- 根目录:
- drivers
- staging
- vt6656
- rxtx.c
C++程序
|
3260行
|
124.32 KB
/*
* Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* File: rxtx.c
*
* Purpose: handle WMAC/802.3/802.11 rx & tx functions
*
* Author: Lyndon Chen
*
* Date: May 20, 2003
*
* Functions:
* s_vGenerateTxParameter - Generate tx dma required parameter.
* s_vGenerateMACHeader - Translate 802.3 to 802.11 header
* csBeacon_xmit - beacon tx function
* csMgmt_xmit - management tx function
* s_uGetDataDuration - get tx data required duration
* s_uFillDataHead- fulfill tx data duration header
* s_uGetRTSCTSDuration- get rtx/cts required duration
* s_uGetRTSCTSRsvTime- get rts/cts reserved time
* s_uGetTxRsvTime- get frame reserved time
* s_vFillCTSHead- fulfill CTS ctl header
* s_vFillFragParameter- Set fragment ctl parameter.
* s_vFillRTSHead- fulfill RTS ctl header
* s_vFillTxKey- fulfill tx encrypt key
* s_vSWencryption- Software encrypt header
* vDMA0_tx_80211- tx 802.11 frame via dma0
* vGenerateFIFOHeader- Generate tx FIFO ctl header
*
* Revision History:
*
*/
#include "device.h"
#include "rxtx.h"
#include "tether.h"
#include "card.h"
#include "bssdb.h"
#include "mac.h"
#include "baseband.h"
#include "michael.h"
#include "tkip.h"
#include "tcrc.h"
#include "wctl.h"
#include "hostap.h"
#include "rf.h"
#include "datarate.h"
#include "usbpipe.h"
#include "iocmd.h"
/*--------------------- Static Definitions -------------------------*/
/*--------------------- Static Classes ----------------------------*/
/*--------------------- Static Variables --------------------------*/
static int msglevel = MSG_LEVEL_INFO;
/*--------------------- Static Functions --------------------------*/
/*--------------------- Static Definitions -------------------------*/
#define CRITICAL_PACKET_LEN 256 // if packet size < 256 -> in-direct send
// packet size >= 256 -> direct send
const WORD wTimeStampOff[2][MAX_RATE] = {
{384, 288, 226, 209, 54, 43, 37, 31, 28, 25, 24, 23}, // Long Preamble
{384, 192, 130, 113, 54, 43, 37, 31, 28, 25, 24, 23}, // Short Preamble
};
const WORD wFB_Opt0[2][5] = {
{RATE_12M, RATE_18M, RATE_24M, RATE_36M, RATE_48M}, // fallback_rate0
{RATE_12M, RATE_12M, RATE_18M, RATE_24M, RATE_36M}, // fallback_rate1
};
const WORD wFB_Opt1[2][5] = {
{RATE_12M, RATE_18M, RATE_24M, RATE_24M, RATE_36M}, // fallback_rate0
{RATE_6M , RATE_6M, RATE_12M, RATE_12M, RATE_18M}, // fallback_rate1
};
#define RTSDUR_BB 0
#define RTSDUR_BA 1
#define RTSDUR_AA 2
#define CTSDUR_BA 3
#define RTSDUR_BA_F0 4
#define RTSDUR_AA_F0 5
#define RTSDUR_BA_F1 6
#define RTSDUR_AA_F1 7
#define CTSDUR_BA_F0 8
#define CTSDUR_BA_F1 9
#define DATADUR_B 10
#define DATADUR_A 11
#define DATADUR_A_F0 12
#define DATADUR_A_F1 13
/*--------------------- Static Functions --------------------------*/
static
void
s_vSaveTxPktInfo(
PSDevice pDevice,
BYTE byPktNum,
PBYTE pbyDestAddr,
WORD wPktLength,
WORD wFIFOCtl
);
static
void *
s_vGetFreeContext(
PSDevice pDevice
);
static
void
s_vGenerateTxParameter(
PSDevice pDevice,
BYTE byPktType,
WORD wCurrentRate,
void *pTxBufHead,
void *pvRrvTime,
void *pvRTS,
void *pvCTS,
unsigned int cbFrameSize,
BOOL bNeedACK,
unsigned int uDMAIdx,
PSEthernetHeader psEthHeader
);
static unsigned int s_uFillDataHead(
PSDevice pDevice,
BYTE byPktType,
WORD wCurrentRate,
void *pTxDataHead,
unsigned int cbFrameLength,
unsigned int uDMAIdx,
BOOL bNeedAck,
unsigned int uFragIdx,
unsigned int cbLastFragmentSize,
unsigned int uMACfragNum,
BYTE byFBOption
);
static
void
s_vGenerateMACHeader (
PSDevice pDevice,
PBYTE pbyBufferAddr,
WORD wDuration,
PSEthernetHeader psEthHeader,
BOOL bNeedEncrypt,
WORD wFragType,
unsigned int uDMAIdx,
unsigned int uFragIdx
);
static
void
s_vFillTxKey(
PSDevice pDevice,
PBYTE pbyBuf,
PBYTE pbyIVHead,
PSKeyItem pTransmitKey,
PBYTE pbyHdrBuf,
WORD wPayloadLen,
PBYTE pMICHDR
);
static
void
s_vSWencryption (
PSDevice pDevice,
PSKeyItem pTransmitKey,
PBYTE pbyPayloadHead,
WORD wPayloadSize
);
static unsigned int s_uGetTxRsvTime(
PSDevice pDevice,
BYTE byPktType,
unsigned int cbFrameLength,
WORD wRate,
BOOL bNeedAck
);
static unsigned int s_uGetRTSCTSRsvTime(
PSDevice pDevice,
BYTE byRTSRsvType,
BYTE byPktType,
unsigned int cbFrameLength,
WORD wCurrentRate
);
static
void
s_vFillCTSHead (
PSDevice pDevice,
unsigned int uDMAIdx,
BYTE byPktType,
void *pvCTS,
unsigned int cbFrameLength,
BOOL bNeedAck,
BOOL bDisCRC,
WORD wCurrentRate,
BYTE byFBOption
);
static
void
s_vFillRTSHead(
PSDevice pDevice,
BYTE byPktType,
void *pvRTS,
unsigned int cbFrameLength,
BOOL bNeedAck,
BOOL bDisCRC,
PSEthernetHeader psEthHeader,
WORD wCurrentRate,
BYTE byFBOption
);
static unsigned int s_uGetDataDuration(
PSDevice pDevice,
BYTE byDurType,
unsigned int cbFrameLength,
BYTE byPktType,
WORD wRate,
BOOL bNeedAck,
unsigned int uFragIdx,
unsigned int cbLastFragmentSize,
unsigned int uMACfragNum,
BYTE byFBOption
);
static
unsigned int
s_uGetRTSCTSDuration (
PSDevice pDevice,
BYTE byDurType,
unsigned int cbFrameLength,
BYTE byPktType,
WORD wRate,
BOOL bNeedAck,
BYTE byFBOption
);
/*--------------------- Export Variables --------------------------*/
static
void *
s_vGetFreeContext(
PSDevice pDevice
)
{
PUSB_SEND_CONTEXT pContext = NULL;
PUSB_SEND_CONTEXT pReturnContext = NULL;
unsigned int ii;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"GetFreeContext()\n");
for (ii = 0; ii < pDevice->cbTD; ii++) {
pContext = pDevice->apTD[ii];
if (pContext->bBoolInUse == FALSE) {
pContext->bBoolInUse = TRUE;
pReturnContext = pContext;
break;
}
}
if ( ii == pDevice->cbTD ) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Free Tx Context\n");
}
return (void *) pReturnContext;
}
static
void
s_vSaveTxPktInfo(PSDevice pDevice, BYTE byPktNum, PBYTE pbyDestAddr, WORD wPktLength, WORD wFIFOCtl)
{
PSStatCounter pStatistic=&(pDevice->scStatistic);
if (is_broadcast_ether_addr(pbyDestAddr))
pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_BROAD;
else if (is_multicast_ether_addr(pbyDestAddr))
pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_MULTI;
else
pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_UNI;
pStatistic->abyTxPktInfo[byPktNum].wLength = wPktLength;
pStatistic->abyTxPktInfo[byPktNum].wFIFOCtl = wFIFOCtl;
memcpy(pStatistic->abyTxPktInfo[byPktNum].abyDestAddr,
pbyDestAddr,
ETH_ALEN);
}
static
void
s_vFillTxKey (
PSDevice pDevice,
PBYTE pbyBuf,
PBYTE pbyIVHead,
PSKeyItem pTransmitKey,
PBYTE pbyHdrBuf,
WORD wPayloadLen,
PBYTE pMICHDR
)
{
PDWORD pdwIV = (PDWORD) pbyIVHead;
PDWORD pdwExtIV = (PDWORD) ((PBYTE)pbyIVHead+4);
WORD wValue;
PS802_11Header pMACHeader = (PS802_11Header)pbyHdrBuf;
DWORD dwRevIVCounter;
//Fill TXKEY
if (pTransmitKey == NULL)
return;
dwRevIVCounter = cpu_to_le32(pDevice->dwIVCounter);
*pdwIV = pDevice->dwIVCounter;
pDevice->byKeyIndex = pTransmitKey->dwKeyIndex & 0xf;
if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
if (pTransmitKey->uKeyLength == WLAN_WEP232_KEYLEN ){
memcpy(pDevice->abyPRNG, (PBYTE)&(dwRevIVCounter), 3);
memcpy(pDevice->abyPRNG+3, pTransmitKey->abyKey, pTransmitKey->uKeyLength);
} else {
memcpy(pbyBuf, (PBYTE)&(dwRevIVCounter), 3);
memcpy(pbyBuf+3, pTransmitKey->abyKey, pTransmitKey->uKeyLength);
if(pTransmitKey->uKeyLength == WLAN_WEP40_KEYLEN) {
memcpy(pbyBuf+8, (PBYTE)&(dwRevIVCounter), 3);
memcpy(pbyBuf+11, pTransmitKey->abyKey, pTransmitKey->uKeyLength);
}
memcpy(pDevice->abyPRNG, pbyBuf, 16);
}
// Append IV after Mac Header
*pdwIV &= WEP_IV_MASK;//00000000 11111111 11111111 11111111
*pdwIV |= (pDevice->byKeyIndex << 30);
*pdwIV = cpu_to_le32(*pdwIV);
pDevice->dwIVCounter++;
if (pDevice->dwIVCounter > WEP_IV_MASK) {
pDevice->dwIVCounter = 0;
}
} else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
pTransmitKey->wTSC15_0++;
if (pTransmitKey->wTSC15_0 == 0) {
pTransmitKey->dwTSC47_16++;
}
TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
memcpy(pbyBuf, pDevice->abyPRNG, 16);
// Make IV
memcpy(pdwIV, pDevice->abyPRNG, 3);
*(pbyIVHead+3) = (BYTE)(((pDevice->byKeyIndex << 6) & 0xc0) | 0x20); // 0x20 is ExtIV
// Append IV&ExtIV after Mac Header
*pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"vFillTxKey()---- pdwExtIV: %lx\n", *pdwExtIV);
} else if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) {
pTransmitKey->wTSC15_0++;
if (pTransmitKey->wTSC15_0 == 0) {
pTransmitKey->dwTSC47_16++;
}
memcpy(pbyBuf, pTransmitKey->abyKey, 16);
// Make IV
*pdwIV = 0;
*(pbyIVHead+3) = (BYTE)(((pDevice->byKeyIndex << 6) & 0xc0) | 0x20); // 0x20 is ExtIV
*pdwIV |= cpu_to_le16((WORD)(pTransmitKey->wTSC15_0));
//Append IV&ExtIV after Mac Header
*pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
//Fill MICHDR0
*pMICHDR = 0x59;
*((PBYTE)(pMICHDR+1)) = 0; // TxPriority
memcpy(pMICHDR+2, &(pMACHeader->abyAddr2[0]), 6);
*((PBYTE)(pMICHDR+8)) = HIBYTE(HIWORD(pTransmitKey->dwTSC47_16));
*((PBYTE)(pMICHDR+9)) = LOBYTE(HIWORD(pTransmitKey->dwTSC47_16));
*((PBYTE)(pMICHDR+10)) = HIBYTE(LOWORD(pTransmitKey->dwTSC47_16));
*((PBYTE)(pMICHDR+11)) = LOBYTE(LOWORD(pTransmitKey->dwTSC47_16));
*((PBYTE)(pMICHDR+12)) = HIBYTE(pTransmitKey->wTSC15_0);
*((PBYTE)(pMICHDR+13)) = LOBYTE(pTransmitKey->wTSC15_0);
*((PBYTE)(pMICHDR+14)) = HIBYTE(wPayloadLen);
*((PBYTE)(pMICHDR+15)) = LOBYTE(wPayloadLen);
//Fill MICHDR1
*((PBYTE)(pMICHDR+16)) = 0; // HLEN[15:8]
if (pDevice->bLongHeader) {
*((PBYTE)(pMICHDR+17)) = 28; // HLEN[7:0]
} else {
*((PBYTE)(pMICHDR+17)) = 22; // HLEN[7:0]
}
wValue = cpu_to_le16(pMACHeader->wFrameCtl & 0xC78F);
memcpy(pMICHDR+18, (PBYTE)&wValue, 2); // MSKFRACTL
memcpy(pMICHDR+20, &(pMACHeader->abyAddr1[0]), 6);
memcpy(pMICHDR+26, &(pMACHeader->abyAddr2[0]), 6);
//Fill MICHDR2
memcpy(pMICHDR+32, &(pMACHeader->abyAddr3[0]), 6);
wValue = pMACHeader->wSeqCtl;
wValue &= 0x000F;
wValue = cpu_to_le16(wValue);
memcpy(pMICHDR+38, (PBYTE)&wValue, 2); // MSKSEQCTL
if (pDevice->bLongHeader) {
memcpy(pMICHDR+40, &(pMACHeader->abyAddr4[0]), 6);
}
}
}
static
void
s_vSWencryption (
PSDevice pDevice,
PSKeyItem pTransmitKey,
PBYTE pbyPayloadHead,
WORD wPayloadSize
)
{
unsigned int cbICVlen = 4;
DWORD dwICV = 0xFFFFFFFFL;
PDWORD pdwICV;
if (pTransmitKey == NULL)
return;
if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
//=======================================================================
// Append ICV after payload
dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
pdwICV = (PDWORD)(pbyPayloadHead + wPayloadSize);
// finally, we must invert dwCRC to get the correct answer
*pdwICV = cpu_to_le32(~dwICV);
// RC4 encryption
rc4_init(&pDevice->SBox, pDevice->abyPRNG, pTransmitKey->uKeyLength + 3);
rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
//=======================================================================
} else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
//=======================================================================
//Append ICV after payload
dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
pdwICV = (PDWORD)(pbyPayloadHead + wPayloadSize);
// finally, we must invert dwCRC to get the correct answer
*pdwICV = cpu_to_le32(~dwICV);
// RC4 encryption
rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
//=======================================================================
}
}
/*byPktType : PK_TYPE_11A 0
PK_TYPE_11B 1
PK_TYPE_11GB 2
PK_TYPE_11GA 3
*/
static
unsigned int
s_uGetTxRsvTime (
PSDevice pDevice,
BYTE byPktType,
unsigned int cbFrameLength,
WORD wRate,
BOOL bNeedAck
)
{
unsigned int uDataTime, uAckTime;
uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wRate);
if (byPktType == PK_TYPE_11B) {//llb,CCK mode
uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (WORD)pDevice->byTopCCKBasicRate);
} else {//11g 2.4G OFDM mode & 11a 5G OFDM mode
uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (WORD)pDevice->byTopOFDMBasicRate);
}
if (bNeedAck) {
return (uDataTime + pDevice->uSIFS + uAckTime);
}
else {
return uDataTime;
}
}
//byFreqType: 0=>5GHZ 1=>2.4GHZ
static
unsigned int
s_uGetRTSCTSRsvTime (
PSDevice pDevice,
BYTE byRTSRsvType,
BYTE byPktType,
unsigned int cbFrameLength,
WORD wCurrentRate
)
{
unsigned int uRrvTime , uRTSTime, uCTSTime, uAckTime, uDataTime;
uRrvTime = uRTSTime = uCTSTime = uAckTime = uDataTime = 0;
uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wCurrentRate);
if (byRTSRsvType == 0) { //RTSTxRrvTime_bb
uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
}
else if (byRTSRsvType == 1){ //RTSTxRrvTime_ba, only in 2.4GHZ
uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
}
else if (byRTSRsvType == 2) { //RTSTxRrvTime_aa
uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopOFDMBasicRate);
uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
}
