!(omap_obj->flags & OMAP_BO_DMA));
pfn = (omap_obj->paddr >> PAGE_SHIFT) + pgoff;
}
VERB("Inserting %p pfn %lx, pa %lx", vmf->virtual_address,
pfn, pfn << PAGE_SHIFT);
return vm_insert_mixed(vma, (unsigned long)vmf->virtual_address, pfn);
}
/* Special handling for the case of faulting in 2d tiled buffers */
static int fault_2d(struct drm_gem_object *obj,
struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct omap_gem_object *omap_obj = to_omap_bo(obj);
struct usergart_entry *entry;
enum tiler_fmt fmt = gem2fmt(omap_obj->flags);
struct page *pages[64]; /* XXX is this too much to have on stack? */
unsigned long pfn;
pgoff_t pgoff, base_pgoff;
void __user *vaddr;
int i, ret, slots;
if (!usergart)
return -EFAULT;
/* TODO: this fxn might need a bit tweaking to deal w/ tiled buffers
* that are wider than 4kb
*/
/* We don't use vmf->pgoff since that has the fake offset: */
pgoff = ((unsigned long)vmf->virtual_address -
vma->vm_start) >> PAGE_SHIFT;
/* actual address we start mapping at is rounded down to previous slot
* boundary in the y direction:
*/
base_pgoff = round_down(pgoff, usergart[fmt].height);
vaddr = vmf->virtual_address - ((pgoff - base_pgoff) << PAGE_SHIFT);
entry = &usergart[fmt].entry[usergart[fmt].last];
slots = omap_obj->width >> usergart[fmt].slot_shift;
/* evict previous buffer using this usergart entry, if any: */
if (entry->obj)
evict_entry(entry->obj, fmt, entry);
entry->obj = obj;
entry->obj_pgoff = base_pgoff;
/* now convert base_pgoff to phys offset from virt offset:
*/
base_pgoff = (base_pgoff >> usergart[fmt].height_shift) * slots;
/* map in pages. Note the height of the slot is also equal to the
* number of pages that need to be mapped in to fill 4kb wide CPU page.
* If the height is 64, then 64 pages fill a 4kb wide by 64 row region.
* Beyond the valid pixel part of the buffer, we set pages[i] to NULL to
* get a dummy page mapped in.. if someone reads/writes it they will get
* random/undefined content, but at least it won't be corrupting
* whatever other random page used to be mapped in, or other undefined
* behavior.
*/
memcpy(pages, &omap_obj->pages[base_pgoff],
sizeof(struct page *) * slots);
memset(pages + slots, 0,
sizeof(struct page *) * (usergart[fmt].height - slots));
ret = tiler_pin(entry->block, pages, ARRAY_SIZE(pages), 0, true);
if (ret) {
dev_err(obj->dev->dev, "failed to pin: %d\n", ret);
return ret;
}
i = usergart[fmt].height;
pfn = entry->paddr >> PAGE_SHIFT;
VERB("Inserting %p pfn %lx, pa %lx", vmf->virtual_address,
pfn, pfn << PAGE_SHIFT);
while (i--) {
vm_insert_mixed(vma, (unsigned long)vaddr, pfn);
pfn += usergart[fmt].stride_pfn;
vaddr += PAGE_SIZE;
}
/* simple round-robin: */
usergart[fmt].last = (usergart[fmt].last + 1) % NUM_USERGART_ENTRIES;
return 0;
}
/**
* omap_gem_fault - pagefault handler for GEM objects
* @vma: the VMA of the GEM object
* @vmf: fault detail
*
* Invoked when a fault occurs on an mmap of a GEM managed area. GEM
* does most of the work for us including the actual map/unmap calls
* but we need to do the actual page work.
*
* The VMA was set up by GEM. In doing so it also ensured that the
* vma->vm_private_data points to the GEM object that is backing this
* mapping.
