- 根目录:
- drivers
- staging
- rtl8192u
- r819xU_phy.c
#include "r8192U.h"
#include "r8192U_hw.h"
#include "r819xU_phy.h"
#include "r819xU_phyreg.h"
#include "r8190_rtl8256.h"
#include "r8192U_dm.h"
#include "r819xU_firmware_img.h"
#include "dot11d.h"
static u32 RF_CHANNEL_TABLE_ZEBRA[] = {
0,
0x085c, //2412 1
0x08dc, //2417 2
0x095c, //2422 3
0x09dc, //2427 4
0x0a5c, //2432 5
0x0adc, //2437 6
0x0b5c, //2442 7
0x0bdc, //2447 8
0x0c5c, //2452 9
0x0cdc, //2457 10
0x0d5c, //2462 11
0x0ddc, //2467 12
0x0e5c, //2472 13
0x0f72, //2484
};
#define rtl819XPHY_REG_1T2RArray Rtl8192UsbPHY_REG_1T2RArray
#define rtl819XMACPHY_Array_PG Rtl8192UsbMACPHY_Array_PG
#define rtl819XMACPHY_Array Rtl8192UsbMACPHY_Array
#define rtl819XRadioA_Array Rtl8192UsbRadioA_Array
#define rtl819XRadioB_Array Rtl8192UsbRadioB_Array
#define rtl819XRadioC_Array Rtl8192UsbRadioC_Array
#define rtl819XRadioD_Array Rtl8192UsbRadioD_Array
#define rtl819XAGCTAB_Array Rtl8192UsbAGCTAB_Array
/******************************************************************************
*function: This function read BB parameters from Header file we gen,
* and do register read/write
* input: u32 dwBitMask //taget bit pos in the addr to be modified
* output: none
* return: u32 return the shift bit bit position of the mask
* ****************************************************************************/
u32 rtl8192_CalculateBitShift(u32 dwBitMask)
{
u32 i;
for (i=0; i<=31; i++)
{
if (((dwBitMask>>i)&0x1) == 1)
break;
}
return i;
}
/******************************************************************************
*function: This function check different RF type to execute legal judgement. If RF Path is illegal, we will return false.
* input: none
* output: none
* return: 0(illegal, false), 1(legal,true)
* ***************************************************************************/
u8 rtl8192_phy_CheckIsLegalRFPath(struct net_device* dev, u32 eRFPath)
{
u8 ret = 1;
struct r8192_priv *priv = ieee80211_priv(dev);
if (priv->rf_type == RF_2T4R)
ret = 0;
else if (priv->rf_type == RF_1T2R)
{
if (eRFPath == RF90_PATH_A || eRFPath == RF90_PATH_B)
ret = 1;
else if (eRFPath == RF90_PATH_C || eRFPath == RF90_PATH_D)
ret = 0;
}
return ret;
}
/******************************************************************************
*function: This function set specific bits to BB register
* input: net_device dev
* u32 dwRegAddr //target addr to be modified
* u32 dwBitMask //taget bit pos in the addr to be modified
* u32 dwData //value to be write
* output: none
* return: none
* notice:
* ****************************************************************************/
void rtl8192_setBBreg(struct net_device* dev, u32 dwRegAddr, u32 dwBitMask, u32 dwData)
{
u32 OriginalValue, BitShift, NewValue;
if(dwBitMask!= bMaskDWord)
{//if not "double word" write
OriginalValue = read_nic_dword(dev, dwRegAddr);
BitShift = rtl8192_CalculateBitShift(dwBitMask);
NewValue = (((OriginalValue) & (~dwBitMask)) | (dwData << BitShift));
write_nic_dword(dev, dwRegAddr, NewValue);
}else
write_nic_dword(dev, dwRegAddr, dwData);
return;
}
/******************************************************************************
*function: This function reads specific bits from BB register
* input: net_device dev
* u32 dwRegAddr //target addr to be readback
* u32 dwBitMask //taget bit pos in the addr to be readback
* output: none
* return: u32 Data //the readback register value
* notice:
* ****************************************************************************/
u32 rtl8192_QueryBBReg(struct net_device* dev, u32 dwRegAddr, u32 dwBitMask)
{
u32 Ret = 0, OriginalValue, BitShift;
OriginalValue = read_nic_dword(dev, dwRegAddr);
BitShift = rtl8192_CalculateBitShift(dwBitMask);
Ret =(OriginalValue & dwBitMask) >> BitShift;
return (Ret);
}
static u32 phy_FwRFSerialRead( struct net_device* dev, RF90_RADIO_PATH_E eRFPath, u32 Offset );
static void phy_FwRFSerialWrite( struct net_device* dev, RF90_RADIO_PATH_E eRFPath, u32 Offset, u32 Data);
/******************************************************************************
*function: This function read register from RF chip
* input: net_device dev
* RF90_RADIO_PATH_E eRFPath //radio path of A/B/C/D
* u32 Offset //target address to be read
* output: none
* return: u32 readback value
* notice: There are three types of serial operations:(1) Software serial write.(2)Hardware LSSI-Low Speed Serial Interface.(3)Hardware HSSI-High speed serial write. Driver here need to implement (1) and (2)---need more spec for this information.
* ****************************************************************************/
u32 rtl8192_phy_RFSerialRead(struct net_device* dev, RF90_RADIO_PATH_E eRFPath, u32 Offset)
{
struct r8192_priv *priv = ieee80211_priv(dev);
u32 ret = 0;
u32 NewOffset = 0;
BB_REGISTER_DEFINITION_T* pPhyReg = &priv->PHYRegDef[eRFPath];
rtl8192_setBBreg(dev, pPhyReg->rfLSSIReadBack, bLSSIReadBackData, 0);
//make sure RF register offset is correct
Offset &= 0x3f;
//switch page for 8256 RF IC
if (priv->rf_chip == RF_8256)
{
if (Offset >= 31)
{
priv->RfReg0Value[eRFPath] |= 0x140;
//Switch to Reg_Mode2 for Reg 31-45
rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath]<<16) );
//modify offset
NewOffset = Offset -30;
}
else if (Offset >= 16)
{
priv->RfReg0Value[eRFPath] |= 0x100;
priv->RfReg0Value[eRFPath] &= (~0x40);
//Switch to Reg_Mode 1 for Reg16-30
rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath]<<16) );
NewOffset = Offset - 15;
}
else
NewOffset = Offset;
}
else
{
RT_TRACE((COMP_PHY|COMP_ERR), "check RF type here, need to be 8256\n");
NewOffset = Offset;
}
//put desired read addr to LSSI control Register
rtl8192_setBBreg(dev, pPhyReg->rfHSSIPara2, bLSSIReadAddress, NewOffset);
//Issue a posedge trigger
//
rtl8192_setBBreg(dev, pPhyReg->rfHSSIPara2, bLSSIReadEdge, 0x0);
rtl8192_setBBreg(dev, pPhyReg->rfHSSIPara2, bLSSIReadEdge, 0x1);
// TODO: we should not delay such a long time. Ask help from SD3
msleep(1);
ret = rtl8192_QueryBBReg(dev, pPhyReg->rfLSSIReadBack, bLSSIReadBackData);
// Switch back to Reg_Mode0;
if(priv->rf_chip == RF_8256)
{
priv->RfReg0Value[eRFPath] &= 0xebf;
rtl8192_setBBreg(
dev,
pPhyReg->rf3wireOffset,
bMaskDWord,
(priv->RfReg0Value[eRFPath] << 16));
}
return ret;
}
/******************************************************************************
*function: This function write data to RF register
* input: net_device dev
* RF90_RADIO_PATH_E eRFPath //radio path of A/B/C/D
* u32 Offset //target address to be written
* u32 Data //The new register data to be written
* output: none
* return: none
* notice: For RF8256 only.
