- 根目录:
- sound
- pci
- trident
- trident_main.c
C++程序
|
3983行
|
121.82 KB
/*
* Maintained by Jaroslav Kysela <perex@perex.cz>
* Originated by audio@tridentmicro.com
* Fri Feb 19 15:55:28 MST 1999
* Routines for control of Trident 4DWave (DX and NX) chip
*
* BUGS:
*
* TODO:
* ---
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* SiS7018 S/PDIF support by Thomas Winischhofer <thomas@winischhofer.net>
*/
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/gameport.h>
#include <linux/dma-mapping.h>
#include <linux/export.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/control.h>
#include <sound/tlv.h>
#include <sound/trident.h>
#include <sound/asoundef.h>
#include <asm/io.h>
static int snd_trident_pcm_mixer_build(struct snd_trident *trident,
struct snd_trident_voice * voice,
struct snd_pcm_substream *substream);
static int snd_trident_pcm_mixer_free(struct snd_trident *trident,
struct snd_trident_voice * voice,
struct snd_pcm_substream *substream);
static irqreturn_t snd_trident_interrupt(int irq, void *dev_id);
static int snd_trident_sis_reset(struct snd_trident *trident);
static void snd_trident_clear_voices(struct snd_trident * trident,
unsigned short v_min, unsigned short v_max);
static int snd_trident_free(struct snd_trident *trident);
/*
* common I/O routines
*/
#if 0
static void snd_trident_print_voice_regs(struct snd_trident *trident, int voice)
{
unsigned int val, tmp;
printk(KERN_DEBUG "Trident voice %i:\n", voice);
outb(voice, TRID_REG(trident, T4D_LFO_GC_CIR));
val = inl(TRID_REG(trident, CH_LBA));
printk(KERN_DEBUG "LBA: 0x%x\n", val);
val = inl(TRID_REG(trident, CH_GVSEL_PAN_VOL_CTRL_EC));
printk(KERN_DEBUG "GVSel: %i\n", val >> 31);
printk(KERN_DEBUG "Pan: 0x%x\n", (val >> 24) & 0x7f);
printk(KERN_DEBUG "Vol: 0x%x\n", (val >> 16) & 0xff);
printk(KERN_DEBUG "CTRL: 0x%x\n", (val >> 12) & 0x0f);
printk(KERN_DEBUG "EC: 0x%x\n", val & 0x0fff);
if (trident->device != TRIDENT_DEVICE_ID_NX) {
val = inl(TRID_REG(trident, CH_DX_CSO_ALPHA_FMS));
printk(KERN_DEBUG "CSO: 0x%x\n", val >> 16);
printk("Alpha: 0x%x\n", (val >> 4) & 0x0fff);
printk(KERN_DEBUG "FMS: 0x%x\n", val & 0x0f);
val = inl(TRID_REG(trident, CH_DX_ESO_DELTA));
printk(KERN_DEBUG "ESO: 0x%x\n", val >> 16);
printk(KERN_DEBUG "Delta: 0x%x\n", val & 0xffff);
val = inl(TRID_REG(trident, CH_DX_FMC_RVOL_CVOL));
} else { // TRIDENT_DEVICE_ID_NX
val = inl(TRID_REG(trident, CH_NX_DELTA_CSO));
tmp = (val >> 24) & 0xff;
printk(KERN_DEBUG "CSO: 0x%x\n", val & 0x00ffffff);
val = inl(TRID_REG(trident, CH_NX_DELTA_ESO));
tmp |= (val >> 16) & 0xff00;
printk(KERN_DEBUG "Delta: 0x%x\n", tmp);
printk(KERN_DEBUG "ESO: 0x%x\n", val & 0x00ffffff);
val = inl(TRID_REG(trident, CH_NX_ALPHA_FMS_FMC_RVOL_CVOL));
printk(KERN_DEBUG "Alpha: 0x%x\n", val >> 20);
printk(KERN_DEBUG "FMS: 0x%x\n", (val >> 16) & 0x0f);
}
printk(KERN_DEBUG "FMC: 0x%x\n", (val >> 14) & 3);
printk(KERN_DEBUG "RVol: 0x%x\n", (val >> 7) & 0x7f);
printk(KERN_DEBUG "CVol: 0x%x\n", val & 0x7f);
}
#endif
/*---------------------------------------------------------------------------
unsigned short snd_trident_codec_read(struct snd_ac97 *ac97, unsigned short reg)
Description: This routine will do all of the reading from the external
CODEC (AC97).
Parameters: ac97 - ac97 codec structure
reg - CODEC register index, from AC97 Hal.
returns: 16 bit value read from the AC97.