*/
int omap_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct drm_gem_object *obj = vma->vm_private_data;
struct omap_gem_object *omap_obj = to_omap_bo(obj);
struct drm_device *dev = obj->dev;
struct page **pages;
int ret;
/* Make sure we don't parallel update on a fault, nor move or remove
* something from beneath our feet
*/
mutex_lock(&dev->struct_mutex);
/* if a shmem backed object, make sure we have pages attached now */
ret = get_pages(obj, &pages);
if (ret) {
goto fail;
}
/* where should we do corresponding put_pages().. we are mapping
* the original page, rather than thru a GART, so we can't rely
* on eviction to trigger this. But munmap() or all mappings should
* probably trigger put_pages()?
*/
if (omap_obj->flags & OMAP_BO_TILED)
ret = fault_2d(obj, vma, vmf);
else
ret = fault_1d(obj, vma, vmf);
fail:
mutex_unlock(&dev->struct_mutex);
switch (ret) {
case 0:
case -ERESTARTSYS:
case -EINTR:
return VM_FAULT_NOPAGE;
case -ENOMEM:
return VM_FAULT_OOM;
default:
return VM_FAULT_SIGBUS;
}
}
/** We override mainly to fix up some of the vm mapping flags.. */
int omap_gem_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct omap_gem_object *omap_obj;
int ret;
ret = drm_gem_mmap(filp, vma);
if (ret) {
DBG("mmap failed: %d", ret);
return ret;
}
/* after drm_gem_mmap(), it is safe to access the obj */
omap_obj = to_omap_bo(vma->vm_private_data);
vma->vm_flags &= ~VM_PFNMAP;
vma->vm_flags |= VM_MIXEDMAP;
if (omap_obj->flags & OMAP_BO_WC) {
vma->vm_page_prot = pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
} else if (omap_obj->flags & OMAP_BO_UNCACHED) {
vma->vm_page_prot = pgprot_noncached(vm_get_page_prot(vma->vm_flags));
} else {
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
}
return ret;
}
/**
* omap_gem_dumb_create - create a dumb buffer
* @drm_file: our client file
* @dev: our device
* @args: the requested arguments copied from userspace
*
* Allocate a buffer suitable for use for a frame buffer of the
* form described by user space. Give userspace a handle by which
* to reference it.
*/
int omap_gem_dumb_create(struct drm_file *file, struct drm_device *dev,
struct drm_mode_create_dumb *args)
{
union omap_gem_size gsize;
/* in case someone tries to feed us a completely bogus stride: */
args->pitch = align_pitch(args->pitch, args->width, args->bpp);
args->size = PAGE_ALIGN(args->pitch * args->height);
gsize = (union omap_gem_size){
.bytes = args->size,
};
return omap_gem_new_handle(dev, file, gsize,
OMAP_BO_SCANOUT | OMAP_BO_WC, &args->handle);
}
/**
* omap_gem_dumb_destroy - destroy a dumb buffer
* @file: client file
* @dev: our DRM device
* @handle: the object handle
*
* Destroy a handle that was created via omap_gem_dumb_create.
*/
int omap_gem_dumb_destroy(struct drm_file *file, struct drm_device *dev,
uint32_t handle)
{
/* No special work needed, drop the reference and see what falls out */
return drm_gem_handle_delete(file, handle);
}
/**
* omap_gem_dumb_map - buffer mapping for dumb interface
* @file: our drm client file
* @dev: drm device
* @handle: GEM handle to the object (from dumb_create)
*
* Do the necessary setup to allow the mapping of the frame buffer
* into user memory. We don't have to do much here at the moment.
*/
int omap_gem_dumb_map_offset(struct drm_file *file, struct drm_device *dev,
uint32_t handle, uint64_t *offset)
{
struct drm_gem_object *obj;
int ret = 0;
/* GEM does all our handle to object mapping */
obj = drm_gem_object_lookup(dev, file, handle);
if (obj == NULL) {
ret = -ENOENT;
goto fail;
}
*offset = omap_gem_mmap_offset(obj);
drm_gem_object_unreference_unlocked(obj);
fail:
return ret;
}
/* Set scrolling position. This allows us to implement fast scrolling
* for console.