===========================================================
*Reg Mode RegCTL[1] RegCTL[0] Note
* (Reg00[12]) (Reg00[10])
*===========================================================
*Reg_Mode0 0 x Reg 0 ~15(0x0 ~ 0xf)
*------------------------------------------------------------------
*Reg_Mode1 1 0 Reg 16 ~30(0x1 ~ 0xf)
*------------------------------------------------------------------
* Reg_Mode2 1 1 Reg 31 ~ 45(0x1 ~ 0xf)
*------------------------------------------------------------------
* ****************************************************************************/
void rtl8192_phy_RFSerialWrite(struct net_device* dev, RF90_RADIO_PATH_E eRFPath, u32 Offset, u32 Data)
{
struct r8192_priv *priv = ieee80211_priv(dev);
u32 DataAndAddr = 0, NewOffset = 0;
BB_REGISTER_DEFINITION_T *pPhyReg = &priv->PHYRegDef[eRFPath];
Offset &= 0x3f;
//spin_lock_irqsave(&priv->rf_lock, flags);
// down(&priv->rf_sem);
if (priv->rf_chip == RF_8256)
{
if (Offset >= 31)
{
priv->RfReg0Value[eRFPath] |= 0x140;
rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath] << 16));
NewOffset = Offset - 30;
}
else if (Offset >= 16)
{
priv->RfReg0Value[eRFPath] |= 0x100;
priv->RfReg0Value[eRFPath] &= (~0x40);
rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, (priv->RfReg0Value[eRFPath]<<16));
NewOffset = Offset - 15;
}
else
NewOffset = Offset;
}
else
{
RT_TRACE((COMP_PHY|COMP_ERR), "check RF type here, need to be 8256\n");
NewOffset = Offset;
}
// Put write addr in [5:0] and write data in [31:16]
DataAndAddr = (Data<<16) | (NewOffset&0x3f);
// Write Operation
rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr);
if(Offset==0x0)
priv->RfReg0Value[eRFPath] = Data;
// Switch back to Reg_Mode0;
if(priv->rf_chip == RF_8256)
{
if(Offset != 0)
{
priv->RfReg0Value[eRFPath] &= 0xebf;
rtl8192_setBBreg(
dev,
pPhyReg->rf3wireOffset,
bMaskDWord,
(priv->RfReg0Value[eRFPath] << 16));
}
}
//spin_unlock_irqrestore(&priv->rf_lock, flags);
// up(&priv->rf_sem);
return;
}
/******************************************************************************
*function: This function set specific bits to RF register
* input: net_device dev
* RF90_RADIO_PATH_E eRFPath //radio path of A/B/C/D
* u32 RegAddr //target addr to be modified
* u32 BitMask //taget bit pos in the addr to be modified
* u32 Data //value to be write
* output: none
* return: none
* notice:
* ****************************************************************************/
void rtl8192_phy_SetRFReg(struct net_device* dev, RF90_RADIO_PATH_E eRFPath, u32 RegAddr, u32 BitMask, u32 Data)
{
struct r8192_priv *priv = ieee80211_priv(dev);
u32 Original_Value, BitShift, New_Value;
// u8 time = 0;
if (!rtl8192_phy_CheckIsLegalRFPath(dev, eRFPath))
return;
if (priv->Rf_Mode == RF_OP_By_FW)
{
if (BitMask != bMask12Bits) // RF data is 12 bits only
{
Original_Value = phy_FwRFSerialRead(dev, eRFPath, RegAddr);
BitShift = rtl8192_CalculateBitShift(BitMask);
New_Value = ((Original_Value) & (~BitMask)) | (Data<< BitShift);
phy_FwRFSerialWrite(dev, eRFPath, RegAddr, New_Value);
}else
phy_FwRFSerialWrite(dev, eRFPath, RegAddr, Data);
udelay(200);
}
else
{
if (BitMask != bMask12Bits) // RF data is 12 bits only
{
Original_Value = rtl8192_phy_RFSerialRead(dev, eRFPath, RegAddr);
BitShift = rtl8192_CalculateBitShift(BitMask);
New_Value = (((Original_Value) & (~BitMask)) | (Data<< BitShift));
rtl8192_phy_RFSerialWrite(dev, eRFPath, RegAddr, New_Value);
}else
rtl8192_phy_RFSerialWrite(dev, eRFPath, RegAddr, Data);
}
return;
}
/******************************************************************************
*function: This function reads specific bits from RF register
* input: net_device dev
* u32 RegAddr //target addr to be readback
* u32 BitMask //taget bit pos in the addr to be readback
* output: none
* return: u32 Data //the readback register value
* notice:
* ****************************************************************************/
u32 rtl8192_phy_QueryRFReg(struct net_device* dev, RF90_RADIO_PATH_E eRFPath, u32 RegAddr, u32 BitMask)
{
u32 Original_Value, Readback_Value, BitShift;
struct r8192_priv *priv = ieee80211_priv(dev);
if (!rtl8192_phy_CheckIsLegalRFPath(dev, eRFPath))
return 0;
if (priv->Rf_Mode == RF_OP_By_FW)
{
Original_Value = phy_FwRFSerialRead(dev, eRFPath, RegAddr);
BitShift = rtl8192_CalculateBitShift(BitMask);
Readback_Value = (Original_Value & BitMask) >> BitShift;
udelay(200);
return (Readback_Value);
}
else
{
Original_Value = rtl8192_phy_RFSerialRead(dev, eRFPath, RegAddr);
BitShift = rtl8192_CalculateBitShift(BitMask);
Readback_Value = (Original_Value & BitMask) >> BitShift;
return (Readback_Value);
}
}
/******************************************************************************
*function: We support firmware to execute RF-R/W.
* input: dev
* output: none
* return: none
* notice:
* ***************************************************************************/
static u32
phy_FwRFSerialRead(
struct net_device* dev,
RF90_RADIO_PATH_E eRFPath,
u32 Offset )
{
u32 retValue = 0;
u32 Data = 0;
u8 time = 0;
//DbgPrint("FW RF CTRL\n\r");
/* 2007/11/02 MH Firmware RF Write control. By Francis' suggestion, we can
not execute the scheme in the initial step. Otherwise, RF-R/W will waste
much time. This is only for site survey. */
// 1. Read operation need not insert data. bit 0-11
//Data &= bMask12Bits;
// 2. Write RF register address. Bit 12-19
Data |= ((Offset&0xFF)<<12);
// 3. Write RF path. bit 20-21
Data |= ((eRFPath&0x3)<<20);
// 4. Set RF read indicator. bit 22=0
//Data |= 0x00000;
// 5. Trigger Fw to operate the command. bit 31
Data |= 0x80000000;
// 6. We can not execute read operation if bit 31 is 1.
while (read_nic_dword(dev, QPNR)&0x80000000)
{
// If FW can not finish RF-R/W for more than ?? times. We must reset FW.
if (time++ < 100)
{
//DbgPrint("FW not finish RF-R Time=%d\n\r", time);
udelay(10);
}
else
break;
}
// 7. Execute read operation.
write_nic_dword(dev, QPNR, Data);
// 8. Check if firmawre send back RF content.
while (read_nic_dword(dev, QPNR)&0x80000000)
{
// If FW can not finish RF-R/W for more than ?? times. We must reset FW.
if (time++ < 100)
{
//DbgPrint("FW not finish RF-W Time=%d\n\r", time);
udelay(10);
}
else
return (0);
}
retValue = read_nic_dword(dev, RF_DATA);
return (retValue);
} /* phy_FwRFSerialRead */
/******************************************************************************
*function: We support firmware to execute RF-R/W.
* input: dev
* output: none
* return: none
* notice:
* ***************************************************************************/
static void
phy_FwRFSerialWrite(
struct net_device* dev,
RF90_RADIO_PATH_E eRFPath,
u32 Offset,
u32 Data )
{
u8 time = 0;
//DbgPrint("N FW RF CTRL RF-%d OF%02x DATA=%03x\n\r", eRFPath, Offset, Data);
/* 2007/11/02 MH Firmware RF Write control. By Francis' suggestion, we can
not execute the scheme in the initial step. Otherwise, RF-R/W will waste
much time. This is only for site survey. */
// 1. Set driver write bit and 12 bit data. bit 0-11
//Data &= bMask12Bits; // Done by uper layer.
// 2. Write RF register address. bit 12-19
Data |= ((Offset&0xFF)<<12);
// 3. Write RF path. bit 20-21
Data |= ((eRFPath&0x3)<<20);
// 4. Set RF write indicator. bit 22=1
Data |= 0x400000;
// 5. Trigger Fw to operate the command. bit 31=1
Data |= 0x80000000;
// 6. Write operation. We can not write if bit 31 is 1.
while (read_nic_dword(dev, QPNR)&0x80000000)
{
// If FW can not finish RF-R/W for more than ?? times. We must reset FW.
if (time++ < 100)
{
//DbgPrint("FW not finish RF-W Time=%d\n\r", time);
udelay(10);
}
else
break;
}
// 7. No matter check bit. We always force the write. Because FW will
// not accept the command.
write_nic_dword(dev, QPNR, Data);
/* 2007/11/02 MH Acoording to test, we must delay 20us to wait firmware
to finish RF write operation. */
/* 2008/01/17 MH We support delay in firmware side now. */
//delay_us(20);
} /* phy_FwRFSerialWrite */
/******************************************************************************
*function: This function read BB parameters from Header file we gen,
* and do register read/write
* input: dev
* output: none
* return: none
* notice: BB parameters may change all the time, so please make
* sure it has been synced with the newest.