---------------------------------------------------------------------------*/
static unsigned short snd_trident_codec_read(struct snd_ac97 *ac97, unsigned short reg)
{
unsigned int data = 0, treg;
unsigned short count = 0xffff;
unsigned long flags;
struct snd_trident *trident = ac97->private_data;
spin_lock_irqsave(&trident->reg_lock, flags);
if (trident->device == TRIDENT_DEVICE_ID_DX) {
data = (DX_AC97_BUSY_READ | (reg & 0x000000ff));
outl(data, TRID_REG(trident, DX_ACR1_AC97_R));
do {
data = inl(TRID_REG(trident, DX_ACR1_AC97_R));
if ((data & DX_AC97_BUSY_READ) == 0)
break;
} while (--count);
} else if (trident->device == TRIDENT_DEVICE_ID_NX) {
data = (NX_AC97_BUSY_READ | (reg & 0x000000ff));
treg = ac97->num == 0 ? NX_ACR2_AC97_R_PRIMARY : NX_ACR3_AC97_R_SECONDARY;
outl(data, TRID_REG(trident, treg));
do {
data = inl(TRID_REG(trident, treg));
if ((data & 0x00000C00) == 0)
break;
} while (--count);
} else if (trident->device == TRIDENT_DEVICE_ID_SI7018) {
data = SI_AC97_BUSY_READ | SI_AC97_AUDIO_BUSY | (reg & 0x000000ff);
if (ac97->num == 1)
data |= SI_AC97_SECONDARY;
outl(data, TRID_REG(trident, SI_AC97_READ));
do {
data = inl(TRID_REG(trident, SI_AC97_READ));
if ((data & (SI_AC97_BUSY_READ)) == 0)
break;
} while (--count);
}
if (count == 0 && !trident->ac97_detect) {
snd_printk(KERN_ERR "ac97 codec read TIMEOUT [0x%x/0x%x]!!!\n",
reg, data);
data = 0;
}
spin_unlock_irqrestore(&trident->reg_lock, flags);
return ((unsigned short) (data >> 16));
}
/*---------------------------------------------------------------------------
void snd_trident_codec_write(struct snd_ac97 *ac97, unsigned short reg,
unsigned short wdata)
Description: This routine will do all of the writing to the external
CODEC (AC97).
Parameters: ac97 - ac97 codec structure
reg - CODEC register index, from AC97 Hal.
data - Lower 16 bits are the data to write to CODEC.
returns: TRUE if everything went ok, else FALSE.
---------------------------------------------------------------------------*/
static void snd_trident_codec_write(struct snd_ac97 *ac97, unsigned short reg,
unsigned short wdata)
{
unsigned int address, data;
unsigned short count = 0xffff;
unsigned long flags;
struct snd_trident *trident = ac97->private_data;
data = ((unsigned long) wdata) << 16;
spin_lock_irqsave(&trident->reg_lock, flags);
if (trident->device == TRIDENT_DEVICE_ID_DX) {
address = DX_ACR0_AC97_W;
/* read AC-97 write register status */
do {
if ((inw(TRID_REG(trident, address)) & DX_AC97_BUSY_WRITE) == 0)
break;
} while (--count);
data |= (DX_AC97_BUSY_WRITE | (reg & 0x000000ff));
} else if (trident->device == TRIDENT_DEVICE_ID_NX) {
address = NX_ACR1_AC97_W;
/* read AC-97 write register status */
do {
if ((inw(TRID_REG(trident, address)) & NX_AC97_BUSY_WRITE) == 0)
break;
} while (--count);
data |= (NX_AC97_BUSY_WRITE | (ac97->num << 8) | (reg & 0x000000ff));
} else if (trident->device == TRIDENT_DEVICE_ID_SI7018) {
address = SI_AC97_WRITE;
/* read AC-97 write register status */
do {
if ((inw(TRID_REG(trident, address)) & (SI_AC97_BUSY_WRITE)) == 0)
break;
} while (--count);
data |= SI_AC97_BUSY_WRITE | SI_AC97_AUDIO_BUSY | (reg & 0x000000ff);
if (ac97->num == 1)
data |= SI_AC97_SECONDARY;
} else {
address = 0; /* keep GCC happy */
count = 0; /* return */
}
if (count == 0) {
spin_unlock_irqrestore(&trident->reg_lock, flags);
return;
}
outl(data, TRID_REG(trident, address));
spin_unlock_irqrestore(&trident->reg_lock, flags);
}
/*---------------------------------------------------------------------------
void snd_trident_enable_eso(struct snd_trident *trident)
Description: This routine will enable end of loop interrupts.
End of loop interrupts will occur when a running
channel reaches ESO.
Also enables middle of loop interrupts.
Parameters: trident - pointer to target device class for 4DWave.
---------------------------------------------------------------------------*/
static void snd_trident_enable_eso(struct snd_trident * trident)
{
unsigned int val;
val = inl(TRID_REG(trident, T4D_LFO_GC_CIR));
val |= ENDLP_IE;
val |= MIDLP_IE;
if (trident->device == TRIDENT_DEVICE_ID_SI7018)
val |= BANK_B_EN;
outl(val, TRID_REG(trident, T4D_LFO_GC_CIR));
}
/*---------------------------------------------------------------------------
void snd_trident_disable_eso(struct snd_trident *trident)
Description: This routine will disable end of loop interrupts.
End of loop interrupts will occur when a running
channel reaches ESO.
Also disables middle of loop interrupts.