else if (byRTSRsvType == 3) { //CTSTxRrvTime_ba, only in 2.4GHZ
uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
uRrvTime = uCTSTime + uAckTime + uDataTime + 2*pDevice->uSIFS;
return uRrvTime;
}
//RTSRrvTime
uRrvTime = uRTSTime + uCTSTime + uAckTime + uDataTime + 3*pDevice->uSIFS;
return uRrvTime;
}
//byFreqType 0: 5GHz, 1:2.4Ghz
static
unsigned int
s_uGetDataDuration (
PSDevice pDevice,
BYTE byDurType,
unsigned int cbFrameLength,
BYTE byPktType,
WORD wRate,
BOOL bNeedAck,
unsigned int uFragIdx,
unsigned int cbLastFragmentSize,
unsigned int uMACfragNum,
BYTE byFBOption
)
{
BOOL bLastFrag = 0;
unsigned int uAckTime = 0, uNextPktTime = 0;
if (uFragIdx == (uMACfragNum-1)) {
bLastFrag = 1;
}
switch (byDurType) {
case DATADUR_B: //DATADUR_B
if (((uMACfragNum == 1)) || (bLastFrag == 1)) {//Non Frag or Last Frag
if (bNeedAck) {
uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
return (pDevice->uSIFS + uAckTime);
} else {
return 0;
}
}
else {//First Frag or Mid Frag
if (uFragIdx == (uMACfragNum-2)) {
uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbLastFragmentSize, wRate, bNeedAck);
} else {
uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
}
if (bNeedAck) {
uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
return (pDevice->uSIFS + uAckTime + uNextPktTime);
} else {
return (pDevice->uSIFS + uNextPktTime);
}
}
break;
case DATADUR_A: //DATADUR_A
if (((uMACfragNum==1)) || (bLastFrag==1)) {//Non Frag or Last Frag
if(bNeedAck){
uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
return (pDevice->uSIFS + uAckTime);
} else {
return 0;
}
}
else {//First Frag or Mid Frag
if(uFragIdx == (uMACfragNum-2)){
uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbLastFragmentSize, wRate, bNeedAck);
} else {
uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
}
if(bNeedAck){
uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
return (pDevice->uSIFS + uAckTime + uNextPktTime);
} else {
return (pDevice->uSIFS + uNextPktTime);
}
}
break;
case DATADUR_A_F0: //DATADUR_A_F0
if (((uMACfragNum==1)) || (bLastFrag==1)) {//Non Frag or Last Frag
if(bNeedAck){
uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
return (pDevice->uSIFS + uAckTime);
} else {
return 0;
}
}
else { //First Frag or Mid Frag
if (byFBOption == AUTO_FB_0) {
if (wRate < RATE_18M)
wRate = RATE_18M;
else if (wRate > RATE_54M)
wRate = RATE_54M;
if(uFragIdx == (uMACfragNum-2)){
uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbLastFragmentSize, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
} else {
uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
}
} else { // (byFBOption == AUTO_FB_1)
if (wRate < RATE_18M)
wRate = RATE_18M;
else if (wRate > RATE_54M)
wRate = RATE_54M;
if(uFragIdx == (uMACfragNum-2)){
uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbLastFragmentSize, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
} else {
uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
}
}
if(bNeedAck){
uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
return (pDevice->uSIFS + uAckTime + uNextPktTime);
} else {
return (pDevice->uSIFS + uNextPktTime);
}
}
break;
case DATADUR_A_F1: //DATADUR_A_F1
if (((uMACfragNum==1)) || (bLastFrag==1)) {//Non Frag or Last Frag
if(bNeedAck){
uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
return (pDevice->uSIFS + uAckTime);
} else {
return 0;
}
}
else { //First Frag or Mid Frag
if (byFBOption == AUTO_FB_0) {
if (wRate < RATE_18M)
wRate = RATE_18M;
else if (wRate > RATE_54M)
wRate = RATE_54M;
if(uFragIdx == (uMACfragNum-2)){
uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbLastFragmentSize, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
} else {
uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
}
} else { // (byFBOption == AUTO_FB_1)
if (wRate < RATE_18M)
wRate = RATE_18M;
else if (wRate > RATE_54M)
wRate = RATE_54M;
if(uFragIdx == (uMACfragNum-2)){
uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbLastFragmentSize, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
} else {
uNextPktTime = s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
}
}
if(bNeedAck){
uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
return (pDevice->uSIFS + uAckTime + uNextPktTime);
} else {
return (pDevice->uSIFS + uNextPktTime);
}
}
break;
default:
break;
}
ASSERT(FALSE);
return 0;
}
//byFreqType: 0=>5GHZ 1=>2.4GHZ
static
unsigned int
s_uGetRTSCTSDuration (
PSDevice pDevice,
BYTE byDurType,
unsigned int cbFrameLength,
BYTE byPktType,
WORD wRate,
BOOL bNeedAck,
BYTE byFBOption
)
{
unsigned int uCTSTime = 0, uDurTime = 0;
switch (byDurType) {
case RTSDUR_BB: //RTSDuration_bb
uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
break;
case RTSDUR_BA: //RTSDuration_ba
uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
break;
case RTSDUR_AA: //RTSDuration_aa
uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
break;
case CTSDUR_BA: //CTSDuration_ba
uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
break;
case RTSDUR_BA_F0: //RTSDuration_ba_f0
uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
} else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
}
break;
case RTSDUR_AA_F0: //RTSDuration_aa_f0
uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
} else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
}
break;
case RTSDUR_BA_F1: //RTSDuration_ba_f1
uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
} else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
}
break;
case RTSDUR_AA_F1: //RTSDuration_aa_f1
uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
} else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
}
break;
case CTSDUR_BA_F0: //CTSDuration_ba_f0
if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
} else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
}
break;
case CTSDUR_BA_F1: //CTSDuration_ba_f1
if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
} else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
}
break;
default:
break;
}
return uDurTime;
}
static
unsigned int
s_uFillDataHead (
PSDevice pDevice,
BYTE byPktType,
WORD wCurrentRate,
void *pTxDataHead,
unsigned int cbFrameLength,
unsigned int uDMAIdx,
BOOL bNeedAck,
unsigned int uFragIdx,
unsigned int cbLastFragmentSize,
unsigned int uMACfragNum,
BYTE byFBOption
)
{
if (pTxDataHead == NULL) {
return 0;
}
if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
if ((uDMAIdx == TYPE_ATIMDMA) || (uDMAIdx == TYPE_BEACONDMA)) {
PSTxDataHead_ab pBuf = (PSTxDataHead_ab) pTxDataHead;
//Get SignalField,ServiceField,Length
BBvCaculateParameter(pDevice, cbFrameLength, wCurrentRate, byPktType,
(PWORD)&(pBuf->wTransmitLength), (PBYTE)&(pBuf->byServiceField), (PBYTE)&(pBuf->bySignalField)
);
//Get Duration and TimeStampOff
pBuf->wDuration = (WORD)s_uGetDataDuration(pDevice, DATADUR_A, cbFrameLength, byPktType,
wCurrentRate, bNeedAck, uFragIdx,
cbLastFragmentSize, uMACfragNum,
byFBOption); //1: 2.4GHz
if(uDMAIdx!=TYPE_ATIMDMA) {
pBuf->wTimeStampOff = wTimeStampOff[pDevice->byPreambleType%2][wCurrentRate%MAX_RATE];
}
return (pBuf->wDuration);
}
else { // DATA & MANAGE Frame
if (byFBOption == AUTO_FB_NONE) {
PSTxDataHead_g pBuf = (PSTxDataHead_g)pTxDataHead;
//Get SignalField,ServiceField,Length
BBvCaculateParameter(pDevice, cbFrameLength, wCurrentRate, byPktType,
(PWORD)&(pBuf->wTransmitLength_a), (PBYTE)&(pBuf->byServiceField_a), (PBYTE)&(pBuf->bySignalField_a)
);
BBvCaculateParameter(pDevice, cbFrameLength, pDevice->byTopCCKBasicRate, PK_TYPE_11B,
(PWORD)&(pBuf->wTransmitLength_b), (PBYTE)&(pBuf->byServiceField_b), (PBYTE)&(pBuf->bySignalField_b)
);
//Get Duration and TimeStamp
pBuf->wDuration_a = (WORD)s_uGetDataDuration(pDevice, DATADUR_A, cbFrameLength,
byPktType, wCurrentRate, bNeedAck, uFragIdx,
cbLastFragmentSize, uMACfragNum,
byFBOption); //1: 2.4GHz
pBuf->wDuration_b = (WORD)s_uGetDataDuration(pDevice, DATADUR_B, cbFrameLength,
PK_TYPE_11B, pDevice->byTopCCKBasicRate,
bNeedAck, uFragIdx, cbLastFragmentSize,
uMACfragNum, byFBOption); //1: 2.4GHz
pBuf->wTimeStampOff_a = wTimeStampOff[pDevice->byPreambleType%2][wCurrentRate%MAX_RATE];
pBuf->wTimeStampOff_b = wTimeStampOff[pDevice->byPreambleType%2][pDevice->byTopCCKBasicRate%MAX_RATE];
return (pBuf->wDuration_a);
} else {
// Auto Fallback
PSTxDataHead_g_FB pBuf = (PSTxDataHead_g_FB)pTxDataHead;
//Get SignalField,ServiceField,Length
BBvCaculateParameter(pDevice, cbFrameLength, wCurrentRate, byPktType,
(PWORD)&(pBuf->wTransmitLength_a), (PBYTE)&(pBuf->byServiceField_a), (PBYTE)&(pBuf->bySignalField_a)
);
BBvCaculateParameter(pDevice, cbFrameLength, pDevice->byTopCCKBasicRate, PK_TYPE_11B,
(PWORD)&(pBuf->wTransmitLength_b), (PBYTE)&(pBuf->byServiceField_b), (PBYTE)&(pBuf->bySignalField_b)
);
//Get Duration and TimeStamp
pBuf->wDuration_a = (WORD)s_uGetDataDuration(pDevice, DATADUR_A, cbFrameLength, byPktType,
wCurrentRate, bNeedAck, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption); //1: 2.4GHz
pBuf->wDuration_b = (WORD)s_uGetDataDuration(pDevice, DATADUR_B, cbFrameLength, PK_TYPE_11B,
pDevice->byTopCCKBasicRate, bNeedAck, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption); //1: 2.4GHz
pBuf->wDuration_a_f0 = (WORD)s_uGetDataDuration(pDevice, DATADUR_A_F0, cbFrameLength, byPktType,
wCurrentRate, bNeedAck, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption); //1: 2.4GHz
pBuf->wDuration_a_f1 = (WORD)s_uGetDataDuration(pDevice, DATADUR_A_F1, cbFrameLength, byPktType,
wCurrentRate, bNeedAck, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption); //1: 2.4GHz
pBuf->wTimeStampOff_a = wTimeStampOff[pDevice->byPreambleType%2][wCurrentRate%MAX_RATE];
pBuf->wTimeStampOff_b = wTimeStampOff[pDevice->byPreambleType%2][pDevice->byTopCCKBasicRate%MAX_RATE];
return (pBuf->wDuration_a);
} //if (byFBOption == AUTO_FB_NONE)
}
}
else if (byPktType == PK_TYPE_11A) {
if ((byFBOption != AUTO_FB_NONE) && (uDMAIdx != TYPE_ATIMDMA) && (uDMAIdx != TYPE_BEACONDMA)) {
// Auto Fallback
PSTxDataHead_a_FB pBuf = (PSTxDataHead_a_FB)pTxDataHead;
//Get SignalField,ServiceField,Length
BBvCaculateParameter(pDevice, cbFrameLength, wCurrentRate, byPktType,
(PWORD)&(pBuf->wTransmitLength), (PBYTE)&(pBuf->byServiceField), (PBYTE)&(pBuf->bySignalField)
);
//Get Duration and TimeStampOff
pBuf->wDuration = (WORD)s_uGetDataDuration(pDevice, DATADUR_A, cbFrameLength, byPktType,
wCurrentRate, bNeedAck, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption); //0: 5GHz
pBuf->wDuration_f0 = (WORD)s_uGetDataDuration(pDevice, DATADUR_A_F0, cbFrameLength, byPktType,
wCurrentRate, bNeedAck, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption); //0: 5GHz
pBuf->wDuration_f1 = (WORD)s_uGetDataDuration(pDevice, DATADUR_A_F1, cbFrameLength, byPktType,
wCurrentRate, bNeedAck, uFragIdx, cbLastFragmentSize, uMACfragNum, byFBOption); //0: 5GHz
if(uDMAIdx!=TYPE_ATIMDMA) {
pBuf->wTimeStampOff = wTimeStampOff[pDevice->byPreambleType%2][wCurrentRate%MAX_RATE];
}
return (pBuf->wDuration);
} else {
PSTxDataHead_ab pBuf = (PSTxDataHead_ab)pTxDataHead;
//Get SignalField,ServiceField,Length
BBvCaculateParameter(pDevice, cbFrameLength, wCurrentRate, byPktType,
(PWORD)&(pBuf->wTransmitLength), (PBYTE)&(pBuf->byServiceField), (PBYTE)&(pBuf->bySignalField)
);
//Get Duration and TimeStampOff
pBuf->wDuration = (WORD)s_uGetDataDuration(pDevice, DATADUR_A, cbFrameLength, byPktType,
wCurrentRate, bNeedAck, uFragIdx,
cbLastFragmentSize, uMACfragNum,
byFBOption);
if(uDMAIdx!=TYPE_ATIMDMA) {
pBuf->wTimeStampOff = wTimeStampOff[pDevice->byPreambleType%2][wCurrentRate%MAX_RATE];
}
return (pBuf->wDuration);
}
}
else if (byPktType == PK_TYPE_11B) {
PSTxDataHead_ab pBuf = (PSTxDataHead_ab)pTxDataHead;
//Get SignalField,ServiceField,Length
BBvCaculateParameter(pDevice, cbFrameLength, wCurrentRate, byPktType,
(PWORD)&(pBuf->wTransmitLength), (PBYTE)&(pBuf->byServiceField), (PBYTE)&(pBuf->bySignalField)
);
//Get Duration and TimeStampOff
pBuf->wDuration = (WORD)s_uGetDataDuration(pDevice, DATADUR_B, cbFrameLength, byPktType,
wCurrentRate, bNeedAck, uFragIdx,
cbLastFragmentSize, uMACfragNum,
byFBOption);
if (uDMAIdx != TYPE_ATIMDMA) {
pBuf->wTimeStampOff = wTimeStampOff[pDevice->byPreambleType%2][wCurrentRate%MAX_RATE];
}
return (pBuf->wDuration);
}
return 0;
}
static
void
s_vFillRTSHead (
PSDevice pDevice,
BYTE byPktType,
void *pvRTS,
unsigned int cbFrameLength,
BOOL bNeedAck,
BOOL bDisCRC,
PSEthernetHeader psEthHeader,
WORD wCurrentRate,
BYTE byFBOption
)
{
unsigned int uRTSFrameLen = 20;
WORD wLen = 0x0000;
if (pvRTS == NULL)
return;
if (bDisCRC) {
// When CRCDIS bit is on, H/W forgot to generate FCS for RTS frame,
// in this case we need to decrease its length by 4.