* ***************************************************************************/
void rtl8192_phy_configmac(struct net_device* dev)
{
u32 dwArrayLen = 0, i;
u32* pdwArray = NULL;
struct r8192_priv *priv = ieee80211_priv(dev);
if(priv->btxpowerdata_readfromEEPORM)
{
RT_TRACE(COMP_PHY, "Rtl819XMACPHY_Array_PG\n");
dwArrayLen = MACPHY_Array_PGLength;
pdwArray = rtl819XMACPHY_Array_PG;
}
else
{
RT_TRACE(COMP_PHY, "Rtl819XMACPHY_Array\n");
dwArrayLen = MACPHY_ArrayLength;
pdwArray = rtl819XMACPHY_Array;
}
for(i = 0; i<dwArrayLen; i=i+3){
if(pdwArray[i] == 0x318)
{
pdwArray[i+2] = 0x00000800;
//DbgPrint("ptrArray[i], ptrArray[i+1], ptrArray[i+2] = %x, %x, %x\n",
// ptrArray[i], ptrArray[i+1], ptrArray[i+2]);
}
RT_TRACE(COMP_DBG, "The Rtl8190MACPHY_Array[0] is %x Rtl8190MACPHY_Array[1] is %x Rtl8190MACPHY_Array[2] is %x\n",
pdwArray[i], pdwArray[i+1], pdwArray[i+2]);
rtl8192_setBBreg(dev, pdwArray[i], pdwArray[i+1], pdwArray[i+2]);
}
return;
}
/******************************************************************************
*function: This function do dirty work
* input: dev
* output: none
* return: none
* notice: BB parameters may change all the time, so please make
* sure it has been synced with the newest.
* ***************************************************************************/
void rtl8192_phyConfigBB(struct net_device* dev, u8 ConfigType)
{
u32 i;
#ifdef TO_DO_LIST
u32 *rtl8192PhyRegArrayTable = NULL, *rtl8192AgcTabArrayTable = NULL;
if(Adapter->bInHctTest)
{
PHY_REGArrayLen = PHY_REGArrayLengthDTM;
AGCTAB_ArrayLen = AGCTAB_ArrayLengthDTM;
Rtl8190PHY_REGArray_Table = Rtl819XPHY_REGArrayDTM;
Rtl8190AGCTAB_Array_Table = Rtl819XAGCTAB_ArrayDTM;
}
#endif
if (ConfigType == BaseBand_Config_PHY_REG)
{
for (i=0; i<PHY_REG_1T2RArrayLength; i+=2)
{
rtl8192_setBBreg(dev, rtl819XPHY_REG_1T2RArray[i], bMaskDWord, rtl819XPHY_REG_1T2RArray[i+1]);
RT_TRACE(COMP_DBG, "i: %x, The Rtl819xUsbPHY_REGArray[0] is %x Rtl819xUsbPHY_REGArray[1] is %x \n",i, rtl819XPHY_REG_1T2RArray[i], rtl819XPHY_REG_1T2RArray[i+1]);
}
}
else if (ConfigType == BaseBand_Config_AGC_TAB)
{
for (i=0; i<AGCTAB_ArrayLength; i+=2)
{
rtl8192_setBBreg(dev, rtl819XAGCTAB_Array[i], bMaskDWord, rtl819XAGCTAB_Array[i+1]);
RT_TRACE(COMP_DBG, "i:%x, The rtl819XAGCTAB_Array[0] is %x rtl819XAGCTAB_Array[1] is %x \n",i, rtl819XAGCTAB_Array[i], rtl819XAGCTAB_Array[i+1]);
}
}
return;
}
/******************************************************************************
*function: This function initialize Register definition offset for Radio Path
* A/B/C/D
* input: net_device dev
* output: none
* return: none
* notice: Initialization value here is constant and it should never be changed
* ***************************************************************************/
void rtl8192_InitBBRFRegDef(struct net_device* dev)
{
struct r8192_priv *priv = ieee80211_priv(dev);
// RF Interface Sowrtware Control
priv->PHYRegDef[RF90_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; // 16 LSBs if read 32-bit from 0x870
priv->PHYRegDef[RF90_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; // 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872)
priv->PHYRegDef[RF90_PATH_C].rfintfs = rFPGA0_XCD_RFInterfaceSW;// 16 LSBs if read 32-bit from 0x874
priv->PHYRegDef[RF90_PATH_D].rfintfs = rFPGA0_XCD_RFInterfaceSW;// 16 MSBs if read 32-bit from 0x874 (16-bit for 0x876)
// RF Interface Readback Value
priv->PHYRegDef[RF90_PATH_A].rfintfi = rFPGA0_XAB_RFInterfaceRB; // 16 LSBs if read 32-bit from 0x8E0
priv->PHYRegDef[RF90_PATH_B].rfintfi = rFPGA0_XAB_RFInterfaceRB;// 16 MSBs if read 32-bit from 0x8E0 (16-bit for 0x8E2)
priv->PHYRegDef[RF90_PATH_C].rfintfi = rFPGA0_XCD_RFInterfaceRB;// 16 LSBs if read 32-bit from 0x8E4
priv->PHYRegDef[RF90_PATH_D].rfintfi = rFPGA0_XCD_RFInterfaceRB;// 16 MSBs if read 32-bit from 0x8E4 (16-bit for 0x8E6)
// RF Interface Output (and Enable)
priv->PHYRegDef[RF90_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; // 16 LSBs if read 32-bit from 0x860
priv->PHYRegDef[RF90_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; // 16 LSBs if read 32-bit from 0x864
priv->PHYRegDef[RF90_PATH_C].rfintfo = rFPGA0_XC_RFInterfaceOE;// 16 LSBs if read 32-bit from 0x868
priv->PHYRegDef[RF90_PATH_D].rfintfo = rFPGA0_XD_RFInterfaceOE;// 16 LSBs if read 32-bit from 0x86C
// RF Interface (Output and) Enable
priv->PHYRegDef[RF90_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; // 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862)
priv->PHYRegDef[RF90_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; // 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866)
priv->PHYRegDef[RF90_PATH_C].rfintfe = rFPGA0_XC_RFInterfaceOE;// 16 MSBs if read 32-bit from 0x86A (16-bit for 0x86A)
priv->PHYRegDef[RF90_PATH_D].rfintfe = rFPGA0_XD_RFInterfaceOE;// 16 MSBs if read 32-bit from 0x86C (16-bit for 0x86E)
//Addr of LSSI. Wirte RF register by driver
priv->PHYRegDef[RF90_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; //LSSI Parameter
priv->PHYRegDef[RF90_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter;
priv->PHYRegDef[RF90_PATH_C].rf3wireOffset = rFPGA0_XC_LSSIParameter;
priv->PHYRegDef[RF90_PATH_D].rf3wireOffset = rFPGA0_XD_LSSIParameter;
// RF parameter
priv->PHYRegDef[RF90_PATH_A].rfLSSI_Select = rFPGA0_XAB_RFParameter; //BB Band Select
priv->PHYRegDef[RF90_PATH_B].rfLSSI_Select = rFPGA0_XAB_RFParameter;
priv->PHYRegDef[RF90_PATH_C].rfLSSI_Select = rFPGA0_XCD_RFParameter;
priv->PHYRegDef[RF90_PATH_D].rfLSSI_Select = rFPGA0_XCD_RFParameter;
// Tx AGC Gain Stage (same for all path. Should we remove this?)