*/
int omap_gem_roll(struct drm_gem_object *obj, uint32_t roll)
{
struct omap_gem_object *omap_obj = to_omap_bo(obj);
uint32_t npages = obj->size >> PAGE_SHIFT;
int ret = 0;
if (roll > npages) {
dev_err(obj->dev->dev, "invalid roll: %d\n", roll);
return -EINVAL;
}
omap_obj->roll = roll;
if (in_atomic() || mutex_is_locked(&obj->dev->struct_mutex)) {
/* this can get called from fbcon in atomic context.. so
* just ignore it and wait for next time called from
* interruptible context to update the PAT.. the result
* may be that user sees wrap-around instead of scrolling
* momentarily on the screen. If we wanted to be fancier
* we could perhaps schedule some workqueue work at this
* point.
*/
return 0;
}
mutex_lock(&obj->dev->struct_mutex);
/* if we aren't mapped yet, we don't need to do anything */
if (omap_obj->block) {
struct page **pages;
ret = get_pages(obj, &pages);
if (ret)
goto fail;
ret = tiler_pin(omap_obj->block, pages, npages, roll, true);
if (ret)
dev_err(obj->dev->dev, "could not repin: %d\n", ret);
}
fail:
mutex_unlock(&obj->dev->struct_mutex);
return ret;
}
/* Get physical address for DMA.. if 'remap' is true, and the buffer is not
* already contiguous, remap it to pin in physically contiguous memory.. (ie.
* map in TILER)
*/
int omap_gem_get_paddr(struct drm_gem_object *obj,
dma_addr_t *paddr, bool remap)
{
struct omap_drm_private *priv = obj->dev->dev_private;
struct omap_gem_object *omap_obj = to_omap_bo(obj);
int ret = 0;
mutex_lock(&obj->dev->struct_mutex);
if (remap && is_shmem(obj) && priv->has_dmm) {
if (omap_obj->paddr_cnt == 0) {
struct page **pages;
uint32_t npages = obj->size >> PAGE_SHIFT;
enum tiler_fmt fmt = gem2fmt(omap_obj->flags);
struct tiler_block *block;
BUG_ON(omap_obj->block);
ret = get_pages(obj, &pages);
if (ret)
goto fail;
if (omap_obj->flags & OMAP_BO_TILED) {
block = tiler_reserve_2d(fmt,
omap_obj->width,
omap_obj->height, 0);
} else {
block = tiler_reserve_1d(obj->size);
}
if (IS_ERR(block)) {
ret = PTR_ERR(block);
dev_err(obj->dev->dev,
"could not remap: %d (%d)\n", ret, fmt);
goto fail;
}
/* TODO: enable async refill.. */
ret = tiler_pin(block, pages, npages,
omap_obj->roll, true);
if (ret) {
tiler_release(block);
dev_err(obj->dev->dev,
"could not pin: %d\n", ret);
goto fail;
}
omap_obj->paddr = tiler_ssptr(block);
omap_obj->block = block;
DBG("got paddr: %08x", omap_obj->paddr);
}
omap_obj->paddr_cnt++;
*paddr = omap_obj->paddr;
} else if (omap_obj->flags & OMAP_BO_DMA) {
*paddr = omap_obj->paddr;
} else {
ret = -EINVAL;
}
fail:
mutex_unlock(&obj->dev->struct_mutex);
return ret;
}
/* Release physical address, when DMA is no longer being performed.. this
* could potentially unpin and unmap buffers from TILER
*/
int omap_gem_put_paddr(struct drm_gem_object *obj)
{
struct omap_gem_object *omap_obj = to_omap_bo(obj);
int ret = 0;
mutex_lock(&obj->dev->struct_mutex);
if (omap_obj->paddr_cnt > 0) {
omap_obj->paddr_cnt--;
if (omap_obj->paddr_cnt == 0) {
ret = tiler_unpin(omap_obj->block);
if (ret) {
dev_err(obj->dev->dev,
"could not unpin pages: %d\n", ret);
goto fail;
}
ret = tiler_release(omap_obj->block);
if (ret) {
dev_err(obj->dev->dev,
"could not release unmap: %d\n", ret);
}
omap_obj->block = NULL;
}
}
fail:
mutex_unlock(&obj->dev->struct_mutex);
return ret;
}
/* acquire pages when needed (for example, for DMA where physically
* contiguous buffer is not required
*/
static int get_pages(struct drm_gem_object *obj, struct page ***pages)
{
struct omap_gem_object *omap_obj = to_omap_bo(obj);
int ret = 0;
if (is_shmem(obj) && !omap_obj->pages) {
ret = omap_gem_attach_pages(obj);
if (ret) {
dev_err(obj->dev->dev, "could not attach pages\n");
return ret;
}
}
/* TODO: even phys-contig.. we should have a list of pages? */
*pages = omap_obj->pages;
return 0;
}
int omap_gem_get_pages(struct drm_gem_object *obj, struct page ***pages)
{
int ret;
mutex_lock(&obj->dev->struct_mutex);
ret = get_pages(obj, pages);
mutex_unlock(&obj->dev->struct_mutex);
return ret;
}
/* release pages when DMA no longer being performed */
int omap_gem_put_pages(struct drm_gem_object *obj)
{
/* do something here if we dynamically attach/detach pages.. at
* least they would no longer need to be pinned if everyone has
* released the pages..