uRTSFrameLen -= 4;
}
// Note: So far RTSHead dosen't appear in ATIM & Beacom DMA, so we don't need to take them into account.
// Otherwise, we need to modified codes for them.
if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
if (byFBOption == AUTO_FB_NONE) {
PSRTS_g pBuf = (PSRTS_g)pvRTS;
//Get SignalField,ServiceField,Length
BBvCaculateParameter(pDevice, uRTSFrameLen, pDevice->byTopCCKBasicRate, PK_TYPE_11B,
(PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField_b), (PBYTE)&(pBuf->bySignalField_b)
);
pBuf->wTransmitLength_b = cpu_to_le16(wLen);
BBvCaculateParameter(pDevice, uRTSFrameLen, pDevice->byTopOFDMBasicRate, byPktType,
(PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField_a), (PBYTE)&(pBuf->bySignalField_a)
);
pBuf->wTransmitLength_a = cpu_to_le16(wLen);
//Get Duration
pBuf->wDuration_bb = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_BB, cbFrameLength, PK_TYPE_11B, pDevice->byTopCCKBasicRate, bNeedAck, byFBOption)); //0:RTSDuration_bb, 1:2.4G, 1:CCKData
pBuf->wDuration_aa = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_AA, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //2:RTSDuration_aa, 1:2.4G, 2,3: 2.4G OFDMData
pBuf->wDuration_ba = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_BA, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //1:RTSDuration_ba, 1:2.4G, 2,3:2.4G OFDM Data
pBuf->Data.wDurationID = pBuf->wDuration_aa;
//Get RTS Frame body
pBuf->Data.wFrameControl = TYPE_CTL_RTS;//0x00B4
if ((pDevice->eOPMode == OP_MODE_ADHOC) ||
(pDevice->eOPMode == OP_MODE_AP)) {
memcpy(&(pBuf->Data.abyRA[0]),
&(psEthHeader->abyDstAddr[0]),
ETH_ALEN);
}
else {
memcpy(&(pBuf->Data.abyRA[0]),
&(pDevice->abyBSSID[0]),
ETH_ALEN);
}
if (pDevice->eOPMode == OP_MODE_AP) {
memcpy(&(pBuf->Data.abyTA[0]),
&(pDevice->abyBSSID[0]),
ETH_ALEN);
}
else {
memcpy(&(pBuf->Data.abyTA[0]),
&(psEthHeader->abySrcAddr[0]),
ETH_ALEN);
}
}
else {
PSRTS_g_FB pBuf = (PSRTS_g_FB)pvRTS;
//Get SignalField,ServiceField,Length
BBvCaculateParameter(pDevice, uRTSFrameLen, pDevice->byTopCCKBasicRate, PK_TYPE_11B,
(PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField_b), (PBYTE)&(pBuf->bySignalField_b)
);
pBuf->wTransmitLength_b = cpu_to_le16(wLen);
BBvCaculateParameter(pDevice, uRTSFrameLen, pDevice->byTopOFDMBasicRate, byPktType,
(PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField_a), (PBYTE)&(pBuf->bySignalField_a)
);
pBuf->wTransmitLength_a = cpu_to_le16(wLen);
//Get Duration
pBuf->wDuration_bb = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_BB, cbFrameLength, PK_TYPE_11B, pDevice->byTopCCKBasicRate, bNeedAck, byFBOption)); //0:RTSDuration_bb, 1:2.4G, 1:CCKData
pBuf->wDuration_aa = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_AA, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //2:RTSDuration_aa, 1:2.4G, 2,3:2.4G OFDMData
pBuf->wDuration_ba = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_BA, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //1:RTSDuration_ba, 1:2.4G, 2,3:2.4G OFDMData
pBuf->wRTSDuration_ba_f0 = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_BA_F0, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //4:wRTSDuration_ba_f0, 1:2.4G, 1:CCKData
pBuf->wRTSDuration_aa_f0 = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_AA_F0, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //5:wRTSDuration_aa_f0, 1:2.4G, 1:CCKData
pBuf->wRTSDuration_ba_f1 = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_BA_F1, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //6:wRTSDuration_ba_f1, 1:2.4G, 1:CCKData
pBuf->wRTSDuration_aa_f1 = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_AA_F1, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //7:wRTSDuration_aa_f1, 1:2.4G, 1:CCKData
pBuf->Data.wDurationID = pBuf->wDuration_aa;
//Get RTS Frame body
pBuf->Data.wFrameControl = TYPE_CTL_RTS;//0x00B4
if ((pDevice->eOPMode == OP_MODE_ADHOC) ||
(pDevice->eOPMode == OP_MODE_AP)) {
memcpy(&(pBuf->Data.abyRA[0]),
&(psEthHeader->abyDstAddr[0]),
ETH_ALEN);
}
else {
memcpy(&(pBuf->Data.abyRA[0]),
&(pDevice->abyBSSID[0]),
ETH_ALEN);
}
if (pDevice->eOPMode == OP_MODE_AP) {
memcpy(&(pBuf->Data.abyTA[0]),
&(pDevice->abyBSSID[0]),
ETH_ALEN);
}
else {
memcpy(&(pBuf->Data.abyTA[0]),
&(psEthHeader->abySrcAddr[0]),
ETH_ALEN);
}
} // if (byFBOption == AUTO_FB_NONE)
}
else if (byPktType == PK_TYPE_11A) {
if (byFBOption == AUTO_FB_NONE) {
PSRTS_ab pBuf = (PSRTS_ab)pvRTS;
//Get SignalField,ServiceField,Length
BBvCaculateParameter(pDevice, uRTSFrameLen, pDevice->byTopOFDMBasicRate, byPktType,
(PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField), (PBYTE)&(pBuf->bySignalField)
);
pBuf->wTransmitLength = cpu_to_le16(wLen);
//Get Duration
pBuf->wDuration = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_AA, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //0:RTSDuration_aa, 0:5G, 0: 5G OFDMData
pBuf->Data.wDurationID = pBuf->wDuration;
//Get RTS Frame body
pBuf->Data.wFrameControl = TYPE_CTL_RTS;//0x00B4
if ((pDevice->eOPMode == OP_MODE_ADHOC) ||
(pDevice->eOPMode == OP_MODE_AP)) {
memcpy(&(pBuf->Data.abyRA[0]),
&(psEthHeader->abyDstAddr[0]),
ETH_ALEN);
} else {
memcpy(&(pBuf->Data.abyRA[0]),
&(pDevice->abyBSSID[0]),
ETH_ALEN);
}
if (pDevice->eOPMode == OP_MODE_AP) {
memcpy(&(pBuf->Data.abyTA[0]),
&(pDevice->abyBSSID[0]),
ETH_ALEN);
} else {
memcpy(&(pBuf->Data.abyTA[0]),
&(psEthHeader->abySrcAddr[0]),
ETH_ALEN);
}
}
else {
PSRTS_a_FB pBuf = (PSRTS_a_FB)pvRTS;
//Get SignalField,ServiceField,Length
BBvCaculateParameter(pDevice, uRTSFrameLen, pDevice->byTopOFDMBasicRate, byPktType,
(PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField), (PBYTE)&(pBuf->bySignalField)
);
pBuf->wTransmitLength = cpu_to_le16(wLen);
//Get Duration
pBuf->wDuration = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_AA, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //0:RTSDuration_aa, 0:5G, 0: 5G OFDMData
pBuf->wRTSDuration_f0 = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_AA_F0, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //5:RTSDuration_aa_f0, 0:5G, 0: 5G OFDMData
pBuf->wRTSDuration_f1 = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_AA_F1, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //7:RTSDuration_aa_f1, 0:5G, 0:
pBuf->Data.wDurationID = pBuf->wDuration;
//Get RTS Frame body
pBuf->Data.wFrameControl = TYPE_CTL_RTS;//0x00B4
if ((pDevice->eOPMode == OP_MODE_ADHOC) ||
(pDevice->eOPMode == OP_MODE_AP)) {
memcpy(&(pBuf->Data.abyRA[0]),
&(psEthHeader->abyDstAddr[0]),
ETH_ALEN);
} else {
memcpy(&(pBuf->Data.abyRA[0]),
&(pDevice->abyBSSID[0]),
ETH_ALEN);
}
if (pDevice->eOPMode == OP_MODE_AP) {
memcpy(&(pBuf->Data.abyTA[0]),
&(pDevice->abyBSSID[0]),
ETH_ALEN);
} else {
memcpy(&(pBuf->Data.abyTA[0]),
&(psEthHeader->abySrcAddr[0]),
ETH_ALEN);
}
}
}
else if (byPktType == PK_TYPE_11B) {
PSRTS_ab pBuf = (PSRTS_ab)pvRTS;
//Get SignalField,ServiceField,Length
BBvCaculateParameter(pDevice, uRTSFrameLen, pDevice->byTopCCKBasicRate, PK_TYPE_11B,
(PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField), (PBYTE)&(pBuf->bySignalField)
);
pBuf->wTransmitLength = cpu_to_le16(wLen);
//Get Duration
pBuf->wDuration = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, RTSDUR_BB, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //0:RTSDuration_bb, 1:2.4G, 1:CCKData
pBuf->Data.wDurationID = pBuf->wDuration;
//Get RTS Frame body
pBuf->Data.wFrameControl = TYPE_CTL_RTS;//0x00B4
if ((pDevice->eOPMode == OP_MODE_ADHOC) ||
(pDevice->eOPMode == OP_MODE_AP)) {
memcpy(&(pBuf->Data.abyRA[0]),
&(psEthHeader->abyDstAddr[0]),
ETH_ALEN);
}
else {
memcpy(&(pBuf->Data.abyRA[0]),
&(pDevice->abyBSSID[0]),
ETH_ALEN);
}
if (pDevice->eOPMode == OP_MODE_AP) {
memcpy(&(pBuf->Data.abyTA[0]),
&(pDevice->abyBSSID[0]),
ETH_ALEN);
} else {
memcpy(&(pBuf->Data.abyTA[0]),
&(psEthHeader->abySrcAddr[0]),
ETH_ALEN);
}
}
}
static
void
s_vFillCTSHead (
PSDevice pDevice,
unsigned int uDMAIdx,
BYTE byPktType,
void *pvCTS,
unsigned int cbFrameLength,
BOOL bNeedAck,
BOOL bDisCRC,
WORD wCurrentRate,
BYTE byFBOption
)
{
unsigned int uCTSFrameLen = 14;
WORD wLen = 0x0000;
if (pvCTS == NULL) {
return;
}
if (bDisCRC) {
// When CRCDIS bit is on, H/W forgot to generate FCS for CTS frame,
// in this case we need to decrease its length by 4.