priv->PHYRegDef[RF90_PATH_A].rfTxGainStage = rFPGA0_TxGainStage; //Tx gain stage
priv->PHYRegDef[RF90_PATH_B].rfTxGainStage = rFPGA0_TxGainStage; //Tx gain stage
priv->PHYRegDef[RF90_PATH_C].rfTxGainStage = rFPGA0_TxGainStage; //Tx gain stage
priv->PHYRegDef[RF90_PATH_D].rfTxGainStage = rFPGA0_TxGainStage; //Tx gain stage
// Tranceiver A~D HSSI Parameter-1
priv->PHYRegDef[RF90_PATH_A].rfHSSIPara1 = rFPGA0_XA_HSSIParameter1; //wire control parameter1
priv->PHYRegDef[RF90_PATH_B].rfHSSIPara1 = rFPGA0_XB_HSSIParameter1; //wire control parameter1
priv->PHYRegDef[RF90_PATH_C].rfHSSIPara1 = rFPGA0_XC_HSSIParameter1; //wire control parameter1
priv->PHYRegDef[RF90_PATH_D].rfHSSIPara1 = rFPGA0_XD_HSSIParameter1; //wire control parameter1
// Tranceiver A~D HSSI Parameter-2
priv->PHYRegDef[RF90_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2; //wire control parameter2
priv->PHYRegDef[RF90_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2; //wire control parameter2
priv->PHYRegDef[RF90_PATH_C].rfHSSIPara2 = rFPGA0_XC_HSSIParameter2; //wire control parameter2
priv->PHYRegDef[RF90_PATH_D].rfHSSIPara2 = rFPGA0_XD_HSSIParameter2; //wire control parameter1
// RF switch Control
priv->PHYRegDef[RF90_PATH_A].rfSwitchControl = rFPGA0_XAB_SwitchControl; //TR/Ant switch control
priv->PHYRegDef[RF90_PATH_B].rfSwitchControl = rFPGA0_XAB_SwitchControl;
priv->PHYRegDef[RF90_PATH_C].rfSwitchControl = rFPGA0_XCD_SwitchControl;
priv->PHYRegDef[RF90_PATH_D].rfSwitchControl = rFPGA0_XCD_SwitchControl;
// AGC control 1
priv->PHYRegDef[RF90_PATH_A].rfAGCControl1 = rOFDM0_XAAGCCore1;
priv->PHYRegDef[RF90_PATH_B].rfAGCControl1 = rOFDM0_XBAGCCore1;
priv->PHYRegDef[RF90_PATH_C].rfAGCControl1 = rOFDM0_XCAGCCore1;
priv->PHYRegDef[RF90_PATH_D].rfAGCControl1 = rOFDM0_XDAGCCore1;
// AGC control 2
priv->PHYRegDef[RF90_PATH_A].rfAGCControl2 = rOFDM0_XAAGCCore2;
priv->PHYRegDef[RF90_PATH_B].rfAGCControl2 = rOFDM0_XBAGCCore2;
priv->PHYRegDef[RF90_PATH_C].rfAGCControl2 = rOFDM0_XCAGCCore2;
priv->PHYRegDef[RF90_PATH_D].rfAGCControl2 = rOFDM0_XDAGCCore2;
// RX AFE control 1
priv->PHYRegDef[RF90_PATH_A].rfRxIQImbalance = rOFDM0_XARxIQImbalance;
priv->PHYRegDef[RF90_PATH_B].rfRxIQImbalance = rOFDM0_XBRxIQImbalance;
priv->PHYRegDef[RF90_PATH_C].rfRxIQImbalance = rOFDM0_XCRxIQImbalance;
priv->PHYRegDef[RF90_PATH_D].rfRxIQImbalance = rOFDM0_XDRxIQImbalance;
// RX AFE control 1
priv->PHYRegDef[RF90_PATH_A].rfRxAFE = rOFDM0_XARxAFE;
priv->PHYRegDef[RF90_PATH_B].rfRxAFE = rOFDM0_XBRxAFE;
priv->PHYRegDef[RF90_PATH_C].rfRxAFE = rOFDM0_XCRxAFE;
priv->PHYRegDef[RF90_PATH_D].rfRxAFE = rOFDM0_XDRxAFE;
// Tx AFE control 1
priv->PHYRegDef[RF90_PATH_A].rfTxIQImbalance = rOFDM0_XATxIQImbalance;
priv->PHYRegDef[RF90_PATH_B].rfTxIQImbalance = rOFDM0_XBTxIQImbalance;
priv->PHYRegDef[RF90_PATH_C].rfTxIQImbalance = rOFDM0_XCTxIQImbalance;
priv->PHYRegDef[RF90_PATH_D].rfTxIQImbalance = rOFDM0_XDTxIQImbalance;
// Tx AFE control 2
priv->PHYRegDef[RF90_PATH_A].rfTxAFE = rOFDM0_XATxAFE;
priv->PHYRegDef[RF90_PATH_B].rfTxAFE = rOFDM0_XBTxAFE;
priv->PHYRegDef[RF90_PATH_C].rfTxAFE = rOFDM0_XCTxAFE;
priv->PHYRegDef[RF90_PATH_D].rfTxAFE = rOFDM0_XDTxAFE;
// Tranceiver LSSI Readback
priv->PHYRegDef[RF90_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack;
priv->PHYRegDef[RF90_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack;
priv->PHYRegDef[RF90_PATH_C].rfLSSIReadBack = rFPGA0_XC_LSSIReadBack;
priv->PHYRegDef[RF90_PATH_D].rfLSSIReadBack = rFPGA0_XD_LSSIReadBack;
}
/******************************************************************************
*function: This function is to write register and then readback to make sure whether BB and RF is OK
* input: net_device dev
* HW90_BLOCK_E CheckBlock
* RF90_RADIO_PATH_E eRFPath //only used when checkblock is HW90_BLOCK_RF
* output: none
* return: return whether BB and RF is ok(0:OK; 1:Fail)
* notice: This function may be removed in the ASIC
* ***************************************************************************/
u8 rtl8192_phy_checkBBAndRF(struct net_device* dev, HW90_BLOCK_E CheckBlock, RF90_RADIO_PATH_E eRFPath)
{
// struct r8192_priv *priv = ieee80211_priv(dev);
// BB_REGISTER_DEFINITION_T *pPhyReg = &priv->PHYRegDef[eRFPath];
u8 ret = 0;
u32 i, CheckTimes = 4, dwRegRead = 0;
u32 WriteAddr[4];
u32 WriteData[] = {0xfffff027, 0xaa55a02f, 0x00000027, 0x55aa502f};
// Initialize register address offset to be checked
WriteAddr[HW90_BLOCK_MAC] = 0x100;
WriteAddr[HW90_BLOCK_PHY0] = 0x900;
WriteAddr[HW90_BLOCK_PHY1] = 0x800;
WriteAddr[HW90_BLOCK_RF] = 0x3;
RT_TRACE(COMP_PHY, "=======>%s(), CheckBlock:%d\n", __FUNCTION__, CheckBlock);
for(i=0 ; i < CheckTimes ; i++)
{
//
// Write Data to register and readback
//
switch(CheckBlock)
{
case HW90_BLOCK_MAC:
RT_TRACE(COMP_ERR, "PHY_CheckBBRFOK(): Never Write 0x100 here!");
break;
case HW90_BLOCK_PHY0:
case HW90_BLOCK_PHY1:
write_nic_dword(dev, WriteAddr[CheckBlock], WriteData[i]);
dwRegRead = read_nic_dword(dev, WriteAddr[CheckBlock]);
break;
case HW90_BLOCK_RF:
WriteData[i] &= 0xfff;
rtl8192_phy_SetRFReg(dev, eRFPath, WriteAddr[HW90_BLOCK_RF], bMask12Bits, WriteData[i]);
// TODO: we should not delay for such a long time. Ask SD3
msleep(1);
dwRegRead = rtl8192_phy_QueryRFReg(dev, eRFPath, WriteAddr[HW90_BLOCK_RF], bMask12Bits);
msleep(1);
break;
default:
ret = 1;
break;
}
//
// Check whether readback data is correct
//
if(dwRegRead != WriteData[i])
{
RT_TRACE((COMP_PHY|COMP_ERR), "====>error=====dwRegRead: %x, WriteData: %x \n", dwRegRead, WriteData[i]);
ret = 1;
break;
}
}
return ret;
}
/******************************************************************************
*function: This function initialize BB&RF
* input: net_device dev
* output: none
* return: none
* notice: Initialization value may change all the time, so please make
* sure it has been synced with the newest.
* ***************************************************************************/
void rtl8192_BB_Config_ParaFile(struct net_device* dev)
{
struct r8192_priv *priv = ieee80211_priv(dev);
u8 bRegValue = 0, eCheckItem = 0, rtStatus = 0;
u32 dwRegValue = 0;
/**************************************
//<1>Initialize BaseBand
**************************************/
/*--set BB Global Reset--*/
bRegValue = read_nic_byte(dev, BB_GLOBAL_RESET);
write_nic_byte(dev, BB_GLOBAL_RESET,(bRegValue|BB_GLOBAL_RESET_BIT));
mdelay(50);
/*---set BB reset Active---*/
dwRegValue = read_nic_dword(dev, CPU_GEN);
write_nic_dword(dev, CPU_GEN, (dwRegValue&(~CPU_GEN_BB_RST)));
/*----Ckeck FPGAPHY0 and PHY1 board is OK----*/
// TODO: this function should be removed on ASIC , Emily 2007.2.2
for(eCheckItem=(HW90_BLOCK_E)HW90_BLOCK_PHY0; eCheckItem<=HW90_BLOCK_PHY1; eCheckItem++)
{
rtStatus = rtl8192_phy_checkBBAndRF(dev, (HW90_BLOCK_E)eCheckItem, (RF90_RADIO_PATH_E)0); //don't care RF path
if(rtStatus != 0)
{
RT_TRACE((COMP_ERR | COMP_PHY), "PHY_RF8256_Config():Check PHY%d Fail!!\n", eCheckItem-1);
return ;
}
}
/*---- Set CCK and OFDM Block "OFF"----*/
rtl8192_setBBreg(dev, rFPGA0_RFMOD, bCCKEn|bOFDMEn, 0x0);
/*----BB Register Initilazation----*/
//==m==>Set PHY REG From Header<==m==
rtl8192_phyConfigBB(dev, BaseBand_Config_PHY_REG);
/*----Set BB reset de-Active----*/
dwRegValue = read_nic_dword(dev, CPU_GEN);
write_nic_dword(dev, CPU_GEN, (dwRegValue|CPU_GEN_BB_RST));
/*----BB AGC table Initialization----*/
//==m==>Set PHY REG From Header<==m==
rtl8192_phyConfigBB(dev, BaseBand_Config_AGC_TAB);
/*----Enable XSTAL ----*/
write_nic_byte_E(dev, 0x5e, 0x00);
if (priv->card_8192_version == (u8)VERSION_819xU_A)
{
//Antenna gain offset from B/C/D to A
dwRegValue = (priv->AntennaTxPwDiff[1]<<4 | priv->AntennaTxPwDiff[0]);
rtl8192_setBBreg(dev, rFPGA0_TxGainStage, (bXBTxAGC|bXCTxAGC), dwRegValue);
//XSTALLCap
dwRegValue = priv->CrystalCap & 0xf;
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, bXtalCap, dwRegValue);
}
// Check if the CCK HighPower is turned ON.