*/
return 0;
}
/* Get kernel virtual address for CPU access.. this more or less only
* exists for omap_fbdev. This should be called with struct_mutex
* held.
*/
void *omap_gem_vaddr(struct drm_gem_object *obj)
{
struct omap_gem_object *omap_obj = to_omap_bo(obj);
WARN_ON(! mutex_is_locked(&obj->dev->struct_mutex));
if (!omap_obj->vaddr) {
struct page **pages;
int ret = get_pages(obj, &pages);
if (ret)
return ERR_PTR(ret);
omap_obj->vaddr = vmap(pages, obj->size >> PAGE_SHIFT,
VM_MAP, pgprot_writecombine(PAGE_KERNEL));
}
return omap_obj->vaddr;
}
/* Buffer Synchronization:
*/
struct omap_gem_sync_waiter {
struct list_head list;
struct omap_gem_object *omap_obj;
enum omap_gem_op op;
uint32_t read_target, write_target;
/* notify called w/ sync_lock held */
void (*notify)(void *arg);
void *arg;
};
/* list of omap_gem_sync_waiter.. the notify fxn gets called back when
* the read and/or write target count is achieved which can call a user
* callback (ex. to kick 3d and/or 2d), wakeup blocked task (prep for
* cpu access), etc.
*/
static LIST_HEAD(waiters);
static inline bool is_waiting(struct omap_gem_sync_waiter *waiter)
{
struct omap_gem_object *omap_obj = waiter->omap_obj;
if ((waiter->op & OMAP_GEM_READ) &&
(omap_obj->sync->read_complete < waiter->read_target))
return true;
if ((waiter->op & OMAP_GEM_WRITE) &&
(omap_obj->sync->write_complete < waiter->write_target))
return true;
return false;
}
/* macro for sync debug.. */
#define SYNCDBG 0
#define SYNC(fmt, ...) do { if (SYNCDBG) \
printk(KERN_ERR "%s:%d: "fmt"\n", \
__func__, __LINE__, ##__VA_ARGS__); \
} while (0)
static void sync_op_update(void)
{
struct omap_gem_sync_waiter *waiter, *n;
list_for_each_entry_safe(waiter, n, &waiters, list) {
if (!is_waiting(waiter)) {
list_del(&waiter->list);
SYNC("notify: %p", waiter);
waiter->notify(waiter->arg);
kfree(waiter);
}
}
}
static inline int sync_op(struct drm_gem_object *obj,
enum omap_gem_op op, bool start)
{
struct omap_gem_object *omap_obj = to_omap_bo(obj);
int ret = 0;
spin_lock(&sync_lock);
if (!omap_obj->sync) {
omap_obj->sync = kzalloc(sizeof(*omap_obj->sync), GFP_ATOMIC);
if (!omap_obj->sync) {
ret = -ENOMEM;
goto unlock;
}
}
if (start) {
if (op & OMAP_GEM_READ)
omap_obj->sync->read_pending++;
if (op & OMAP_GEM_WRITE)
omap_obj->sync->write_pending++;
} else {
if (op & OMAP_GEM_READ)
omap_obj->sync->read_complete++;
if (op & OMAP_GEM_WRITE)
omap_obj->sync->write_complete++;
sync_op_update();
}
unlock:
spin_unlock(&sync_lock);
return ret;
}
/* it is a bit lame to handle updates in this sort of polling way, but
* in case of PVR, the GPU can directly update read/write complete
* values, and not really tell us which ones it updated.. this also
* means that sync_lock is not quite sufficient. So we'll need to
* do something a bit better when it comes time to add support for
* separate 2d hw..