uCTSFrameLen -= 4;
}
if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
if (byFBOption != AUTO_FB_NONE && uDMAIdx != TYPE_ATIMDMA && uDMAIdx != TYPE_BEACONDMA) {
// Auto Fall back
PSCTS_FB pBuf = (PSCTS_FB)pvCTS;
//Get SignalField,ServiceField,Length
BBvCaculateParameter(pDevice, uCTSFrameLen, pDevice->byTopCCKBasicRate, PK_TYPE_11B,
(PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField_b), (PBYTE)&(pBuf->bySignalField_b)
);
pBuf->wTransmitLength_b = cpu_to_le16(wLen);
pBuf->wDuration_ba = (WORD)s_uGetRTSCTSDuration(pDevice, CTSDUR_BA, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption); //3:CTSDuration_ba, 1:2.4G, 2,3:2.4G OFDM Data
pBuf->wDuration_ba += pDevice->wCTSDuration;
pBuf->wDuration_ba = cpu_to_le16(pBuf->wDuration_ba);
//Get CTSDuration_ba_f0
pBuf->wCTSDuration_ba_f0 = (WORD)s_uGetRTSCTSDuration(pDevice, CTSDUR_BA_F0, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption); //8:CTSDuration_ba_f0, 1:2.4G, 2,3:2.4G OFDM Data
pBuf->wCTSDuration_ba_f0 += pDevice->wCTSDuration;
pBuf->wCTSDuration_ba_f0 = cpu_to_le16(pBuf->wCTSDuration_ba_f0);
//Get CTSDuration_ba_f1
pBuf->wCTSDuration_ba_f1 = (WORD)s_uGetRTSCTSDuration(pDevice, CTSDUR_BA_F1, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption); //9:CTSDuration_ba_f1, 1:2.4G, 2,3:2.4G OFDM Data
pBuf->wCTSDuration_ba_f1 += pDevice->wCTSDuration;
pBuf->wCTSDuration_ba_f1 = cpu_to_le16(pBuf->wCTSDuration_ba_f1);
//Get CTS Frame body
pBuf->Data.wDurationID = pBuf->wDuration_ba;
pBuf->Data.wFrameControl = TYPE_CTL_CTS;//0x00C4
pBuf->Data.wReserved = 0x0000;
memcpy(&(pBuf->Data.abyRA[0]),
&(pDevice->abyCurrentNetAddr[0]),
ETH_ALEN);
} else { //if (byFBOption != AUTO_FB_NONE && uDMAIdx != TYPE_ATIMDMA && uDMAIdx != TYPE_BEACONDMA)
PSCTS pBuf = (PSCTS)pvCTS;
//Get SignalField,ServiceField,Length
BBvCaculateParameter(pDevice, uCTSFrameLen, pDevice->byTopCCKBasicRate, PK_TYPE_11B,
(PWORD)&(wLen), (PBYTE)&(pBuf->byServiceField_b), (PBYTE)&(pBuf->bySignalField_b)
);
pBuf->wTransmitLength_b = cpu_to_le16(wLen);
//Get CTSDuration_ba
pBuf->wDuration_ba = cpu_to_le16((WORD)s_uGetRTSCTSDuration(pDevice, CTSDUR_BA, cbFrameLength, byPktType, wCurrentRate, bNeedAck, byFBOption)); //3:CTSDuration_ba, 1:2.4G, 2,3:2.4G OFDM Data
pBuf->wDuration_ba += pDevice->wCTSDuration;
pBuf->wDuration_ba = cpu_to_le16(pBuf->wDuration_ba);
//Get CTS Frame body
pBuf->Data.wDurationID = pBuf->wDuration_ba;
pBuf->Data.wFrameControl = TYPE_CTL_CTS;//0x00C4
pBuf->Data.wReserved = 0x0000;
memcpy(&(pBuf->Data.abyRA[0]),
&(pDevice->abyCurrentNetAddr[0]),
ETH_ALEN);
}
}
}
/*+
*
* Description:
* Generate FIFO control for MAC & Baseband controller
*
* Parameters:
* In:
* pDevice - Pointer to adpater
* pTxDataHead - Transmit Data Buffer
* pTxBufHead - pTxBufHead
* pvRrvTime - pvRrvTime
* pvRTS - RTS Buffer
* pCTS - CTS Buffer
* cbFrameSize - Transmit Data Length (Hdr+Payload+FCS)
* bNeedACK - If need ACK
* uDMAIdx - DMA Index
* Out:
* none
*
* Return Value: none
*
-*/
static
void
s_vGenerateTxParameter (
PSDevice pDevice,
BYTE byPktType,
WORD wCurrentRate,
void *pTxBufHead,
void *pvRrvTime,
void *pvRTS,
void *pvCTS,
unsigned int cbFrameSize,
BOOL bNeedACK,
unsigned int uDMAIdx,
PSEthernetHeader psEthHeader
)
{
unsigned int cbMACHdLen = WLAN_HDR_ADDR3_LEN; /* 24 */
WORD wFifoCtl;
BOOL bDisCRC = FALSE;
BYTE byFBOption = AUTO_FB_NONE;
// WORD wCurrentRate = pDevice->wCurrentRate;
//DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter...\n");
PSTxBufHead pFifoHead = (PSTxBufHead)pTxBufHead;
pFifoHead->wReserved = wCurrentRate;
wFifoCtl = pFifoHead->wFIFOCtl;
if (wFifoCtl & FIFOCTL_CRCDIS) {
bDisCRC = TRUE;
}
if (wFifoCtl & FIFOCTL_AUTO_FB_0) {
byFBOption = AUTO_FB_0;
}
else if (wFifoCtl & FIFOCTL_AUTO_FB_1) {
byFBOption = AUTO_FB_1;
}
if (pDevice->bLongHeader)
cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
if (pvRTS != NULL) { //RTS_need
//Fill RsvTime
if (pvRrvTime) {
PSRrvTime_gRTS pBuf = (PSRrvTime_gRTS)pvRrvTime;
pBuf->wRTSTxRrvTime_aa = cpu_to_le16((WORD)s_uGetRTSCTSRsvTime(pDevice, 2, byPktType, cbFrameSize, wCurrentRate));//2:RTSTxRrvTime_aa, 1:2.4GHz
pBuf->wRTSTxRrvTime_ba = cpu_to_le16((WORD)s_uGetRTSCTSRsvTime(pDevice, 1, byPktType, cbFrameSize, wCurrentRate));//1:RTSTxRrvTime_ba, 1:2.4GHz
pBuf->wRTSTxRrvTime_bb = cpu_to_le16((WORD)s_uGetRTSCTSRsvTime(pDevice, 0, byPktType, cbFrameSize, wCurrentRate));//0:RTSTxRrvTime_bb, 1:2.4GHz
pBuf->wTxRrvTime_a = cpu_to_le16((WORD) s_uGetTxRsvTime(pDevice, byPktType, cbFrameSize, wCurrentRate, bNeedACK));//2.4G OFDM
pBuf->wTxRrvTime_b = cpu_to_le16((WORD) s_uGetTxRsvTime(pDevice, PK_TYPE_11B, cbFrameSize, pDevice->byTopCCKBasicRate, bNeedACK));//1:CCK
}
//Fill RTS
s_vFillRTSHead(pDevice, byPktType, pvRTS, cbFrameSize, bNeedACK, bDisCRC, psEthHeader, wCurrentRate, byFBOption);
}
else {//RTS_needless, PCF mode
//Fill RsvTime
if (pvRrvTime) {
PSRrvTime_gCTS pBuf = (PSRrvTime_gCTS)pvRrvTime;
pBuf->wTxRrvTime_a = cpu_to_le16((WORD)s_uGetTxRsvTime(pDevice, byPktType, cbFrameSize, wCurrentRate, bNeedACK));//2.4G OFDM
pBuf->wTxRrvTime_b = cpu_to_le16((WORD)s_uGetTxRsvTime(pDevice, PK_TYPE_11B, cbFrameSize, pDevice->byTopCCKBasicRate, bNeedACK));//1:CCK
pBuf->wCTSTxRrvTime_ba = cpu_to_le16((WORD)s_uGetRTSCTSRsvTime(pDevice, 3, byPktType, cbFrameSize, wCurrentRate));//3:CTSTxRrvTime_Ba, 1:2.4GHz
}
//Fill CTS
s_vFillCTSHead(pDevice, uDMAIdx, byPktType, pvCTS, cbFrameSize, bNeedACK, bDisCRC, wCurrentRate, byFBOption);
}
}
else if (byPktType == PK_TYPE_11A) {
if (pvRTS != NULL) {//RTS_need, non PCF mode
//Fill RsvTime
if (pvRrvTime) {
PSRrvTime_ab pBuf = (PSRrvTime_ab)pvRrvTime;
pBuf->wRTSTxRrvTime = cpu_to_le16((WORD)s_uGetRTSCTSRsvTime(pDevice, 2, byPktType, cbFrameSize, wCurrentRate));//2:RTSTxRrvTime_aa, 0:5GHz
pBuf->wTxRrvTime = cpu_to_le16((WORD)s_uGetTxRsvTime(pDevice, byPktType, cbFrameSize, wCurrentRate, bNeedACK));//0:OFDM
}
//Fill RTS
s_vFillRTSHead(pDevice, byPktType, pvRTS, cbFrameSize, bNeedACK, bDisCRC, psEthHeader, wCurrentRate, byFBOption);
}
else if (pvRTS == NULL) {//RTS_needless, non PCF mode
//Fill RsvTime
if (pvRrvTime) {
PSRrvTime_ab pBuf = (PSRrvTime_ab)pvRrvTime;
pBuf->wTxRrvTime = cpu_to_le16((WORD)s_uGetTxRsvTime(pDevice, PK_TYPE_11A, cbFrameSize, wCurrentRate, bNeedACK)); //0:OFDM
}
}
}
else if (byPktType == PK_TYPE_11B) {
if ((pvRTS != NULL)) {//RTS_need, non PCF mode
//Fill RsvTime
if (pvRrvTime) {
PSRrvTime_ab pBuf = (PSRrvTime_ab)pvRrvTime;
pBuf->wRTSTxRrvTime = cpu_to_le16((WORD)s_uGetRTSCTSRsvTime(pDevice, 0, byPktType, cbFrameSize, wCurrentRate));//0:RTSTxRrvTime_bb, 1:2.4GHz
pBuf->wTxRrvTime = cpu_to_le16((WORD)s_uGetTxRsvTime(pDevice, PK_TYPE_11B, cbFrameSize, wCurrentRate, bNeedACK));//1:CCK
}
//Fill RTS
s_vFillRTSHead(pDevice, byPktType, pvRTS, cbFrameSize, bNeedACK, bDisCRC, psEthHeader, wCurrentRate, byFBOption);
}
else { //RTS_needless, non PCF mode
//Fill RsvTime
if (pvRrvTime) {
PSRrvTime_ab pBuf = (PSRrvTime_ab)pvRrvTime;
pBuf->wTxRrvTime = cpu_to_le16((WORD)s_uGetTxRsvTime(pDevice, PK_TYPE_11B, cbFrameSize, wCurrentRate, bNeedACK)); //1:CCK
}
}
}
//DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter END.\n");
}
/*
PBYTE pbyBuffer,//point to pTxBufHead
WORD wFragType,//00:Non-Frag, 01:Start, 02:Mid, 03:Last
unsigned int cbFragmentSize,//Hdr+payoad+FCS
*/
BOOL
s_bPacketToWirelessUsb(
PSDevice pDevice,
BYTE byPktType,
PBYTE usbPacketBuf,
BOOL bNeedEncryption,
unsigned int uSkbPacketLen,
unsigned int uDMAIdx,
PSEthernetHeader psEthHeader,
PBYTE pPacket,
PSKeyItem pTransmitKey,
unsigned int uNodeIndex,
WORD wCurrentRate,
unsigned int *pcbHeaderLen,
unsigned int *pcbTotalLen
)
{
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
unsigned int cbFrameSize, cbFrameBodySize;
PTX_BUFFER pTxBufHead;
unsigned int cb802_1_H_len;
unsigned int cbIVlen = 0, cbICVlen = 0, cbMIClen = 0,
cbMACHdLen = 0, cbFCSlen = 4;
unsigned int cbMICHDR = 0;
BOOL bNeedACK,bRTS;
PBYTE pbyType,pbyMacHdr,pbyIVHead,pbyPayloadHead,pbyTxBufferAddr;
BYTE abySNAP_RFC1042[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00};
BYTE abySNAP_Bridgetunnel[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0xF8};
unsigned int uDuration;
unsigned int cbHeaderLength = 0, uPadding = 0;
void *pvRrvTime;
PSMICHDRHead pMICHDR;
void *pvRTS;
void *pvCTS;
void *pvTxDataHd;
BYTE byFBOption = AUTO_FB_NONE,byFragType;
WORD wTxBufSize;
DWORD dwMICKey0,dwMICKey1,dwMIC_Priority,dwCRC;
PDWORD pdwMIC_L,pdwMIC_R;
BOOL bSoftWEP = FALSE;
pvRrvTime = pMICHDR = pvRTS = pvCTS = pvTxDataHd = NULL;
if ((bNeedEncryption) && (pTransmitKey != NULL)) {
if (((PSKeyTable) (pTransmitKey->pvKeyTable))->bSoftWEP == TRUE) {
// WEP 256
bSoftWEP = TRUE;
}
}
pTxBufHead = (PTX_BUFFER) usbPacketBuf;
memset(pTxBufHead, 0, sizeof(TX_BUFFER));
// Get pkt type
if (ntohs(psEthHeader->wType) > ETH_DATA_LEN) {
if (pDevice->dwDiagRefCount == 0) {
cb802_1_H_len = 8;
} else {
cb802_1_H_len = 2;
}
} else {
cb802_1_H_len = 0;
}
cbFrameBodySize = uSkbPacketLen - ETH_HLEN + cb802_1_H_len;
//Set packet type
pTxBufHead->wFIFOCtl |= (WORD)(byPktType<<8);
if (pDevice->dwDiagRefCount != 0) {
bNeedACK = FALSE;
pTxBufHead->wFIFOCtl = pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
} else { //if (pDevice->dwDiagRefCount != 0) {
if ((pDevice->eOPMode == OP_MODE_ADHOC) ||
(pDevice->eOPMode == OP_MODE_AP)) {
if (is_multicast_ether_addr(psEthHeader->abyDstAddr)) {
bNeedACK = FALSE;
pTxBufHead->wFIFOCtl =
pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
} else {
bNeedACK = TRUE;
pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
}
}
else {
// MSDUs in Infra mode always need ACK
bNeedACK = TRUE;
pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
}
} //if (pDevice->dwDiagRefCount != 0) {
pTxBufHead->wTimeStamp = DEFAULT_MSDU_LIFETIME_RES_64us;
//Set FIFOCTL_LHEAD
if (pDevice->bLongHeader)
pTxBufHead->wFIFOCtl |= FIFOCTL_LHEAD;
if (pDevice->bSoftwareGenCrcErr) {
pTxBufHead->wFIFOCtl |= FIFOCTL_CRCDIS; // set tx descriptors to NO hardware CRC
}
//Set FRAGCTL_MACHDCNT
if (pDevice->bLongHeader) {
cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
} else {
cbMACHdLen = WLAN_HDR_ADDR3_LEN;
}
pTxBufHead->wFragCtl |= (WORD)(cbMACHdLen << 10);
//Set FIFOCTL_GrpAckPolicy
if (pDevice->bGrpAckPolicy == TRUE) {//0000 0100 0000 0000
pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
}
//Set Auto Fallback Ctl
if (wCurrentRate >= RATE_18M) {
if (pDevice->byAutoFBCtrl == AUTO_FB_0) {
pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_0;
byFBOption = AUTO_FB_0;
} else if (pDevice->byAutoFBCtrl == AUTO_FB_1) {
pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_1;
byFBOption = AUTO_FB_1;
}
}
if (bSoftWEP != TRUE) {
if ((bNeedEncryption) && (pTransmitKey != NULL)) { //WEP enabled
if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) { //WEP40 or WEP104
pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
}
if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Tx Set wFragCtl == FRAGCTL_TKIP\n");
pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
}
else if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) { //CCMP
pTxBufHead->wFragCtl |= FRAGCTL_AES;
}
}
}
if ((bNeedEncryption) && (pTransmitKey != NULL)) {
if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
cbIVlen = 4;
cbICVlen = 4;
}
else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
cbIVlen = 8;//IV+ExtIV
cbMIClen = 8;
cbICVlen = 4;
}
if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) {
cbIVlen = 8;//RSN Header
cbICVlen = 8;//MIC
cbMICHDR = sizeof(SMICHDRHead);
}
if (bSoftWEP == FALSE) {
//MAC Header should be padding 0 to DW alignment.