// This is used to calculate PWDB.
priv->bCckHighPower = (u8)(rtl8192_QueryBBReg(dev, rFPGA0_XA_HSSIParameter2, 0x200));
return;
}
/******************************************************************************
*function: This function initialize BB&RF
* input: net_device dev
* output: none
* return: none
* notice: Initialization value may change all the time, so please make
* sure it has been synced with the newest.
* ***************************************************************************/
void rtl8192_BBConfig(struct net_device* dev)
{
rtl8192_InitBBRFRegDef(dev);
//config BB&RF. As hardCode based initialization has not been well
//implemented, so use file first.FIXME:should implement it for hardcode?
rtl8192_BB_Config_ParaFile(dev);
return;
}
/******************************************************************************
*function: This function obtains the initialization value of Tx power Level offset
* input: net_device dev
* output: none
* return: none
* ***************************************************************************/
void rtl8192_phy_getTxPower(struct net_device* dev)
{
struct r8192_priv *priv = ieee80211_priv(dev);
priv->MCSTxPowerLevelOriginalOffset[0] =
read_nic_dword(dev, rTxAGC_Rate18_06);
priv->MCSTxPowerLevelOriginalOffset[1] =
read_nic_dword(dev, rTxAGC_Rate54_24);
priv->MCSTxPowerLevelOriginalOffset[2] =
read_nic_dword(dev, rTxAGC_Mcs03_Mcs00);
priv->MCSTxPowerLevelOriginalOffset[3] =
read_nic_dword(dev, rTxAGC_Mcs07_Mcs04);
priv->MCSTxPowerLevelOriginalOffset[4] =
read_nic_dword(dev, rTxAGC_Mcs11_Mcs08);
priv->MCSTxPowerLevelOriginalOffset[5] =
read_nic_dword(dev, rTxAGC_Mcs15_Mcs12);
// read rx initial gain
priv->DefaultInitialGain[0] = read_nic_byte(dev, rOFDM0_XAAGCCore1);
priv->DefaultInitialGain[1] = read_nic_byte(dev, rOFDM0_XBAGCCore1);
priv->DefaultInitialGain[2] = read_nic_byte(dev, rOFDM0_XCAGCCore1);
priv->DefaultInitialGain[3] = read_nic_byte(dev, rOFDM0_XDAGCCore1);
RT_TRACE(COMP_INIT, "Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x) \n",
priv->DefaultInitialGain[0], priv->DefaultInitialGain[1],
priv->DefaultInitialGain[2], priv->DefaultInitialGain[3]);
// read framesync
priv->framesync = read_nic_byte(dev, rOFDM0_RxDetector3);
priv->framesyncC34 = read_nic_byte(dev, rOFDM0_RxDetector2);
RT_TRACE(COMP_INIT, "Default framesync (0x%x) = 0x%x \n",
rOFDM0_RxDetector3, priv->framesync);
// read SIFS (save the value read fome MACPHY_REG.txt)
priv->SifsTime = read_nic_word(dev, SIFS);
return;
}
/******************************************************************************
*function: This function obtains the initialization value of Tx power Level offset
* input: net_device dev
* output: none
* return: none
* ***************************************************************************/
void rtl8192_phy_setTxPower(struct net_device* dev, u8 channel)
{
struct r8192_priv *priv = ieee80211_priv(dev);
u8 powerlevel = priv->TxPowerLevelCCK[channel-1];
u8 powerlevelOFDM24G = priv->TxPowerLevelOFDM24G[channel-1];
switch(priv->rf_chip)
{
case RF_8256:
PHY_SetRF8256CCKTxPower(dev, powerlevel); //need further implement
PHY_SetRF8256OFDMTxPower(dev, powerlevelOFDM24G);
break;
default:
// case RF_8225:
// case RF_8258:
RT_TRACE((COMP_PHY|COMP_ERR), "error RF chipID(8225 or 8258) in function %s()\n", __FUNCTION__);
break;
}
return;
}
/******************************************************************************
*function: This function check Rf chip to do RF config
* input: net_device dev
* output: none
* return: only 8256 is supported
* ***************************************************************************/
void rtl8192_phy_RFConfig(struct net_device* dev)
{
struct r8192_priv *priv = ieee80211_priv(dev);
switch(priv->rf_chip)
{
case RF_8256:
PHY_RF8256_Config(dev);
break;
// case RF_8225:
// case RF_8258:
default:
RT_TRACE(COMP_ERR, "error chip id\n");
break;
}
return;
}
/******************************************************************************
*function: This function update Initial gain
* input: net_device dev
* output: none
* return: As Windows has not implemented this, wait for complement
* ***************************************************************************/
void rtl8192_phy_updateInitGain(struct net_device* dev)
{
return;
}
/******************************************************************************
*function: This function read RF parameters from general head file, and do RF 3-wire
* input: net_device dev
* output: none
* return: return code show if RF configuration is successful(0:pass, 1:fail)
* Note: Delay may be required for RF configuration
* ***************************************************************************/
u8 rtl8192_phy_ConfigRFWithHeaderFile(struct net_device* dev, RF90_RADIO_PATH_E eRFPath)
{
int i;
//u32* pRFArray;
u8 ret = 0;
switch(eRFPath){
case RF90_PATH_A:
for(i = 0;i<RadioA_ArrayLength; i=i+2){
if(rtl819XRadioA_Array[i] == 0xfe){
mdelay(100);
continue;
}
rtl8192_phy_SetRFReg(dev, eRFPath, rtl819XRadioA_Array[i], bMask12Bits, rtl819XRadioA_Array[i+1]);
mdelay(1);
}
break;
case RF90_PATH_B:
for(i = 0;i<RadioB_ArrayLength; i=i+2){
if(rtl819XRadioB_Array[i] == 0xfe){
mdelay(100);
continue;
}
rtl8192_phy_SetRFReg(dev, eRFPath, rtl819XRadioB_Array[i], bMask12Bits, rtl819XRadioB_Array[i+1]);
mdelay(1);
}
break;
case RF90_PATH_C:
for(i = 0;i<RadioC_ArrayLength; i=i+2){
if(rtl819XRadioC_Array[i] == 0xfe){
mdelay(100);
continue;
}
rtl8192_phy_SetRFReg(dev, eRFPath, rtl819XRadioC_Array[i], bMask12Bits, rtl819XRadioC_Array[i+1]);
mdelay(1);
}
break;
case RF90_PATH_D:
for(i = 0;i<RadioD_ArrayLength; i=i+2){
if(rtl819XRadioD_Array[i] == 0xfe){
mdelay(100);
continue;
}
rtl8192_phy_SetRFReg(dev, eRFPath, rtl819XRadioD_Array[i], bMask12Bits, rtl819XRadioD_Array[i+1]);
mdelay(1);
}
break;
default:
break;
}
return ret;
}
/******************************************************************************
*function: This function set Tx Power of the channel
* input: struct net_device *dev
* u8 channel
* output: none
* return: none
* Note:
* ***************************************************************************/
void rtl8192_SetTxPowerLevel(struct net_device *dev, u8 channel)
{
struct r8192_priv *priv = ieee80211_priv(dev);
u8 powerlevel = priv->TxPowerLevelCCK[channel-1];
u8 powerlevelOFDM24G = priv->TxPowerLevelOFDM24G[channel-1];
switch(priv->rf_chip)
{
case RF_8225:
#ifdef TO_DO_LIST
PHY_SetRF8225CckTxPower(Adapter, powerlevel);
PHY_SetRF8225OfdmTxPower(Adapter, powerlevelOFDM24G);
#endif
break;
case RF_8256:
PHY_SetRF8256CCKTxPower(dev, powerlevel);
PHY_SetRF8256OFDMTxPower(dev, powerlevelOFDM24G);
break;
case RF_8258:
break;
default:
RT_TRACE(COMP_ERR, "unknown rf chip ID in rtl8192_SetTxPowerLevel()\n");
break;
}
return;
}
/******************************************************************************
*function: This function set RF state on or off
* input: struct net_device *dev
* RT_RF_POWER_STATE eRFPowerState //Power State to set
* output: none
* return: none
* Note:
* ***************************************************************************/
bool rtl8192_SetRFPowerState(struct net_device *dev, RT_RF_POWER_STATE eRFPowerState)
{
bool bResult = true;
// u8 eRFPath;
struct r8192_priv *priv = ieee80211_priv(dev);
if(eRFPowerState == priv->ieee80211->eRFPowerState)
return false;
if(priv->SetRFPowerStateInProgress == true)
return false;
priv->SetRFPowerStateInProgress = true;
switch(priv->rf_chip)
{
case RF_8256:
switch( eRFPowerState )
{
case eRfOn:
//RF-A, RF-B
//enable RF-Chip A/B
rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x1); // 0x860[4]
//analog to digital on
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0x300, 0x3);// 0x88c[9:8]
//digital to analog on
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x18, 0x3); // 0x880[4:3]
//rx antenna on
rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0x3, 0x3);// 0xc04[1:0]
//rx antenna on
rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0x3, 0x3);// 0xd04[1:0]
//analog to digital part2 on
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x60, 0x3); // 0x880[6:5]
break;
case eRfSleep:
break;
case eRfOff:
//RF-A, RF-B
//disable RF-Chip A/B
rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x0); // 0x860[4]
//analog to digital off, for power save
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xf00, 0x0);// 0x88c[11:8]
//digital to analog off, for power save
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x18, 0x0); // 0x880[4:3]
//rx antenna off
rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0xf, 0x0);// 0xc04[3:0]
//rx antenna off
rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0xf, 0x0);// 0xd04[3:0]
//analog to digital part2 off, for power save
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x60, 0x0); // 0x880[6:5]
break;
default:
bResult = false;
RT_TRACE(COMP_ERR, "SetRFPowerState819xUsb(): unknow state to set: 0x%X!!!\n", eRFPowerState);
break;
}
break;
default:
RT_TRACE(COMP_ERR, "Not support rf_chip(%x)\n", priv->rf_chip);
break;
}
#ifdef TO_DO_LIST
if(bResult)
{
// Update current RF state variable.