*/
void omap_gem_op_update(void)
{
spin_lock(&sync_lock);
sync_op_update();
spin_unlock(&sync_lock);
}
/* mark the start of read and/or write operation */
int omap_gem_op_start(struct drm_gem_object *obj, enum omap_gem_op op)
{
return sync_op(obj, op, true);
}
int omap_gem_op_finish(struct drm_gem_object *obj, enum omap_gem_op op)
{
return sync_op(obj, op, false);
}
static DECLARE_WAIT_QUEUE_HEAD(sync_event);
static void sync_notify(void *arg)
{
struct task_struct **waiter_task = arg;
*waiter_task = NULL;
wake_up_all(&sync_event);
}
int omap_gem_op_sync(struct drm_gem_object *obj, enum omap_gem_op op)
{
struct omap_gem_object *omap_obj = to_omap_bo(obj);
int ret = 0;
if (omap_obj->sync) {
struct task_struct *waiter_task = current;
struct omap_gem_sync_waiter *waiter =
kzalloc(sizeof(*waiter), GFP_KERNEL);
if (!waiter) {
return -ENOMEM;
}
waiter->omap_obj = omap_obj;
waiter->op = op;
waiter->read_target = omap_obj->sync->read_pending;
waiter->write_target = omap_obj->sync->write_pending;
waiter->notify = sync_notify;
waiter->arg = &waiter_task;
spin_lock(&sync_lock);
if (is_waiting(waiter)) {
SYNC("waited: %p", waiter);
list_add_tail(&waiter->list, &waiters);
spin_unlock(&sync_lock);
ret = wait_event_interruptible(sync_event,
(waiter_task == NULL));
spin_lock(&sync_lock);
if (waiter_task) {
SYNC("interrupted: %p", waiter);
/* we were interrupted */
list_del(&waiter->list);
waiter_task = NULL;
} else {
/* freed in sync_op_update() */
waiter = NULL;
}
}
spin_unlock(&sync_lock);
if (waiter) {
kfree(waiter);
}
}
return ret;
}
/* call fxn(arg), either synchronously or asynchronously if the op
* is currently blocked.. fxn() can be called from any context
*
* (TODO for now fxn is called back from whichever context calls
* omap_gem_op_update().. but this could be better defined later
* if needed)
*
* TODO more code in common w/ _sync()..