uPadding = 4 - (cbMACHdLen%4);
uPadding %= 4;
}
}
cbFrameSize = cbMACHdLen + cbIVlen + (cbFrameBodySize + cbMIClen) + cbICVlen + cbFCSlen;
if ( (bNeedACK == FALSE) ||(cbFrameSize < pDevice->wRTSThreshold) ) {
bRTS = FALSE;
} else {
bRTS = TRUE;
pTxBufHead->wFIFOCtl |= (FIFOCTL_RTS | FIFOCTL_LRETRY);
}
pbyTxBufferAddr = (PBYTE) &(pTxBufHead->adwTxKey[0]);
wTxBufSize = sizeof(STxBufHead);
if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
if (byFBOption == AUTO_FB_NONE) {
if (bRTS == TRUE) {//RTS_need
pvRrvTime = (PSRrvTime_gRTS) (pbyTxBufferAddr + wTxBufSize);
pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gRTS));
pvRTS = (PSRTS_g) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gRTS) + cbMICHDR);
pvCTS = NULL;
pvTxDataHd = (PSTxDataHead_g) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gRTS) + cbMICHDR + sizeof(SRTS_g));
cbHeaderLength = wTxBufSize + sizeof(SRrvTime_gRTS) + cbMICHDR + sizeof(SRTS_g) + sizeof(STxDataHead_g);
}
else { //RTS_needless
pvRrvTime = (PSRrvTime_gCTS) (pbyTxBufferAddr + wTxBufSize);
pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS));
pvRTS = NULL;
pvCTS = (PSCTS) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS) + cbMICHDR);
pvTxDataHd = (PSTxDataHead_g) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS) + cbMICHDR + sizeof(SCTS));
cbHeaderLength = wTxBufSize + sizeof(SRrvTime_gCTS) + cbMICHDR + sizeof(SCTS) + sizeof(STxDataHead_g);
}
} else {
// Auto Fall Back
if (bRTS == TRUE) {//RTS_need
pvRrvTime = (PSRrvTime_gRTS) (pbyTxBufferAddr + wTxBufSize);
pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gRTS));
pvRTS = (PSRTS_g_FB) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gRTS) + cbMICHDR);
pvCTS = NULL;
pvTxDataHd = (PSTxDataHead_g_FB) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gRTS) + cbMICHDR + sizeof(SRTS_g_FB));
cbHeaderLength = wTxBufSize + sizeof(SRrvTime_gRTS) + cbMICHDR + sizeof(SRTS_g_FB) + sizeof(STxDataHead_g_FB);
}
else if (bRTS == FALSE) { //RTS_needless
pvRrvTime = (PSRrvTime_gCTS) (pbyTxBufferAddr + wTxBufSize);
pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS));
pvRTS = NULL;
pvCTS = (PSCTS_FB) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS) + cbMICHDR);
pvTxDataHd = (PSTxDataHead_g_FB) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS) + cbMICHDR + sizeof(SCTS_FB));
cbHeaderLength = wTxBufSize + sizeof(SRrvTime_gCTS) + cbMICHDR + sizeof(SCTS_FB) + sizeof(STxDataHead_g_FB);
}
} // Auto Fall Back
}
else {//802.11a/b packet
if (byFBOption == AUTO_FB_NONE) {
if (bRTS == TRUE) {//RTS_need
pvRrvTime = (PSRrvTime_ab) (pbyTxBufferAddr + wTxBufSize);
pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab));
pvRTS = (PSRTS_ab) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab) + cbMICHDR);
pvCTS = NULL;
pvTxDataHd = (PSTxDataHead_ab) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab) + cbMICHDR + sizeof(SRTS_ab));
cbHeaderLength = wTxBufSize + sizeof(PSRrvTime_ab) + cbMICHDR + sizeof(SRTS_ab) + sizeof(STxDataHead_ab);
}
else if (bRTS == FALSE) { //RTS_needless, no MICHDR
pvRrvTime = (PSRrvTime_ab) (pbyTxBufferAddr + wTxBufSize);
pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab));
pvRTS = NULL;
pvCTS = NULL;
pvTxDataHd = (PSTxDataHead_ab) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab) + cbMICHDR);
cbHeaderLength = wTxBufSize + sizeof(SRrvTime_ab) + cbMICHDR + sizeof(STxDataHead_ab);
}
} else {
// Auto Fall Back
if (bRTS == TRUE) {//RTS_need
pvRrvTime = (PSRrvTime_ab) (pbyTxBufferAddr + wTxBufSize);
pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab));
pvRTS = (PSRTS_a_FB) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab) + cbMICHDR);
pvCTS = NULL;
pvTxDataHd = (PSTxDataHead_a_FB) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab) + cbMICHDR + sizeof(SRTS_a_FB));
cbHeaderLength = wTxBufSize + sizeof(PSRrvTime_ab) + cbMICHDR + sizeof(SRTS_a_FB) + sizeof(STxDataHead_a_FB);
}
else if (bRTS == FALSE) { //RTS_needless
pvRrvTime = (PSRrvTime_ab) (pbyTxBufferAddr + wTxBufSize);
pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab));
pvRTS = NULL;
pvCTS = NULL;
pvTxDataHd = (PSTxDataHead_a_FB) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab) + cbMICHDR);
cbHeaderLength = wTxBufSize + sizeof(SRrvTime_ab) + cbMICHDR + sizeof(STxDataHead_a_FB);
}
} // Auto Fall Back
}
pbyMacHdr = (PBYTE)(pbyTxBufferAddr + cbHeaderLength);
pbyIVHead = (PBYTE)(pbyMacHdr + cbMACHdLen + uPadding);
pbyPayloadHead = (PBYTE)(pbyMacHdr + cbMACHdLen + uPadding + cbIVlen);
//=========================
// No Fragmentation
//=========================
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Fragmentation...\n");
byFragType = FRAGCTL_NONFRAG;
//uDMAIdx = TYPE_AC0DMA;
//pTxBufHead = (PSTxBufHead) &(pTxBufHead->adwTxKey[0]);
//Fill FIFO,RrvTime,RTS,and CTS
s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
(void *)pbyTxBufferAddr, pvRrvTime, pvRTS, pvCTS,
cbFrameSize, bNeedACK, uDMAIdx, psEthHeader);
//Fill DataHead
uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, uDMAIdx, bNeedACK,
0, 0, 1/*uMACfragNum*/, byFBOption);
// Generate TX MAC Header
s_vGenerateMACHeader(pDevice, pbyMacHdr, (WORD)uDuration, psEthHeader, bNeedEncryption,
byFragType, uDMAIdx, 0);
if (bNeedEncryption == TRUE) {
//Fill TXKEY
s_vFillTxKey(pDevice, (PBYTE)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
pbyMacHdr, (WORD)cbFrameBodySize, (PBYTE)pMICHDR);
if (pDevice->bEnableHostWEP) {
pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
}
}
// 802.1H
if (ntohs(psEthHeader->wType) > ETH_DATA_LEN) {
if (pDevice->dwDiagRefCount == 0) {
if ((psEthHeader->wType == cpu_to_le16(ETH_P_IPX)) ||
(psEthHeader->wType == cpu_to_le16(0xF380))) {
memcpy((PBYTE) (pbyPayloadHead),
abySNAP_Bridgetunnel, 6);
} else {
memcpy((PBYTE) (pbyPayloadHead), &abySNAP_RFC1042[0], 6);
}
pbyType = (PBYTE) (pbyPayloadHead + 6);
memcpy(pbyType, &(psEthHeader->wType), sizeof(WORD));
} else {
memcpy((PBYTE) (pbyPayloadHead), &(psEthHeader->wType), sizeof(WORD));
}
}
if (pPacket != NULL) {
// Copy the Packet into a tx Buffer
memcpy((pbyPayloadHead + cb802_1_H_len),
(pPacket + ETH_HLEN),
uSkbPacketLen - ETH_HLEN
);
} else {
// while bRelayPacketSend psEthHeader is point to header+payload
memcpy((pbyPayloadHead + cb802_1_H_len), ((PBYTE)psEthHeader) + ETH_HLEN, uSkbPacketLen - ETH_HLEN);
}
ASSERT(uLength == cbNdisBodySize);
if ((bNeedEncryption == TRUE) && (pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
///////////////////////////////////////////////////////////////////
if (pDevice->sMgmtObj.eAuthenMode == WMAC_AUTH_WPANONE) {
dwMICKey0 = *(PDWORD)(&pTransmitKey->abyKey[16]);
dwMICKey1 = *(PDWORD)(&pTransmitKey->abyKey[20]);
}
else if ((pTransmitKey->dwKeyIndex & AUTHENTICATOR_KEY) != 0) {
dwMICKey0 = *(PDWORD)(&pTransmitKey->abyKey[16]);
dwMICKey1 = *(PDWORD)(&pTransmitKey->abyKey[20]);
}
else {
dwMICKey0 = *(PDWORD)(&pTransmitKey->abyKey[24]);
dwMICKey1 = *(PDWORD)(&pTransmitKey->abyKey[28]);
}
// DO Software Michael
MIC_vInit(dwMICKey0, dwMICKey1);
MIC_vAppend((PBYTE)&(psEthHeader->abyDstAddr[0]), 12);
dwMIC_Priority = 0;
MIC_vAppend((PBYTE)&dwMIC_Priority, 4);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC KEY: %lX, %lX\n", dwMICKey0, dwMICKey1);
///////////////////////////////////////////////////////////////////
//DBG_PRN_GRP12(("Length:%d, %d\n", cbFrameBodySize, uFromHDtoPLDLength));
//for (ii = 0; ii < cbFrameBodySize; ii++) {
// DBG_PRN_GRP12(("%02x ", *((PBYTE)((pbyPayloadHead + cb802_1_H_len) + ii))));
//}
//DBG_PRN_GRP12(("\n\n\n"));
MIC_vAppend(pbyPayloadHead, cbFrameBodySize);
pdwMIC_L = (PDWORD)(pbyPayloadHead + cbFrameBodySize);
pdwMIC_R = (PDWORD)(pbyPayloadHead + cbFrameBodySize + 4);
MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
MIC_vUnInit();
if (pDevice->bTxMICFail == TRUE) {
*pdwMIC_L = 0;
*pdwMIC_R = 0;
pDevice->bTxMICFail = FALSE;
}
//DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
//DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderLength, uPadding, cbIVlen);
//DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%lX, %lX\n", *pdwMIC_L, *pdwMIC_R);
}
if (bSoftWEP == TRUE) {
s_vSWencryption(pDevice, pTransmitKey, (pbyPayloadHead), (WORD)(cbFrameBodySize + cbMIClen));
} else if ( ((pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) && (bNeedEncryption == TRUE)) ||
((pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) && (bNeedEncryption == TRUE)) ||
((pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) && (bNeedEncryption == TRUE)) ) {
cbFrameSize -= cbICVlen;
}
if (pDevice->bSoftwareGenCrcErr == TRUE) {
unsigned int cbLen;
PDWORD pdwCRC;
dwCRC = 0xFFFFFFFFL;
cbLen = cbFrameSize - cbFCSlen;
// calculate CRC, and wrtie CRC value to end of TD
dwCRC = CRCdwGetCrc32Ex(pbyMacHdr, cbLen, dwCRC);
pdwCRC = (PDWORD)(pbyMacHdr + cbLen);
// finally, we must invert dwCRC to get the correct answer
*pdwCRC = ~dwCRC;
// Force Error
*pdwCRC -= 1;
} else {
cbFrameSize -= cbFCSlen;
}
*pcbHeaderLen = cbHeaderLength;
*pcbTotalLen = cbHeaderLength + cbFrameSize ;
//Set FragCtl in TxBufferHead
pTxBufHead->wFragCtl |= (WORD)byFragType;
return TRUE;
}
/*+
*
* Description:
* Translate 802.3 to 802.11 header
*
* Parameters:
* In:
* pDevice - Pointer to adpater
* dwTxBufferAddr - Transmit Buffer
* pPacket - Packet from upper layer
* cbPacketSize - Transmit Data Length
* Out:
* pcbHeadSize - Header size of MAC&Baseband control and 802.11 Header
* pcbAppendPayload - size of append payload for 802.1H translation
*
* Return Value: none
*
-*/
void
s_vGenerateMACHeader (
PSDevice pDevice,
PBYTE pbyBufferAddr,
WORD wDuration,
PSEthernetHeader psEthHeader,
BOOL bNeedEncrypt,
WORD wFragType,
unsigned int uDMAIdx,
unsigned int uFragIdx
)
{
PS802_11Header pMACHeader = (PS802_11Header)pbyBufferAddr;
memset(pMACHeader, 0, (sizeof(S802_11Header))); //- sizeof(pMACHeader->dwIV)));
if (uDMAIdx == TYPE_ATIMDMA) {
pMACHeader->wFrameCtl = TYPE_802_11_ATIM;
} else {
pMACHeader->wFrameCtl = TYPE_802_11_DATA;
}
if (pDevice->eOPMode == OP_MODE_AP) {
memcpy(&(pMACHeader->abyAddr1[0]),
&(psEthHeader->abyDstAddr[0]),
ETH_ALEN);
memcpy(&(pMACHeader->abyAddr2[0]), &(pDevice->abyBSSID[0]), ETH_ALEN);
memcpy(&(pMACHeader->abyAddr3[0]),
&(psEthHeader->abySrcAddr[0]),
ETH_ALEN);
pMACHeader->wFrameCtl |= FC_FROMDS;
} else {
if (pDevice->eOPMode == OP_MODE_ADHOC) {
memcpy(&(pMACHeader->abyAddr1[0]),
&(psEthHeader->abyDstAddr[0]),
ETH_ALEN);
memcpy(&(pMACHeader->abyAddr2[0]),
&(psEthHeader->abySrcAddr[0]),
ETH_ALEN);
memcpy(&(pMACHeader->abyAddr3[0]),
&(pDevice->abyBSSID[0]),
ETH_ALEN);
} else {
memcpy(&(pMACHeader->abyAddr3[0]),
&(psEthHeader->abyDstAddr[0]),
ETH_ALEN);
memcpy(&(pMACHeader->abyAddr2[0]),
&(psEthHeader->abySrcAddr[0]),
ETH_ALEN);
memcpy(&(pMACHeader->abyAddr1[0]),
&(pDevice->abyBSSID[0]),
ETH_ALEN);
pMACHeader->wFrameCtl |= FC_TODS;
}
}
if (bNeedEncrypt)
pMACHeader->wFrameCtl |= cpu_to_le16((WORD)WLAN_SET_FC_ISWEP(1));
pMACHeader->wDurationID = cpu_to_le16(wDuration);
if (pDevice->bLongHeader) {
PWLAN_80211HDR_A4 pMACA4Header = (PWLAN_80211HDR_A4) pbyBufferAddr;
pMACHeader->wFrameCtl |= (FC_TODS | FC_FROMDS);
memcpy(pMACA4Header->abyAddr4, pDevice->abyBSSID, WLAN_ADDR_LEN);
}
pMACHeader->wSeqCtl = cpu_to_le16(pDevice->wSeqCounter << 4);
//Set FragNumber in Sequence Control
pMACHeader->wSeqCtl |= cpu_to_le16((WORD)uFragIdx);
if ((wFragType == FRAGCTL_ENDFRAG) || (wFragType == FRAGCTL_NONFRAG)) {
pDevice->wSeqCounter++;
if (pDevice->wSeqCounter > 0x0fff)
pDevice->wSeqCounter = 0;
}
if ((wFragType == FRAGCTL_STAFRAG) || (wFragType == FRAGCTL_MIDFRAG)) { //StartFrag or MidFrag
pMACHeader->wFrameCtl |= FC_MOREFRAG;
}
}
/*+
*
* Description:
* Request instructs a MAC to transmit a 802.11 management packet through
* the adapter onto the medium.