pHalData->eRFPowerState = eRFPowerState;
switch(pHalData->RFChipID )
{
case RF_8256:
switch(pHalData->eRFPowerState)
{
case eRfOff:
//
//If Rf off reason is from IPS, Led should blink with no link, by Maddest 071015
//
if(pMgntInfo->RfOffReason==RF_CHANGE_BY_IPS )
{
Adapter->HalFunc.LedControlHandler(Adapter,LED_CTL_NO_LINK);
}
else
{
// Turn off LED if RF is not ON.
Adapter->HalFunc.LedControlHandler(Adapter, LED_CTL_POWER_OFF);
}
break;
case eRfOn:
// Turn on RF we are still linked, which might happen when
// we quickly turn off and on HW RF. 2006.05.12, by rcnjko.
if( pMgntInfo->bMediaConnect == TRUE )
{
Adapter->HalFunc.LedControlHandler(Adapter, LED_CTL_LINK);
}
else
{
// Turn off LED if RF is not ON.
Adapter->HalFunc.LedControlHandler(Adapter, LED_CTL_NO_LINK);
}
break;
default:
// do nothing.
break;
}// Switch RF state
break;
default:
RT_TRACE(COMP_RF, DBG_LOUD, ("SetRFPowerState8190(): Unknown RF type\n"));
break;
}
}
#endif
priv->SetRFPowerStateInProgress = false;
return bResult;
}
/****************************************************************************************
*function: This function set command table variable(struct SwChnlCmd).
* input: SwChnlCmd* CmdTable //table to be set.
* u32 CmdTableIdx //variable index in table to be set
* u32 CmdTableSz //table size.
* SwChnlCmdID CmdID //command ID to set.
* u32 Para1
* u32 Para2
* u32 msDelay
* output:
* return: true if finished, false otherwise
* Note:
* ************************************************************************************/
u8 rtl8192_phy_SetSwChnlCmdArray(
SwChnlCmd* CmdTable,
u32 CmdTableIdx,
u32 CmdTableSz,
SwChnlCmdID CmdID,
u32 Para1,
u32 Para2,
u32 msDelay
)
{
SwChnlCmd* pCmd;
if(CmdTable == NULL)
{
RT_TRACE(COMP_ERR, "phy_SetSwChnlCmdArray(): CmdTable cannot be NULL.\n");
return false;
}
if(CmdTableIdx >= CmdTableSz)
{
RT_TRACE(COMP_ERR, "phy_SetSwChnlCmdArray(): Access invalid index, please check size of the table, CmdTableIdx:%d, CmdTableSz:%d\n",
CmdTableIdx, CmdTableSz);
return false;
}
pCmd = CmdTable + CmdTableIdx;
pCmd->CmdID = CmdID;
pCmd->Para1 = Para1;
pCmd->Para2 = Para2;
pCmd->msDelay = msDelay;
return true;
}
/******************************************************************************
*function: This function set channel step by step
* input: struct net_device *dev
* u8 channel
* u8* stage //3 stages
* u8* step //
* u32* delay //whether need to delay
* output: store new stage, step and delay for next step(combine with function above)
* return: true if finished, false otherwise
* Note: Wait for simpler function to replace it //wb
* ***************************************************************************/
u8 rtl8192_phy_SwChnlStepByStep(struct net_device *dev, u8 channel, u8* stage, u8* step, u32* delay)
{
struct r8192_priv *priv = ieee80211_priv(dev);
// PCHANNEL_ACCESS_SETTING pChnlAccessSetting;
SwChnlCmd PreCommonCmd[MAX_PRECMD_CNT];
u32 PreCommonCmdCnt;
SwChnlCmd PostCommonCmd[MAX_POSTCMD_CNT];
u32 PostCommonCmdCnt;
SwChnlCmd RfDependCmd[MAX_RFDEPENDCMD_CNT];
u32 RfDependCmdCnt;
SwChnlCmd *CurrentCmd = NULL;
//RF90_RADIO_PATH_E eRFPath;
u8 eRFPath;
// u32 RfRetVal;
// u8 RetryCnt;
RT_TRACE(COMP_CH, "====>%s()====stage:%d, step:%d, channel:%d\n", __FUNCTION__, *stage, *step, channel);
// RT_ASSERT(IsLegalChannel(Adapter, channel), ("illegal channel: %d\n", channel));
if (!IsLegalChannel(priv->ieee80211, channel))
{
RT_TRACE(COMP_ERR, "=============>set to illegal channel:%d\n", channel);
return true; //return true to tell upper caller function this channel setting is finished! Or it will in while loop.
}
//FIXME:need to check whether channel is legal or not here.WB
//for(eRFPath = RF90_PATH_A; eRFPath <pHalData->NumTotalRFPath; eRFPath++)
// for(eRFPath = 0; eRFPath <RF90_PATH_MAX; eRFPath++)
// {
// if (!rtl8192_phy_CheckIsLegalRFPath(dev, eRFPath))
// continue;
// <1> Fill up pre common command.
PreCommonCmdCnt = 0;
rtl8192_phy_SetSwChnlCmdArray(PreCommonCmd, PreCommonCmdCnt++, MAX_PRECMD_CNT,
CmdID_SetTxPowerLevel, 0, 0, 0);
rtl8192_phy_SetSwChnlCmdArray(PreCommonCmd, PreCommonCmdCnt++, MAX_PRECMD_CNT,
CmdID_End, 0, 0, 0);
// <2> Fill up post common command.
PostCommonCmdCnt = 0;
rtl8192_phy_SetSwChnlCmdArray(PostCommonCmd, PostCommonCmdCnt++, MAX_POSTCMD_CNT,
CmdID_End, 0, 0, 0);
// <3> Fill up RF dependent command.