*/
int omap_gem_op_async(struct drm_gem_object *obj, enum omap_gem_op op,
void (*fxn)(void *arg), void *arg)
{
struct omap_gem_object *omap_obj = to_omap_bo(obj);
if (omap_obj->sync) {
struct omap_gem_sync_waiter *waiter =
kzalloc(sizeof(*waiter), GFP_ATOMIC);
if (!waiter) {
return -ENOMEM;
}
waiter->omap_obj = omap_obj;
waiter->op = op;
waiter->read_target = omap_obj->sync->read_pending;
waiter->write_target = omap_obj->sync->write_pending;
waiter->notify = fxn;
waiter->arg = arg;
spin_lock(&sync_lock);
if (is_waiting(waiter)) {
SYNC("waited: %p", waiter);
list_add_tail(&waiter->list, &waiters);
spin_unlock(&sync_lock);
return 0;
}
spin_unlock(&sync_lock);
}
/* no waiting.. */
fxn(arg);
return 0;
}
/* special API so PVR can update the buffer to use a sync-object allocated
* from it's sync-obj heap. Only used for a newly allocated (from PVR's
* perspective) sync-object, so we overwrite the new syncobj w/ values
* from the already allocated syncobj (if there is one)
*/
int omap_gem_set_sync_object(struct drm_gem_object *obj, void *syncobj)
{
struct omap_gem_object *omap_obj = to_omap_bo(obj);
int ret = 0;
spin_lock(&sync_lock);
if ((omap_obj->flags & OMAP_BO_EXT_SYNC) && !syncobj) {
/* clearing a previously set syncobj */
syncobj = kzalloc(sizeof(*omap_obj->sync), GFP_ATOMIC);
if (!syncobj) {
ret = -ENOMEM;
goto unlock;
}
memcpy(syncobj, omap_obj->sync, sizeof(*omap_obj->sync));
omap_obj->flags &= ~OMAP_BO_EXT_SYNC;
omap_obj->sync = syncobj;
} else if (syncobj && !(omap_obj->flags & OMAP_BO_EXT_SYNC)) {
/* replacing an existing syncobj */
if (omap_obj->sync) {
memcpy(syncobj, omap_obj->sync, sizeof(*omap_obj->sync));
kfree(omap_obj->sync);
}
omap_obj->flags |= OMAP_BO_EXT_SYNC;
omap_obj->sync = syncobj;
}
unlock:
spin_unlock(&sync_lock);
return ret;
}
int omap_gem_init_object(struct drm_gem_object *obj)
{
return -EINVAL; /* unused */
}
/* don't call directly.. called from GEM core when it is time to actually
* free the object..
*/
void omap_gem_free_object(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
struct omap_gem_object *omap_obj = to_omap_bo(obj);
evict(obj);
if (obj->map_list.map) {
drm_gem_free_mmap_offset(obj);
}
/* this means the object is still pinned.. which really should
* not happen. I think..
*/
WARN_ON(omap_obj->paddr_cnt > 0);
/* don't free externally allocated backing memory */
if (!(omap_obj->flags & OMAP_BO_EXT_MEM)) {
if (omap_obj->pages) {
omap_gem_detach_pages(obj);
}
if (!is_shmem(obj)) {
dma_free_writecombine(dev->dev, obj->size,
omap_obj->vaddr, omap_obj->paddr);
} else if (omap_obj->vaddr) {
vunmap(omap_obj->vaddr);
}
}
/* don't free externally allocated syncobj */
if (!(omap_obj->flags & OMAP_BO_EXT_SYNC)) {
kfree(omap_obj->sync);
}
drm_gem_object_release(obj);
kfree(obj);
}
/* convenience method to construct a GEM buffer object, and userspace handle */
int omap_gem_new_handle(struct drm_device *dev, struct drm_file *file,
union omap_gem_size gsize, uint32_t flags, uint32_t *handle)
{
struct drm_gem_object *obj;
int ret;
obj = omap_gem_new(dev, gsize, flags);
if (!obj)
return -ENOMEM;
ret = drm_gem_handle_create(file, obj, handle);
if (ret) {
drm_gem_object_release(obj);
kfree(obj); /* TODO isn't there a dtor to call? just copying i915 */
return ret;
}
/* drop reference from allocate - handle holds it now */
drm_gem_object_unreference_unlocked(obj);
return 0;
}
/* GEM buffer object constructor */
struct drm_gem_object *omap_gem_new(struct drm_device *dev,