*
* Parameters:
* In:
* hDeviceContext - Pointer to the adapter
* pPacket - A pointer to a descriptor for the packet to transmit
* Out:
* none
*
* Return Value: CMD_STATUS_PENDING if MAC Tx resource available; otherwise FALSE
*
-*/
CMD_STATUS csMgmt_xmit(
PSDevice pDevice,
PSTxMgmtPacket pPacket
)
{
BYTE byPktType;
PBYTE pbyTxBufferAddr;
void *pvRTS;
PSCTS pCTS;
void *pvTxDataHd;
unsigned int uDuration;
unsigned int cbReqCount;
PS802_11Header pMACHeader;
unsigned int cbHeaderSize;
unsigned int cbFrameBodySize;
BOOL bNeedACK;
BOOL bIsPSPOLL = FALSE;
PSTxBufHead pTxBufHead;
unsigned int cbFrameSize;
unsigned int cbIVlen = 0;
unsigned int cbICVlen = 0;
unsigned int cbMIClen = 0;
unsigned int cbFCSlen = 4;
unsigned int uPadding = 0;
WORD wTxBufSize;
unsigned int cbMacHdLen;
SEthernetHeader sEthHeader;
void *pvRrvTime;
void *pMICHDR;
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
WORD wCurrentRate = RATE_1M;
PTX_BUFFER pTX_Buffer;
PUSB_SEND_CONTEXT pContext;
pContext = (PUSB_SEND_CONTEXT)s_vGetFreeContext(pDevice);
if (NULL == pContext) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
return CMD_STATUS_RESOURCES;
}
pTX_Buffer = (PTX_BUFFER) (&pContext->Data[0]);
pbyTxBufferAddr = (PBYTE)&(pTX_Buffer->adwTxKey[0]);
cbFrameBodySize = pPacket->cbPayloadLen;
pTxBufHead = (PSTxBufHead) pbyTxBufferAddr;
wTxBufSize = sizeof(STxBufHead);
memset(pTxBufHead, 0, wTxBufSize);
if (pDevice->byBBType == BB_TYPE_11A) {
wCurrentRate = RATE_6M;
byPktType = PK_TYPE_11A;
} else {
wCurrentRate = RATE_1M;
byPktType = PK_TYPE_11B;
}
// SetPower will cause error power TX state for OFDM Date packet in TX buffer.
// 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
// And cmd timer will wait data pkt TX finish before scanning so it's OK
// to set power here.
if (pMgmt->eScanState != WMAC_NO_SCANNING) {
RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
} else {
RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
}
pDevice->wCurrentRate = wCurrentRate;
//Set packet type
if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
pTxBufHead->wFIFOCtl = 0;
}
else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
}
else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
}
else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
}
pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
if (is_multicast_ether_addr(pPacket->p80211Header->sA3.abyAddr1)) {
bNeedACK = FALSE;
}
else {
bNeedACK = TRUE;
pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
};
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
(pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
//Set Preamble type always long
//pDevice->byPreambleType = PREAMBLE_LONG;
// probe-response don't retry
//if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
// bNeedACK = FALSE;
// pTxBufHead->wFIFOCtl &= (~FIFOCTL_NEEDACK);
//}
}
pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
bIsPSPOLL = TRUE;
cbMacHdLen = WLAN_HDR_ADDR2_LEN;
} else {
cbMacHdLen = WLAN_HDR_ADDR3_LEN;
}
//Set FRAGCTL_MACHDCNT
pTxBufHead->wFragCtl |= cpu_to_le16((WORD)(cbMacHdLen << 10));
// Notes:
// Although spec says MMPDU can be fragmented; In most case,
// no one will send a MMPDU under fragmentation. With RTS may occur.
pDevice->bAES = FALSE; //Set FRAGCTL_WEPTYP
if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
cbIVlen = 4;
cbICVlen = 4;
pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
}
else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
cbIVlen = 8;//IV+ExtIV
cbMIClen = 8;
cbICVlen = 4;
pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
//We need to get seed here for filling TxKey entry.
//TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
// pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
}
else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
cbIVlen = 8;//RSN Header
cbICVlen = 8;//MIC
pTxBufHead->wFragCtl |= FRAGCTL_AES;
pDevice->bAES = TRUE;
}
//MAC Header should be padding 0 to DW alignment.
uPadding = 4 - (cbMacHdLen%4);
uPadding %= 4;
}
cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen;
//Set FIFOCTL_GrpAckPolicy
if (pDevice->bGrpAckPolicy == TRUE) {//0000 0100 0000 0000
pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
}
//the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
//Set RrvTime/RTS/CTS Buffer
if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
pvRrvTime = (PSRrvTime_gCTS) (pbyTxBufferAddr + wTxBufSize);
pMICHDR = NULL;
pvRTS = NULL;
pCTS = (PSCTS) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS));
pvTxDataHd = (PSTxDataHead_g) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS) + sizeof(SCTS));
cbHeaderSize = wTxBufSize + sizeof(SRrvTime_gCTS) + sizeof(SCTS) + sizeof(STxDataHead_g);
}
else { // 802.11a/b packet
pvRrvTime = (PSRrvTime_ab) (pbyTxBufferAddr + wTxBufSize);
pMICHDR = NULL;
pvRTS = NULL;
pCTS = NULL;
pvTxDataHd = (PSTxDataHead_ab) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab));
cbHeaderSize = wTxBufSize + sizeof(SRrvTime_ab) + sizeof(STxDataHead_ab);
}
memset((void *)(pbyTxBufferAddr + wTxBufSize), 0,
(cbHeaderSize - wTxBufSize));
memcpy(&(sEthHeader.abyDstAddr[0]),
&(pPacket->p80211Header->sA3.abyAddr1[0]),
ETH_ALEN);
memcpy(&(sEthHeader.abySrcAddr[0]),
&(pPacket->p80211Header->sA3.abyAddr2[0]),
ETH_ALEN);
//=========================
// No Fragmentation
//=========================
pTxBufHead->wFragCtl |= (WORD)FRAGCTL_NONFRAG;
//Fill FIFO,RrvTime,RTS,and CTS
s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate, pbyTxBufferAddr, pvRrvTime, pvRTS, pCTS,
cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader);
//Fill DataHead
uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
0, 0, 1, AUTO_FB_NONE);
pMACHeader = (PS802_11Header) (pbyTxBufferAddr + cbHeaderSize);
cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + cbFrameBodySize;
if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
PBYTE pbyIVHead;
PBYTE pbyPayloadHead;
PBYTE pbyBSSID;
PSKeyItem pTransmitKey = NULL;
pbyIVHead = (PBYTE)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding);
pbyPayloadHead = (PBYTE)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding + cbIVlen);
do {
if ((pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) &&
(pDevice->bLinkPass == TRUE)) {
pbyBSSID = pDevice->abyBSSID;
// get pairwise key
if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == FALSE) {
// get group key
if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == TRUE) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
break;
}
} else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get PTK.\n");
break;
}
}
// get group key
pbyBSSID = pDevice->abyBroadcastAddr;
if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == FALSE) {
pTransmitKey = NULL;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"KEY is NULL. OP Mode[%d]\n", pDevice->eOPMode);
} else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
}
} while(FALSE);
//Fill TXKEY
s_vFillTxKey(pDevice, (PBYTE)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
(PBYTE)pMACHeader, (WORD)cbFrameBodySize, NULL);
memcpy(pMACHeader, pPacket->p80211Header, cbMacHdLen);
memcpy(pbyPayloadHead, ((PBYTE)(pPacket->p80211Header) + cbMacHdLen),
cbFrameBodySize);
}
else {
// Copy the Packet into a tx Buffer
memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
}
pMACHeader->wSeqCtl = cpu_to_le16(pDevice->wSeqCounter << 4);
pDevice->wSeqCounter++ ;
if (pDevice->wSeqCounter > 0x0fff)
pDevice->wSeqCounter = 0;
if (bIsPSPOLL) {
// The MAC will automatically replace the Duration-field of MAC header by Duration-field
// of FIFO control header.
// This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
// in the same place of other packet's Duration-field).
// And it will cause Cisco-AP to issue Disassociation-packet
if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
((PSTxDataHead_g)pvTxDataHd)->wDuration_a = cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
((PSTxDataHead_g)pvTxDataHd)->wDuration_b = cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
} else {
((PSTxDataHead_ab)pvTxDataHd)->wDuration = cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
}
}
pTX_Buffer->wTxByteCount = cpu_to_le16((WORD)(cbReqCount));
pTX_Buffer->byPKTNO = (BYTE) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
pTX_Buffer->byType = 0x00;
pContext->pPacket = NULL;
pContext->Type = CONTEXT_MGMT_PACKET;
pContext->uBufLen = (WORD)cbReqCount + 4; //USB header
if (WLAN_GET_FC_TODS(pMACHeader->wFrameCtl) == 0) {
s_vSaveTxPktInfo(pDevice, (BYTE) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->abyAddr1[0]),(WORD)cbFrameSize,pTX_Buffer->wFIFOCtl);
}
else {
s_vSaveTxPktInfo(pDevice, (BYTE) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->abyAddr3[0]),(WORD)cbFrameSize,pTX_Buffer->wFIFOCtl);
}
PIPEnsSendBulkOut(pDevice,pContext);
return CMD_STATUS_PENDING;
}
CMD_STATUS
csBeacon_xmit(
PSDevice pDevice,
PSTxMgmtPacket pPacket
)
{
unsigned int cbFrameSize = pPacket->cbMPDULen + WLAN_FCS_LEN;
unsigned int cbHeaderSize = 0;
WORD wTxBufSize = sizeof(STxShortBufHead);
PSTxShortBufHead pTxBufHead;
PS802_11Header pMACHeader;
PSTxDataHead_ab pTxDataHead;
WORD wCurrentRate;
unsigned int cbFrameBodySize;
unsigned int cbReqCount;
PBEACON_BUFFER pTX_Buffer;
PBYTE pbyTxBufferAddr;
PUSB_SEND_CONTEXT pContext;
CMD_STATUS status;
pContext = (PUSB_SEND_CONTEXT)s_vGetFreeContext(pDevice);
if (NULL == pContext) {
status = CMD_STATUS_RESOURCES;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
return status ;
}
pTX_Buffer = (PBEACON_BUFFER) (&pContext->Data[0]);
pbyTxBufferAddr = (PBYTE)&(pTX_Buffer->wFIFOCtl);
cbFrameBodySize = pPacket->cbPayloadLen;
pTxBufHead = (PSTxShortBufHead) pbyTxBufferAddr;
wTxBufSize = sizeof(STxShortBufHead);
memset(pTxBufHead, 0, wTxBufSize);
if (pDevice->byBBType == BB_TYPE_11A) {
wCurrentRate = RATE_6M;
pTxDataHead = (PSTxDataHead_ab) (pbyTxBufferAddr + wTxBufSize);
//Get SignalField,ServiceField,Length
BBvCaculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11A,
(PWORD)&(pTxDataHead->wTransmitLength), (PBYTE)&(pTxDataHead->byServiceField), (PBYTE)&(pTxDataHead->bySignalField)
);
//Get Duration and TimeStampOff
pTxDataHead->wDuration = cpu_to_le16((WORD)s_uGetDataDuration(pDevice, DATADUR_A, cbFrameSize, PK_TYPE_11A,
wCurrentRate, FALSE, 0, 0, 1, AUTO_FB_NONE));
pTxDataHead->wTimeStampOff = wTimeStampOff[pDevice->byPreambleType%2][wCurrentRate%MAX_RATE];
cbHeaderSize = wTxBufSize + sizeof(STxDataHead_ab);
} else {
wCurrentRate = RATE_1M;
pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
pTxDataHead = (PSTxDataHead_ab) (pbyTxBufferAddr + wTxBufSize);
//Get SignalField,ServiceField,Length
BBvCaculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11B,
(PWORD)&(pTxDataHead->wTransmitLength), (PBYTE)&(pTxDataHead->byServiceField), (PBYTE)&(pTxDataHead->bySignalField)
);
//Get Duration and TimeStampOff
pTxDataHead->wDuration = cpu_to_le16((WORD)s_uGetDataDuration(pDevice, DATADUR_B, cbFrameSize, PK_TYPE_11B,
wCurrentRate, FALSE, 0, 0, 1, AUTO_FB_NONE));
pTxDataHead->wTimeStampOff = wTimeStampOff[pDevice->byPreambleType%2][wCurrentRate%MAX_RATE];
cbHeaderSize = wTxBufSize + sizeof(STxDataHead_ab);
}
//Generate Beacon Header
pMACHeader = (PS802_11Header)(pbyTxBufferAddr + cbHeaderSize);
memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
pMACHeader->wDurationID = 0;
pMACHeader->wSeqCtl = cpu_to_le16(pDevice->wSeqCounter << 4);
pDevice->wSeqCounter++ ;
if (pDevice->wSeqCounter > 0x0fff)
pDevice->wSeqCounter = 0;
cbReqCount = cbHeaderSize + WLAN_HDR_ADDR3_LEN + cbFrameBodySize;
pTX_Buffer->wTxByteCount = (WORD)cbReqCount;
pTX_Buffer->byPKTNO = (BYTE) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
pTX_Buffer->byType = 0x01;
pContext->pPacket = NULL;
pContext->Type = CONTEXT_MGMT_PACKET;
pContext->uBufLen = (WORD)cbReqCount + 4; //USB header
PIPEnsSendBulkOut(pDevice,pContext);
return CMD_STATUS_PENDING;
}
void
vDMA0_tx_80211(PSDevice pDevice, struct sk_buff *skb) {
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
BYTE byPktType;
PBYTE pbyTxBufferAddr;
void *pvRTS;
void *pvCTS;
void *pvTxDataHd;
unsigned int uDuration;
unsigned int cbReqCount;
PS802_11Header pMACHeader;
unsigned int cbHeaderSize;
unsigned int cbFrameBodySize;
BOOL bNeedACK;
BOOL bIsPSPOLL = FALSE;
PSTxBufHead pTxBufHead;
unsigned int cbFrameSize;
unsigned int cbIVlen = 0;
unsigned int cbICVlen = 0;
unsigned int cbMIClen = 0;
unsigned int cbFCSlen = 4;
unsigned int uPadding = 0;
unsigned int cbMICHDR = 0;
unsigned int uLength = 0;
DWORD dwMICKey0, dwMICKey1;
DWORD dwMIC_Priority;
PDWORD pdwMIC_L;
PDWORD pdwMIC_R;
WORD wTxBufSize;
unsigned int cbMacHdLen;
SEthernetHeader sEthHeader;
void *pvRrvTime;
void *pMICHDR;
WORD wCurrentRate = RATE_1M;
PUWLAN_80211HDR p80211Header;
unsigned int uNodeIndex = 0;
BOOL bNodeExist = FALSE;
SKeyItem STempKey;
PSKeyItem pTransmitKey = NULL;
PBYTE pbyIVHead;
PBYTE pbyPayloadHead;
PBYTE pbyMacHdr;
unsigned int cbExtSuppRate = 0;
PTX_BUFFER pTX_Buffer;
PUSB_SEND_CONTEXT pContext;
// PWLAN_IE pItem;
pvRrvTime = pMICHDR = pvRTS = pvCTS = pvTxDataHd = NULL;
if(skb->len <= WLAN_HDR_ADDR3_LEN) {
cbFrameBodySize = 0;
}
else {
cbFrameBodySize = skb->len - WLAN_HDR_ADDR3_LEN;
}
p80211Header = (PUWLAN_80211HDR)skb->data;
pContext = (PUSB_SEND_CONTEXT)s_vGetFreeContext(pDevice);
if (NULL == pContext) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0 TX...NO CONTEXT!\n");
dev_kfree_skb_irq(skb);
return ;
}
pTX_Buffer = (PTX_BUFFER)(&pContext->Data[0]);
pbyTxBufferAddr = (PBYTE)(&pTX_Buffer->adwTxKey[0]);
pTxBufHead = (PSTxBufHead) pbyTxBufferAddr;
wTxBufSize = sizeof(STxBufHead);
memset(pTxBufHead, 0, wTxBufSize);
if (pDevice->byBBType == BB_TYPE_11A) {
wCurrentRate = RATE_6M;
byPktType = PK_TYPE_11A;
} else {
wCurrentRate = RATE_1M;
byPktType = PK_TYPE_11B;
}
// SetPower will cause error power TX state for OFDM Date packet in TX buffer.