RfDependCmdCnt = 0;
switch( priv->rf_chip )
{
case RF_8225:
if (!(channel >= 1 && channel <= 14))
{
RT_TRACE(COMP_ERR, "illegal channel for Zebra 8225: %d\n", channel);
return true;
}
rtl8192_phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT,
CmdID_RF_WriteReg, rZebra1_Channel, RF_CHANNEL_TABLE_ZEBRA[channel], 10);
rtl8192_phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT,
CmdID_End, 0, 0, 0);
break;
case RF_8256:
// TEST!! This is not the table for 8256!!
if (!(channel >= 1 && channel <= 14))
{
RT_TRACE(COMP_ERR, "illegal channel for Zebra 8256: %d\n", channel);
return true;
}
rtl8192_phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT,
CmdID_RF_WriteReg, rZebra1_Channel, channel, 10);
rtl8192_phy_SetSwChnlCmdArray(RfDependCmd, RfDependCmdCnt++, MAX_RFDEPENDCMD_CNT,
CmdID_End, 0, 0, 0);
break;
case RF_8258:
break;
default:
RT_TRACE(COMP_ERR, "Unknown RFChipID: %d\n", priv->rf_chip);
return true;
break;
}
do{
switch(*stage)
{
case 0:
CurrentCmd=&PreCommonCmd[*step];
break;
case 1:
CurrentCmd=&RfDependCmd[*step];
break;
case 2:
CurrentCmd=&PostCommonCmd[*step];
break;
}
if(CurrentCmd->CmdID==CmdID_End)
{
if((*stage)==2)
{
(*delay)=CurrentCmd->msDelay;
return true;
}
else
{
(*stage)++;
(*step)=0;
continue;
}
}
switch(CurrentCmd->CmdID)
{
case CmdID_SetTxPowerLevel:
if(priv->card_8192_version == (u8)VERSION_819xU_A) //xiong: consider it later!
rtl8192_SetTxPowerLevel(dev,channel);
break;
case CmdID_WritePortUlong:
write_nic_dword(dev, CurrentCmd->Para1, CurrentCmd->Para2);
break;
case CmdID_WritePortUshort:
write_nic_word(dev, CurrentCmd->Para1, (u16)CurrentCmd->Para2);
break;
case CmdID_WritePortUchar:
write_nic_byte(dev, CurrentCmd->Para1, (u8)CurrentCmd->Para2);
break;
case CmdID_RF_WriteReg:
for(eRFPath = 0; eRFPath < RF90_PATH_MAX; eRFPath++)
{
rtl8192_phy_SetRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, CurrentCmd->Para1, bZebra1_ChannelNum, CurrentCmd->Para2);
}
break;
default:
break;
}
break;
}while(true);
// }/*for(Number of RF paths)*/
(*delay)=CurrentCmd->msDelay;
(*step)++;
return false;
}
/******************************************************************************
*function: This function does acturally set channel work
* input: struct net_device *dev
* u8 channel
* output: none
* return: noin
* Note: We should not call this function directly
* ***************************************************************************/
void rtl8192_phy_FinishSwChnlNow(struct net_device *dev, u8 channel)
{
struct r8192_priv *priv = ieee80211_priv(dev);
u32 delay = 0;
while(!rtl8192_phy_SwChnlStepByStep(dev,channel,&priv->SwChnlStage,&priv->SwChnlStep,&delay))
{
// if(delay>0)
// msleep(delay);//or mdelay? need further consideration
if(!priv->up)
break;
}
}
/******************************************************************************
*function: Callback routine of the work item for switch channel.
* input:
*
* output: none
* return: noin
* ***************************************************************************/
void rtl8192_SwChnl_WorkItem(struct net_device *dev)
{
struct r8192_priv *priv = ieee80211_priv(dev);
RT_TRACE(COMP_CH, "==> SwChnlCallback819xUsbWorkItem(), chan:%d\n", priv->chan);
rtl8192_phy_FinishSwChnlNow(dev , priv->chan);
RT_TRACE(COMP_CH, "<== SwChnlCallback819xUsbWorkItem()\n");
}
/******************************************************************************
*function: This function scheduled actural workitem to set channel
* input: net_device dev
* u8 channel //channel to set
* output: none
* return: return code show if workitem is scheduled(1:pass, 0:fail)
* Note: Delay may be required for RF configuration
* ***************************************************************************/
u8 rtl8192_phy_SwChnl(struct net_device* dev, u8 channel)
{
struct r8192_priv *priv = ieee80211_priv(dev);
RT_TRACE(COMP_CH, "=====>%s(), SwChnlInProgress:%d\n", __FUNCTION__, priv->SwChnlInProgress);
if(!priv->up)
return false;
if(priv->SwChnlInProgress)
return false;
// if(pHalData->SetBWModeInProgress)
// return;
if (0) //to test current channel from RF reg 0x7.
{
u8 eRFPath;
for(eRFPath = 0; eRFPath < 2; eRFPath++){
printk("====>set channel:%x\n",rtl8192_phy_QueryRFReg(dev, (RF90_RADIO_PATH_E)eRFPath, 0x7, bZebra1_ChannelNum));
udelay(10);
}
}
//--------------------------------------------
switch(priv->ieee80211->mode)
{
case WIRELESS_MODE_A:
case WIRELESS_MODE_N_5G:
if (channel<=14){
RT_TRACE(COMP_ERR, "WIRELESS_MODE_A but channel<=14");
return false;
}
break;
case WIRELESS_MODE_B:
if (channel>14){
RT_TRACE(COMP_ERR, "WIRELESS_MODE_B but channel>14");
return false;
}
break;
case WIRELESS_MODE_G:
case WIRELESS_MODE_N_24G:
if (channel>14){
RT_TRACE(COMP_ERR, "WIRELESS_MODE_G but channel>14");
return false;
}
break;
}
//--------------------------------------------
priv->SwChnlInProgress = true;
if(channel == 0)
channel = 1;
priv->chan=channel;
priv->SwChnlStage=0;
priv->SwChnlStep=0;
// schedule_work(&(priv->SwChnlWorkItem));
// rtl8192_SwChnl_WorkItem(dev);
if(priv->up) {
// queue_work(priv->priv_wq,&(priv->SwChnlWorkItem));
rtl8192_SwChnl_WorkItem(dev);
}
priv->SwChnlInProgress = false;
return true;
}
//
/******************************************************************************
*function: Callback routine of the work item for set bandwidth mode.
* input: struct net_device *dev
* HT_CHANNEL_WIDTH Bandwidth //20M or 40M
* HT_EXTCHNL_OFFSET Offset //Upper, Lower, or Don't care
* output: none
* return: none
* Note: I doubt whether SetBWModeInProgress flag is necessary as we can
* test whether current work in the queue or not.//do I?
* ***************************************************************************/
void rtl8192_SetBWModeWorkItem(struct net_device *dev)
{
struct r8192_priv *priv = ieee80211_priv(dev);
u8 regBwOpMode;
RT_TRACE(COMP_SWBW, "==>rtl8192_SetBWModeWorkItem() Switch to %s bandwidth\n", \
priv->CurrentChannelBW == HT_CHANNEL_WIDTH_20?"20MHz":"40MHz")
if(priv->rf_chip == RF_PSEUDO_11N)
{
priv->SetBWModeInProgress= false;
return;
}
//<1>Set MAC register
regBwOpMode = read_nic_byte(dev, BW_OPMODE);
switch(priv->CurrentChannelBW)
{
case HT_CHANNEL_WIDTH_20:
regBwOpMode |= BW_OPMODE_20MHZ;
// 2007/02/07 Mark by Emily because we have not verify whether this register works
write_nic_byte(dev, BW_OPMODE, regBwOpMode);
break;
case HT_CHANNEL_WIDTH_20_40:
regBwOpMode &= ~BW_OPMODE_20MHZ;
// 2007/02/07 Mark by Emily because we have not verify whether this register works
write_nic_byte(dev, BW_OPMODE, regBwOpMode);
break;
default:
RT_TRACE(COMP_ERR, "SetChannelBandwidth819xUsb(): unknown Bandwidth: %#X\n",priv->CurrentChannelBW);
break;
}
//<2>Set PHY related register
switch(priv->CurrentChannelBW)
{
case HT_CHANNEL_WIDTH_20:
// Add by Vivi 20071119
rtl8192_setBBreg(dev, rFPGA0_RFMOD, bRFMOD, 0x0);
rtl8192_setBBreg(dev, rFPGA1_RFMOD, bRFMOD, 0x0);
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x00100000, 1);
// Correct the tx power for CCK rate in 20M. Suggest by YN, 20071207
priv->cck_present_attentuation =
priv->cck_present_attentuation_20Mdefault + priv->cck_present_attentuation_difference;
if(priv->cck_present_attentuation > 22)
priv->cck_present_attentuation= 22;
if(priv->cck_present_attentuation< 0)
priv->cck_present_attentuation = 0;
RT_TRACE(COMP_INIT, "20M, pHalData->CCKPresentAttentuation = %d\n", priv->cck_present_attentuation);