union omap_gem_size gsize, uint32_t flags)
{
struct omap_drm_private *priv = dev->dev_private;
struct omap_gem_object *omap_obj;
struct drm_gem_object *obj = NULL;
size_t size;
int ret;
if (flags & OMAP_BO_TILED) {
if (!usergart) {
dev_err(dev->dev, "Tiled buffers require DMM\n");
goto fail;
}
/* tiled buffers are always shmem paged backed.. when they are
* scanned out, they are remapped into DMM/TILER
*/
flags &= ~OMAP_BO_SCANOUT;
/* currently don't allow cached buffers.. there is some caching
* stuff that needs to be handled better
*/
flags &= ~(OMAP_BO_CACHED|OMAP_BO_UNCACHED);
flags |= OMAP_BO_WC;
/* align dimensions to slot boundaries... */
tiler_align(gem2fmt(flags),
&gsize.tiled.width, &gsize.tiled.height);
/* ...and calculate size based on aligned dimensions */
size = tiler_size(gem2fmt(flags),
gsize.tiled.width, gsize.tiled.height);
} else {
size = PAGE_ALIGN(gsize.bytes);
}
omap_obj = kzalloc(sizeof(*omap_obj), GFP_KERNEL);
if (!omap_obj) {
dev_err(dev->dev, "could not allocate GEM object\n");
goto fail;
}
obj = &omap_obj->base;
if ((flags & OMAP_BO_SCANOUT) && !priv->has_dmm) {
/* attempt to allocate contiguous memory if we don't
* have DMM for remappign discontiguous buffers
*/
omap_obj->vaddr = dma_alloc_writecombine(dev->dev, size,
&omap_obj->paddr, GFP_KERNEL);
if (omap_obj->vaddr) {
flags |= OMAP_BO_DMA;
}
}
omap_obj->flags = flags;
if (flags & OMAP_BO_TILED) {
omap_obj->width = gsize.tiled.width;
omap_obj->height = gsize.tiled.height;
}
if (flags & (OMAP_BO_DMA|OMAP_BO_EXT_MEM)) {
ret = drm_gem_private_object_init(dev, obj, size);
} else {
ret = drm_gem_object_init(dev, obj, size);
}
if (ret) {
goto fail;
}
return obj;
fail:
if (obj) {
omap_gem_free_object(obj);
}
return NULL;
}
/* init/cleanup.. if DMM is used, we need to set some stuff up.. */
void omap_gem_init(struct drm_device *dev)
{
struct omap_drm_private *priv = dev->dev_private;
const enum tiler_fmt fmts[] = {
TILFMT_8BIT, TILFMT_16BIT, TILFMT_32BIT
};
int i, j, ret;
ret = omap_dmm_init(dev);
if (ret) {
/* DMM only supported on OMAP4 and later, so this isn't fatal */
dev_warn(dev->dev, "omap_dmm_init failed, disabling DMM\n");
return;
}
usergart = kzalloc(3 * sizeof(*usergart), GFP_KERNEL);
if (!usergart) {
dev_warn(dev->dev, "could not allocate usergart\n");
return;
}
/* reserve 4k aligned/wide regions for userspace mappings: */
for (i = 0; i < ARRAY_SIZE(fmts); i++) {
uint16_t h = 1, w = PAGE_SIZE >> i;
tiler_align(fmts[i], &w, &h);
/* note: since each region is 1 4kb page wide, and minimum
* number of rows, the height ends up being the same as the
* # of pages in the region
*/
usergart[i].height = h;
usergart[i].height_shift = ilog2(h);
usergart[i].stride_pfn = tiler_stride(fmts[i]) >> PAGE_SHIFT;
usergart[i].slot_shift = ilog2((PAGE_SIZE / h) >> i);
for (j = 0; j < NUM_USERGART_ENTRIES; j++) {
struct usergart_entry *entry = &usergart[i].entry[j];
struct tiler_block *block =
tiler_reserve_2d(fmts[i], w, h,
PAGE_SIZE);
if (IS_ERR(block)) {
dev_err(dev->dev,
"reserve failed: %d, %d, %ld\n",
i, j, PTR_ERR(block));
return;
}
entry->paddr = tiler_ssptr(block);
entry->block = block;
DBG("%d:%d: %dx%d: paddr=%08x stride=%d", i, j, w, h,
entry->paddr,
usergart[i].stride_pfn << PAGE_SHIFT);
}
}
priv->has_dmm = true;
}
void omap_gem_deinit(struct drm_device *dev)
{
/* I believe we can rely on there being no more outstanding GEM
* objects which could depend on usergart/dmm at this point.
*/
omap_dmm_remove();
kfree(usergart);
}