// 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
// And cmd timer will wait data pkt TX finish before scanning so it's OK
// to set power here.
if (pMgmt->eScanState != WMAC_NO_SCANNING) {
RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
} else {
RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
}
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"vDMA0_tx_80211: p80211Header->sA3.wFrameCtl = %x \n", p80211Header->sA3.wFrameCtl);
//Set packet type
if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
pTxBufHead->wFIFOCtl = 0;
}
else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
}
else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
}
else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
}
pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
if (is_multicast_ether_addr(p80211Header->sA3.abyAddr1)) {
bNeedACK = FALSE;
if (pDevice->bEnableHostWEP) {
uNodeIndex = 0;
bNodeExist = TRUE;
}
}
else {
if (pDevice->bEnableHostWEP) {
if (BSSbIsSTAInNodeDB(pDevice, (PBYTE)(p80211Header->sA3.abyAddr1), &uNodeIndex))
bNodeExist = TRUE;
}
bNeedACK = TRUE;
pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
};
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
(pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
//Set Preamble type always long
//pDevice->byPreambleType = PREAMBLE_LONG;
// probe-response don't retry
//if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
// bNeedACK = FALSE;
// pTxBufHead->wFIFOCtl &= (~FIFOCTL_NEEDACK);
//}
}
pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
bIsPSPOLL = TRUE;
cbMacHdLen = WLAN_HDR_ADDR2_LEN;
} else {
cbMacHdLen = WLAN_HDR_ADDR3_LEN;
}
// hostapd deamon ext support rate patch
if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0) {
cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN;
}
if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0) {
cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN;
}
if (cbExtSuppRate >0) {
cbFrameBodySize = WLAN_ASSOCRESP_OFF_SUPP_RATES;
}
}
//Set FRAGCTL_MACHDCNT
pTxBufHead->wFragCtl |= cpu_to_le16((WORD)cbMacHdLen << 10);
// Notes:
// Although spec says MMPDU can be fragmented; In most case,
// no one will send a MMPDU under fragmentation. With RTS may occur.
pDevice->bAES = FALSE; //Set FRAGCTL_WEPTYP
if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
cbIVlen = 4;
cbICVlen = 4;
pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
}
else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
cbIVlen = 8;//IV+ExtIV
cbMIClen = 8;
cbICVlen = 4;
pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
//We need to get seed here for filling TxKey entry.
//TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
// pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
}
else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
cbIVlen = 8;//RSN Header
cbICVlen = 8;//MIC
cbMICHDR = sizeof(SMICHDRHead);
pTxBufHead->wFragCtl |= FRAGCTL_AES;
pDevice->bAES = TRUE;
}
//MAC Header should be padding 0 to DW alignment.
uPadding = 4 - (cbMacHdLen%4);
uPadding %= 4;
}
cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen + cbExtSuppRate;
//Set FIFOCTL_GrpAckPolicy
if (pDevice->bGrpAckPolicy == TRUE) {//0000 0100 0000 0000
pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
}
//the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
pvRrvTime = (PSRrvTime_gCTS) (pbyTxBufferAddr + wTxBufSize);
pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS));
pvRTS = NULL;
pvCTS = (PSCTS) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS) + cbMICHDR);
pvTxDataHd = (PSTxDataHead_g) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_gCTS) + cbMICHDR + sizeof(SCTS));
cbHeaderSize = wTxBufSize + sizeof(SRrvTime_gCTS) + cbMICHDR + sizeof(SCTS) + sizeof(STxDataHead_g);
}
else {//802.11a/b packet
pvRrvTime = (PSRrvTime_ab) (pbyTxBufferAddr + wTxBufSize);
pMICHDR = (PSMICHDRHead) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab));
pvRTS = NULL;
pvCTS = NULL;
pvTxDataHd = (PSTxDataHead_ab) (pbyTxBufferAddr + wTxBufSize + sizeof(SRrvTime_ab) + cbMICHDR);
cbHeaderSize = wTxBufSize + sizeof(SRrvTime_ab) + cbMICHDR + sizeof(STxDataHead_ab);
}
memset((void *)(pbyTxBufferAddr + wTxBufSize), 0,
(cbHeaderSize - wTxBufSize));
memcpy(&(sEthHeader.abyDstAddr[0]),
&(p80211Header->sA3.abyAddr1[0]),
ETH_ALEN);
memcpy(&(sEthHeader.abySrcAddr[0]),
&(p80211Header->sA3.abyAddr2[0]),
ETH_ALEN);
//=========================
// No Fragmentation
//=========================
pTxBufHead->wFragCtl |= (WORD)FRAGCTL_NONFRAG;
//Fill FIFO,RrvTime,RTS,and CTS
s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate, pbyTxBufferAddr, pvRrvTime, pvRTS, pvCTS,
cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader);
//Fill DataHead
uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
0, 0, 1, AUTO_FB_NONE);
pMACHeader = (PS802_11Header) (pbyTxBufferAddr + cbHeaderSize);
cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + (cbFrameBodySize + cbMIClen) + cbExtSuppRate;
pbyMacHdr = (PBYTE)(pbyTxBufferAddr + cbHeaderSize);
pbyPayloadHead = (PBYTE)(pbyMacHdr + cbMacHdLen + uPadding + cbIVlen);
pbyIVHead = (PBYTE)(pbyMacHdr + cbMacHdLen + uPadding);
// Copy the Packet into a tx Buffer
memcpy(pbyMacHdr, skb->data, cbMacHdLen);
// version set to 0, patch for hostapd deamon
pMACHeader->wFrameCtl &= cpu_to_le16(0xfffc);
memcpy(pbyPayloadHead, (skb->data + cbMacHdLen), cbFrameBodySize);
// replace support rate, patch for hostapd deamon( only support 11M)
if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
if (cbExtSuppRate != 0) {
if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0)
memcpy((pbyPayloadHead + cbFrameBodySize),
pMgmt->abyCurrSuppRates,
((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN
);
if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0)
memcpy((pbyPayloadHead + cbFrameBodySize) + ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN,
pMgmt->abyCurrExtSuppRates,
((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN
);
}
}
// Set wep
if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
if (pDevice->bEnableHostWEP) {
pTransmitKey = &STempKey;
pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
memcpy(pTransmitKey->abyKey,
&pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
pTransmitKey->uKeyLength
);
}
if ((pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
dwMICKey0 = *(PDWORD)(&pTransmitKey->abyKey[16]);
dwMICKey1 = *(PDWORD)(&pTransmitKey->abyKey[20]);
// DO Software Michael
MIC_vInit(dwMICKey0, dwMICKey1);
MIC_vAppend((PBYTE)&(sEthHeader.abyDstAddr[0]), 12);
dwMIC_Priority = 0;
MIC_vAppend((PBYTE)&dwMIC_Priority, 4);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0_tx_8021:MIC KEY: %lX, %lX\n", dwMICKey0, dwMICKey1);
uLength = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen;
MIC_vAppend((pbyTxBufferAddr + uLength), cbFrameBodySize);
pdwMIC_L = (PDWORD)(pbyTxBufferAddr + uLength + cbFrameBodySize);
pdwMIC_R = (PDWORD)(pbyTxBufferAddr + uLength + cbFrameBodySize + 4);
MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
MIC_vUnInit();
if (pDevice->bTxMICFail == TRUE) {
*pdwMIC_L = 0;
*pdwMIC_R = 0;
pDevice->bTxMICFail = FALSE;
}
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderSize, uPadding, cbIVlen);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%lx, %lx\n", *pdwMIC_L, *pdwMIC_R);
}
s_vFillTxKey(pDevice, (PBYTE)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
pbyMacHdr, (WORD)cbFrameBodySize, (PBYTE)pMICHDR);
if (pDevice->bEnableHostWEP) {
pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
}
if ((pDevice->byLocalID <= REV_ID_VT3253_A1)) {
s_vSWencryption(pDevice, pTransmitKey, pbyPayloadHead, (WORD)(cbFrameBodySize + cbMIClen));
}
}
pMACHeader->wSeqCtl = cpu_to_le16(pDevice->wSeqCounter << 4);
pDevice->wSeqCounter++ ;
if (pDevice->wSeqCounter > 0x0fff)
pDevice->wSeqCounter = 0;
if (bIsPSPOLL) {
// The MAC will automatically replace the Duration-field of MAC header by Duration-field
// of FIFO control header.
// This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
// in the same place of other packet's Duration-field).