if(priv->chan == 14 && !priv->bcck_in_ch14)
{
priv->bcck_in_ch14 = TRUE;
dm_cck_txpower_adjust(dev,priv->bcck_in_ch14);
}
else if(priv->chan != 14 && priv->bcck_in_ch14)
{
priv->bcck_in_ch14 = FALSE;
dm_cck_txpower_adjust(dev,priv->bcck_in_ch14);
}
else
dm_cck_txpower_adjust(dev,priv->bcck_in_ch14);
break;
case HT_CHANNEL_WIDTH_20_40:
// Add by Vivi 20071119
rtl8192_setBBreg(dev, rFPGA0_RFMOD, bRFMOD, 0x1);
rtl8192_setBBreg(dev, rFPGA1_RFMOD, bRFMOD, 0x1);
rtl8192_setBBreg(dev, rCCK0_System, bCCKSideBand, (priv->nCur40MhzPrimeSC>>1));
rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x00100000, 0);
rtl8192_setBBreg(dev, rOFDM1_LSTF, 0xC00, priv->nCur40MhzPrimeSC);
priv->cck_present_attentuation =
priv->cck_present_attentuation_40Mdefault + priv->cck_present_attentuation_difference;
if(priv->cck_present_attentuation > 22)
priv->cck_present_attentuation = 22;
if(priv->cck_present_attentuation < 0)
priv->cck_present_attentuation = 0;
RT_TRACE(COMP_INIT, "40M, pHalData->CCKPresentAttentuation = %d\n", priv->cck_present_attentuation);
if(priv->chan == 14 && !priv->bcck_in_ch14)
{
priv->bcck_in_ch14 = true;
dm_cck_txpower_adjust(dev,priv->bcck_in_ch14);
}
else if(priv->chan!= 14 && priv->bcck_in_ch14)
{
priv->bcck_in_ch14 = false;
dm_cck_txpower_adjust(dev,priv->bcck_in_ch14);
}
else
dm_cck_txpower_adjust(dev,priv->bcck_in_ch14);
break;
default:
RT_TRACE(COMP_ERR, "SetChannelBandwidth819xUsb(): unknown Bandwidth: %#X\n" ,priv->CurrentChannelBW);
break;
}
//Skip over setting of J-mode in BB register here. Default value is "None J mode". Emily 20070315
//<3>Set RF related register
switch( priv->rf_chip )
{
case RF_8225:
#ifdef TO_DO_LIST
PHY_SetRF8225Bandwidth(Adapter, pHalData->CurrentChannelBW);
#endif
break;
case RF_8256:
PHY_SetRF8256Bandwidth(dev, priv->CurrentChannelBW);
break;
case RF_8258:
// PHY_SetRF8258Bandwidth();
break;
case RF_PSEUDO_11N:
// Do Nothing
break;
default:
RT_TRACE(COMP_ERR, "Unknown RFChipID: %d\n", priv->rf_chip);
break;
}
priv->SetBWModeInProgress= false;
RT_TRACE(COMP_SWBW, "<==SetBWMode819xUsb(), %d", atomic_read(&(priv->ieee80211->atm_swbw)) );
}
/******************************************************************************
*function: This function schedules bandwidth switch work.
* input: struct net_device *dev
* HT_CHANNEL_WIDTH Bandwidth //20M or 40M
* HT_EXTCHNL_OFFSET Offset //Upper, Lower, or Don't care
* output: none
* return: none
* Note: I doubt whether SetBWModeInProgress flag is necessary as we can
* test whether current work in the queue or not.//do I?
* ***************************************************************************/
void rtl8192_SetBWMode(struct net_device *dev, HT_CHANNEL_WIDTH Bandwidth, HT_EXTCHNL_OFFSET Offset)
{
struct r8192_priv *priv = ieee80211_priv(dev);
if(priv->SetBWModeInProgress)
return;
priv->SetBWModeInProgress= true;
priv->CurrentChannelBW = Bandwidth;
if(Offset==HT_EXTCHNL_OFFSET_LOWER)
priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER;
else if(Offset==HT_EXTCHNL_OFFSET_UPPER)
priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER;
else
priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
//queue_work(priv->priv_wq, &(priv->SetBWModeWorkItem));
// schedule_work(&(priv->SetBWModeWorkItem));
rtl8192_SetBWModeWorkItem(dev);
}
void InitialGain819xUsb(struct net_device *dev, u8 Operation)
{
struct r8192_priv *priv = ieee80211_priv(dev);
priv->InitialGainOperateType = Operation;
if(priv->up)
{
queue_delayed_work(priv->priv_wq,&priv->initialgain_operate_wq,0);
}
}
extern void InitialGainOperateWorkItemCallBack(struct work_struct *work)
{
struct delayed_work *dwork = container_of(work,struct delayed_work,work);
struct r8192_priv *priv = container_of(dwork,struct r8192_priv,initialgain_operate_wq);
struct net_device *dev = priv->ieee80211->dev;
#define SCAN_RX_INITIAL_GAIN 0x17
#define POWER_DETECTION_TH 0x08
u32 BitMask;
u8 initial_gain;
u8 Operation;
Operation = priv->InitialGainOperateType;
switch(Operation)
{
case IG_Backup:
RT_TRACE(COMP_SCAN, "IG_Backup, backup the initial gain.\n");
initial_gain = SCAN_RX_INITIAL_GAIN;//priv->DefaultInitialGain[0];//
BitMask = bMaskByte0;
if(dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM)
rtl8192_setBBreg(dev, UFWP, bMaskByte1, 0x8); // FW DIG OFF
priv->initgain_backup.xaagccore1 = (u8)rtl8192_QueryBBReg(dev, rOFDM0_XAAGCCore1, BitMask);
priv->initgain_backup.xbagccore1 = (u8)rtl8192_QueryBBReg(dev, rOFDM0_XBAGCCore1, BitMask);
priv->initgain_backup.xcagccore1 = (u8)rtl8192_QueryBBReg(dev, rOFDM0_XCAGCCore1, BitMask);
priv->initgain_backup.xdagccore1 = (u8)rtl8192_QueryBBReg(dev, rOFDM0_XDAGCCore1, BitMask);
BitMask = bMaskByte2;
priv->initgain_backup.cca = (u8)rtl8192_QueryBBReg(dev, rCCK0_CCA, BitMask);
RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc50 is %x\n",priv->initgain_backup.xaagccore1);
RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc58 is %x\n",priv->initgain_backup.xbagccore1);
RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc60 is %x\n",priv->initgain_backup.xcagccore1);
RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc68 is %x\n",priv->initgain_backup.xdagccore1);
RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xa0a is %x\n",priv->initgain_backup.cca);
RT_TRACE(COMP_SCAN, "Write scan initial gain = 0x%x \n", initial_gain);
write_nic_byte(dev, rOFDM0_XAAGCCore1, initial_gain);
write_nic_byte(dev, rOFDM0_XBAGCCore1, initial_gain);
write_nic_byte(dev, rOFDM0_XCAGCCore1, initial_gain);
write_nic_byte(dev, rOFDM0_XDAGCCore1, initial_gain);
RT_TRACE(COMP_SCAN, "Write scan 0xa0a = 0x%x \n", POWER_DETECTION_TH);
write_nic_byte(dev, 0xa0a, POWER_DETECTION_TH);
break;
case IG_Restore:
RT_TRACE(COMP_SCAN, "IG_Restore, restore the initial gain.\n");
BitMask = 0x7f; //Bit0~ Bit6
if(dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM)
rtl8192_setBBreg(dev, UFWP, bMaskByte1, 0x8); // FW DIG OFF
rtl8192_setBBreg(dev, rOFDM0_XAAGCCore1, BitMask, (u32)priv->initgain_backup.xaagccore1);
rtl8192_setBBreg(dev, rOFDM0_XBAGCCore1, BitMask, (u32)priv->initgain_backup.xbagccore1);
rtl8192_setBBreg(dev, rOFDM0_XCAGCCore1, BitMask, (u32)priv->initgain_backup.xcagccore1);
rtl8192_setBBreg(dev, rOFDM0_XDAGCCore1, BitMask, (u32)priv->initgain_backup.xdagccore1);
BitMask = bMaskByte2;
rtl8192_setBBreg(dev, rCCK0_CCA, BitMask, (u32)priv->initgain_backup.cca);
RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc50 is %x\n",priv->initgain_backup.xaagccore1);
RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc58 is %x\n",priv->initgain_backup.xbagccore1);
RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc60 is %x\n",priv->initgain_backup.xcagccore1);
RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc68 is %x\n",priv->initgain_backup.xdagccore1);
RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xa0a is %x\n",priv->initgain_backup.cca);
#ifdef RTL8190P
SetTxPowerLevel8190(Adapter,priv->CurrentChannel);
#endif
#ifdef RTL8192E
SetTxPowerLevel8190(Adapter,priv->CurrentChannel);
#endif
//#ifdef RTL8192U
rtl8192_phy_setTxPower(dev,priv->ieee80211->current_network.channel);
//#endif
if(dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM)
rtl8192_setBBreg(dev, UFWP, bMaskByte1, 0x1); // FW DIG ON
break;
default:
RT_TRACE(COMP_SCAN, "Unknown IG Operation. \n");
break;
}
}