// And it will cause Cisco-AP to issue Disassociation-packet
if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
((PSTxDataHead_g)pvTxDataHd)->wDuration_a = cpu_to_le16(p80211Header->sA2.wDurationID);
((PSTxDataHead_g)pvTxDataHd)->wDuration_b = cpu_to_le16(p80211Header->sA2.wDurationID);
} else {
((PSTxDataHead_ab)pvTxDataHd)->wDuration = cpu_to_le16(p80211Header->sA2.wDurationID);
}
}
pTX_Buffer->wTxByteCount = cpu_to_le16((WORD)(cbReqCount));
pTX_Buffer->byPKTNO = (BYTE) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
pTX_Buffer->byType = 0x00;
pContext->pPacket = skb;
pContext->Type = CONTEXT_MGMT_PACKET;
pContext->uBufLen = (WORD)cbReqCount + 4; //USB header
if (WLAN_GET_FC_TODS(pMACHeader->wFrameCtl) == 0) {
s_vSaveTxPktInfo(pDevice, (BYTE) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->abyAddr1[0]),(WORD)cbFrameSize,pTX_Buffer->wFIFOCtl);
}
else {
s_vSaveTxPktInfo(pDevice, (BYTE) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->abyAddr3[0]),(WORD)cbFrameSize,pTX_Buffer->wFIFOCtl);
}
PIPEnsSendBulkOut(pDevice,pContext);
return ;
}
//TYPE_AC0DMA data tx
/*
* Description:
* Tx packet via AC0DMA(DMA1)
*
* Parameters:
* In:
* pDevice - Pointer to the adapter
* skb - Pointer to tx skb packet
* Out:
* void
*
* Return Value: NULL
*/
int nsDMA_tx_packet(PSDevice pDevice, unsigned int uDMAIdx, struct sk_buff *skb)
{
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
unsigned int BytesToWrite = 0, uHeaderLen = 0;
unsigned int uNodeIndex = 0;
BYTE byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
WORD wAID;
BYTE byPktType;
BOOL bNeedEncryption = FALSE;
PSKeyItem pTransmitKey = NULL;
SKeyItem STempKey;
unsigned int ii;
BOOL bTKIP_UseGTK = FALSE;
BOOL bNeedDeAuth = FALSE;
PBYTE pbyBSSID;
BOOL bNodeExist = FALSE;
PUSB_SEND_CONTEXT pContext;
BOOL fConvertedPacket;
PTX_BUFFER pTX_Buffer;
unsigned int status;
WORD wKeepRate = pDevice->wCurrentRate;
struct net_device_stats* pStats = &pDevice->stats;
BOOL bTxeapol_key = FALSE;
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
if (pDevice->uAssocCount == 0) {
dev_kfree_skb_irq(skb);
return 0;
}
if (is_multicast_ether_addr((PBYTE)(skb->data))) {
uNodeIndex = 0;
bNodeExist = TRUE;
if (pMgmt->sNodeDBTable[0].bPSEnable) {
skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skb);
pMgmt->sNodeDBTable[0].wEnQueueCnt++;
// set tx map
pMgmt->abyPSTxMap[0] |= byMask[0];
return 0;
}
// muticast/broadcast data rate
if (pDevice->byBBType != BB_TYPE_11A)
pDevice->wCurrentRate = RATE_2M;
else
pDevice->wCurrentRate = RATE_24M;
// long preamble type
pDevice->byPreambleType = PREAMBLE_SHORT;
}else {
if (BSSbIsSTAInNodeDB(pDevice, (PBYTE)(skb->data), &uNodeIndex)) {
if (pMgmt->sNodeDBTable[uNodeIndex].bPSEnable) {
skb_queue_tail(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue, skb);
pMgmt->sNodeDBTable[uNodeIndex].wEnQueueCnt++;
// set tx map
wAID = pMgmt->sNodeDBTable[uNodeIndex].wAID;
pMgmt->abyPSTxMap[wAID >> 3] |= byMask[wAID & 7];
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set:pMgmt->abyPSTxMap[%d]= %d\n",
(wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]);
return 0;
}
// AP rate decided from node
pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
// tx preamble decided from node
if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
pDevice->byPreambleType = pDevice->byShortPreamble;
}else {
pDevice->byPreambleType = PREAMBLE_LONG;
}
bNodeExist = TRUE;
}
}
if (bNodeExist == FALSE) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Unknown STA not found in node DB \n");
dev_kfree_skb_irq(skb);
return 0;
}
}
pContext = (PUSB_SEND_CONTEXT)s_vGetFreeContext(pDevice);
if (pContext == NULL) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG" pContext == NULL\n");
dev_kfree_skb_irq(skb);
return STATUS_RESOURCES;
}
memcpy(pDevice->sTxEthHeader.abyDstAddr, (PBYTE)(skb->data), ETH_HLEN);
//mike add:station mode check eapol-key challenge--->
{
BYTE Protocol_Version; //802.1x Authentication
BYTE Packet_Type; //802.1x Authentication
BYTE Descriptor_type;
WORD Key_info;
Protocol_Version = skb->data[ETH_HLEN];
Packet_Type = skb->data[ETH_HLEN+1];
Descriptor_type = skb->data[ETH_HLEN+1+1+2];
Key_info = (skb->data[ETH_HLEN+1+1+2+1] << 8)|(skb->data[ETH_HLEN+1+1+2+2]);
if (pDevice->sTxEthHeader.wType == cpu_to_le16(ETH_P_PAE)) {
/* 802.1x OR eapol-key challenge frame transfer */
if (((Protocol_Version == 1) || (Protocol_Version == 2)) &&
(Packet_Type == 3)) {
bTxeapol_key = TRUE;
if(!(Key_info & BIT3) && //WPA or RSN group-key challenge
(Key_info & BIT8) && (Key_info & BIT9)) { //send 2/2 key
if(Descriptor_type==254) {
pDevice->fWPA_Authened = TRUE;
PRINT_K("WPA ");
}
else {
pDevice->fWPA_Authened = TRUE;
PRINT_K("WPA2(re-keying) ");
}
PRINT_K("Authentication completed!!\n");
}
else if((Key_info & BIT3) && (Descriptor_type==2) && //RSN pairse-key challenge
(Key_info & BIT8) && (Key_info & BIT9)) {
pDevice->fWPA_Authened = TRUE;
PRINT_K("WPA2 Authentication completed!!\n");
}
}
}
}
//mike add:station mode check eapol-key challenge<---
if (pDevice->bEncryptionEnable == TRUE) {
bNeedEncryption = TRUE;
// get Transmit key
do {
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
(pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
pbyBSSID = pDevice->abyBSSID;
// get pairwise key
if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == FALSE) {
// get group key
if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == TRUE) {
bTKIP_UseGTK = TRUE;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
break;
}
} else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get PTK.\n");
break;
}
}else if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
pbyBSSID = pDevice->sTxEthHeader.abyDstAddr; //TO_DS = 0 and FROM_DS = 0 --> 802.11 MAC Address1
DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS Serach Key: \n");
for (ii = 0; ii< 6; ii++)
DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"%x \n", *(pbyBSSID+ii));
DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"\n");
// get pairwise key
if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == TRUE)
break;
}
// get group key
pbyBSSID = pDevice->abyBroadcastAddr;
if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == FALSE) {
pTransmitKey = NULL;
if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
}
else
DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"NOT IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
} else {
bTKIP_UseGTK = TRUE;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
}
} while(FALSE);
}
if (pDevice->bEnableHostWEP) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"acdma0: STA index %d\n", uNodeIndex);
if (pDevice->bEncryptionEnable == TRUE) {
pTransmitKey = &STempKey;
pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
memcpy(pTransmitKey->abyKey,
&pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
pTransmitKey->uKeyLength
);
}
}
byPktType = (BYTE)pDevice->byPacketType;
if (pDevice->bFixRate) {
if (pDevice->byBBType == BB_TYPE_11B) {
if (pDevice->uConnectionRate >= RATE_11M) {
pDevice->wCurrentRate = RATE_11M;
} else {
pDevice->wCurrentRate = (WORD)pDevice->uConnectionRate;
}
} else {
if ((pDevice->byBBType == BB_TYPE_11A) &&
(pDevice->uConnectionRate <= RATE_6M)) {
pDevice->wCurrentRate = RATE_6M;
} else {
if (pDevice->uConnectionRate >= RATE_54M)
pDevice->wCurrentRate = RATE_54M;
else
pDevice->wCurrentRate = (WORD)pDevice->uConnectionRate;
}
}
}
else {
if (pDevice->eOPMode == OP_MODE_ADHOC) {
// Adhoc Tx rate decided from node DB
if (is_multicast_ether_addr(pDevice->sTxEthHeader.abyDstAddr)) {
// Multicast use highest data rate
pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
// preamble type
pDevice->byPreambleType = pDevice->byShortPreamble;
}
else {
if(BSSbIsSTAInNodeDB(pDevice, &(pDevice->sTxEthHeader.abyDstAddr[0]), &uNodeIndex)) {
pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
pDevice->byPreambleType = pDevice->byShortPreamble;
}
else {
pDevice->byPreambleType = PREAMBLE_LONG;
}
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Found Node Index is [%d] Tx Data Rate:[%d]\n",uNodeIndex, pDevice->wCurrentRate);
}
else {
if (pDevice->byBBType != BB_TYPE_11A)
pDevice->wCurrentRate = RATE_2M;
else
pDevice->wCurrentRate = RATE_24M; // refer to vMgrCreateOwnIBSS()'s
// abyCurrExtSuppRates[]
pDevice->byPreambleType = PREAMBLE_SHORT;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Not Found Node use highest basic Rate.....\n");
}
}
}
if (pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) {
// Infra STA rate decided from AP Node, index = 0
pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
}
}
if (pDevice->sTxEthHeader.wType == cpu_to_le16(ETH_P_PAE)) {
if (pDevice->byBBType != BB_TYPE_11A) {
pDevice->wCurrentRate = RATE_1M;
pDevice->byACKRate = RATE_1M;
pDevice->byTopCCKBasicRate = RATE_1M;
pDevice->byTopOFDMBasicRate = RATE_6M;
} else {
pDevice->wCurrentRate = RATE_6M;
pDevice->byACKRate = RATE_6M;
pDevice->byTopCCKBasicRate = RATE_1M;
pDevice->byTopOFDMBasicRate = RATE_6M;
}
}
DBG_PRT(MSG_LEVEL_DEBUG,
KERN_INFO "dma_tx: pDevice->wCurrentRate = %d\n",
pDevice->wCurrentRate);
if (wKeepRate != pDevice->wCurrentRate) {
bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
}
if (pDevice->wCurrentRate <= RATE_11M) {
byPktType = PK_TYPE_11B;
}
if (bNeedEncryption == TRUE) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ntohs Pkt Type=%04x\n", ntohs(pDevice->sTxEthHeader.wType));
if ((pDevice->sTxEthHeader.wType) == cpu_to_le16(ETH_P_PAE)) {
bNeedEncryption = FALSE;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Pkt Type=%04x\n", (pDevice->sTxEthHeader.wType));
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
if (pTransmitKey == NULL) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Don't Find TX KEY\n");
}
else {
if (bTKIP_UseGTK == TRUE) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"error: KEY is GTK!!~~\n");
}
else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%lX]\n", pTransmitKey->dwKeyIndex);
bNeedEncryption = TRUE;
}
}
}
if (pDevice->byCntMeasure == 2) {
bNeedDeAuth = TRUE;
pDevice->s802_11Counter.TKIPCounterMeasuresInvoked++;
}
if (pDevice->bEnableHostWEP) {
if ((uNodeIndex != 0) &&
(pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex & PAIRWISE_KEY)) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%lX]\n", pTransmitKey->dwKeyIndex);
bNeedEncryption = TRUE;
}
}
}
else {
if (pTransmitKey == NULL) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"return no tx key\n");
dev_kfree_skb_irq(skb);
pStats->tx_dropped++;
return STATUS_FAILURE;
}
}
}
fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
(PBYTE)(&pContext->Data[0]), bNeedEncryption,
skb->len, uDMAIdx, &pDevice->sTxEthHeader,
(PBYTE)skb->data, pTransmitKey, uNodeIndex,
pDevice->wCurrentRate,
&uHeaderLen, &BytesToWrite
);
if (fConvertedPacket == FALSE) {
pContext->bBoolInUse = FALSE;
dev_kfree_skb_irq(skb);
return STATUS_FAILURE;
}
if ( pDevice->bEnablePSMode == TRUE ) {
if ( !pDevice->bPSModeTxBurst ) {
bScheduleCommand((void *) pDevice,
WLAN_CMD_MAC_DISPOWERSAVING,
NULL);
pDevice->bPSModeTxBurst = TRUE;
}
}
pTX_Buffer = (PTX_BUFFER)&(pContext->Data[0]);
pTX_Buffer->byPKTNO = (BYTE) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
pTX_Buffer->wTxByteCount = (WORD)BytesToWrite;
pContext->pPacket = skb;
pContext->Type = CONTEXT_DATA_PACKET;
pContext->uBufLen = (WORD)BytesToWrite + 4 ; //USB header
s_vSaveTxPktInfo(pDevice, (BYTE) (pTX_Buffer->byPKTNO & 0x0F), &(pContext->sEthHeader.abyDstAddr[0]),(WORD) (BytesToWrite-uHeaderLen),pTX_Buffer->wFIFOCtl);
status = PIPEnsSendBulkOut(pDevice,pContext);
if (bNeedDeAuth == TRUE) {
WORD wReason = WLAN_MGMT_REASON_MIC_FAILURE;
bScheduleCommand((void *) pDevice, WLAN_CMD_DEAUTH, (PBYTE) &wReason);
}
if(status!=STATUS_PENDING) {
pContext->bBoolInUse = FALSE;
dev_kfree_skb_irq(skb);
return STATUS_FAILURE;
}
else
return 0;
}
/*
* Description:
* Relay packet send (AC1DMA) from rx dpc.
*
* Parameters:
* In:
* pDevice - Pointer to the adapter
* pPacket - Pointer to rx packet
* cbPacketSize - rx ethernet frame size
* Out:
* TURE, FALSE
*
* Return Value: Return TRUE if packet is copy to dma1; otherwise FALSE
*/
BOOL
bRelayPacketSend (
PSDevice pDevice,
PBYTE pbySkbData,
unsigned int uDataLen,
unsigned int uNodeIndex
)
{
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
unsigned int BytesToWrite = 0, uHeaderLen = 0;
BYTE byPktType = PK_TYPE_11B;
BOOL bNeedEncryption = FALSE;
SKeyItem STempKey;
PSKeyItem pTransmitKey = NULL;
PBYTE pbyBSSID;
PUSB_SEND_CONTEXT pContext;
BYTE byPktTyp;
BOOL fConvertedPacket;
PTX_BUFFER pTX_Buffer;
unsigned int status;
WORD wKeepRate = pDevice->wCurrentRate;
pContext = (PUSB_SEND_CONTEXT)s_vGetFreeContext(pDevice);
if (NULL == pContext) {
return FALSE;
}
memcpy(pDevice->sTxEthHeader.abyDstAddr, (PBYTE)pbySkbData, ETH_HLEN);
if (pDevice->bEncryptionEnable == TRUE) {
bNeedEncryption = TRUE;
// get group key
pbyBSSID = pDevice->abyBroadcastAddr;
if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == FALSE) {
pTransmitKey = NULL;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"KEY is NULL. [%d]\n", pMgmt->eCurrMode);
} else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
}
}
if (pDevice->bEnableHostWEP) {
if (uNodeIndex < MAX_NODE_NUM + 1) {
pTransmitKey = &STempKey;
pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
memcpy(pTransmitKey->abyKey,
&pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
pTransmitKey->uKeyLength
);
}
}
if ( bNeedEncryption && (pTransmitKey == NULL) ) {
pContext->bBoolInUse = FALSE;
return FALSE;
}
byPktTyp = (BYTE)pDevice->byPacketType;
if (pDevice->bFixRate) {
if (pDevice->byBBType == BB_TYPE_11B) {
if (pDevice->uConnectionRate >= RATE_11M) {
pDevice->wCurrentRate = RATE_11M;
} else {
pDevice->wCurrentRate = (WORD)pDevice->uConnectionRate;
}
} else {
if ((pDevice->byBBType == BB_TYPE_11A) &&
(pDevice->uConnectionRate <= RATE_6M)) {
pDevice->wCurrentRate = RATE_6M;
} else {
if (pDevice->uConnectionRate >= RATE_54M)
pDevice->wCurrentRate = RATE_54M;
else
pDevice->wCurrentRate = (WORD)pDevice->uConnectionRate;
}
}
}
else {
pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
}
if (wKeepRate != pDevice->wCurrentRate) {
bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
}
if (pDevice->wCurrentRate <= RATE_11M)
byPktType = PK_TYPE_11B;
BytesToWrite = uDataLen + ETH_FCS_LEN;
// Convert the packet to an usb frame and copy into our buffer
// and send the irp.
fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
(PBYTE)(&pContext->Data[0]), bNeedEncryption,
uDataLen, TYPE_AC0DMA, &pDevice->sTxEthHeader,
pbySkbData, pTransmitKey, uNodeIndex,
pDevice->wCurrentRate,
&uHeaderLen, &BytesToWrite
);
if (fConvertedPacket == FALSE) {
pContext->bBoolInUse = FALSE;
return FALSE;
}
pTX_Buffer = (PTX_BUFFER)&(pContext->Data[0]);
pTX_Buffer->byPKTNO = (BYTE) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
pTX_Buffer->wTxByteCount = (WORD)BytesToWrite;
pContext->pPacket = NULL;
pContext->Type = CONTEXT_DATA_PACKET;
pContext->uBufLen = (WORD)BytesToWrite + 4 ; //USB header
s_vSaveTxPktInfo(pDevice, (BYTE) (pTX_Buffer->byPKTNO & 0x0F), &(pContext->sEthHeader.abyDstAddr[0]),(WORD) (BytesToWrite-uHeaderLen),pTX_Buffer->wFIFOCtl);
status = PIPEnsSendBulkOut(pDevice,pContext);
return TRUE;
}