Parameters:
trident - pointer to target device class for 4DWave.
returns: TRUE if everything went ok, else FALSE.
---------------------------------------------------------------------------*/
static void snd_trident_disable_eso(struct snd_trident * trident)
{
unsigned int tmp;
tmp = inl(TRID_REG(trident, T4D_LFO_GC_CIR));
tmp &= ~ENDLP_IE;
tmp &= ~MIDLP_IE;
outl(tmp, TRID_REG(trident, T4D_LFO_GC_CIR));
}
/*---------------------------------------------------------------------------
void snd_trident_start_voice(struct snd_trident * trident, unsigned int voice)
Description: Start a voice, any channel 0 thru 63.
This routine automatically handles the fact that there are
more than 32 channels available.
Parameters : voice - Voice number 0 thru n.
trident - pointer to target device class for 4DWave.
Return Value: None.
---------------------------------------------------------------------------*/
void snd_trident_start_voice(struct snd_trident * trident, unsigned int voice)
{
unsigned int mask = 1 << (voice & 0x1f);
unsigned int reg = (voice & 0x20) ? T4D_START_B : T4D_START_A;
outl(mask, TRID_REG(trident, reg));
}
EXPORT_SYMBOL(snd_trident_start_voice);
/*---------------------------------------------------------------------------
void snd_trident_stop_voice(struct snd_trident * trident, unsigned int voice)
Description: Stop a voice, any channel 0 thru 63.
This routine automatically handles the fact that there are
more than 32 channels available.
Parameters : voice - Voice number 0 thru n.
trident - pointer to target device class for 4DWave.
Return Value: None.
---------------------------------------------------------------------------*/
void snd_trident_stop_voice(struct snd_trident * trident, unsigned int voice)
{
unsigned int mask = 1 << (voice & 0x1f);
unsigned int reg = (voice & 0x20) ? T4D_STOP_B : T4D_STOP_A;
outl(mask, TRID_REG(trident, reg));
}
EXPORT_SYMBOL(snd_trident_stop_voice);
/*---------------------------------------------------------------------------
int snd_trident_allocate_pcm_channel(struct snd_trident *trident)
Description: Allocate hardware channel in Bank B (32-63).
Parameters : trident - pointer to target device class for 4DWave.
Return Value: hardware channel - 32-63 or -1 when no channel is available
---------------------------------------------------------------------------*/
static int snd_trident_allocate_pcm_channel(struct snd_trident * trident)
{
int idx;
if (trident->ChanPCMcnt >= trident->ChanPCM)
return -1;
for (idx = 31; idx >= 0; idx--) {
if (!(trident->ChanMap[T4D_BANK_B] & (1 << idx))) {
trident->ChanMap[T4D_BANK_B] |= 1 << idx;
trident->ChanPCMcnt++;
return idx + 32;
}
}
return -1;
}
/*---------------------------------------------------------------------------
void snd_trident_free_pcm_channel(int channel)
Description: Free hardware channel in Bank B (32-63)
Parameters : trident - pointer to target device class for 4DWave.
channel - hardware channel number 0-63
Return Value: none
---------------------------------------------------------------------------*/
static void snd_trident_free_pcm_channel(struct snd_trident *trident, int channel)
{
if (channel < 32 || channel > 63)
return;
channel &= 0x1f;
if (trident->ChanMap[T4D_BANK_B] & (1 << channel)) {
trident->ChanMap[T4D_BANK_B] &= ~(1 << channel);
trident->ChanPCMcnt--;
}
}
/*---------------------------------------------------------------------------
unsigned int snd_trident_allocate_synth_channel(void)
Description: Allocate hardware channel in Bank A (0-31).
Parameters : trident - pointer to target device class for 4DWave.
Return Value: hardware channel - 0-31 or -1 when no channel is available
---------------------------------------------------------------------------*/
static int snd_trident_allocate_synth_channel(struct snd_trident * trident)
{
int idx;
for (idx = 31; idx >= 0; idx--) {
if (!(trident->ChanMap[T4D_BANK_A] & (1 << idx))) {
trident->ChanMap[T4D_BANK_A] |= 1 << idx;
trident->synth.ChanSynthCount++;
return idx;
}
}
return -1;
}
/*---------------------------------------------------------------------------
void snd_trident_free_synth_channel( int channel )
Description: Free hardware channel in Bank B (0-31).
Parameters : trident - pointer to target device class for 4DWave.
channel - hardware channel number 0-63
Return Value: none
---------------------------------------------------------------------------*/
static void snd_trident_free_synth_channel(struct snd_trident *trident, int channel)
{
if (channel < 0 || channel > 31)
return;
channel &= 0x1f;
if (trident->ChanMap[T4D_BANK_A] & (1 << channel)) {
trident->ChanMap[T4D_BANK_A] &= ~(1 << channel);
trident->synth.ChanSynthCount--;
}
}
/*---------------------------------------------------------------------------
snd_trident_write_voice_regs
Description: This routine will complete and write the 5 hardware channel
registers to hardware.
Parameters: trident - pointer to target device class for 4DWave.
voice - synthesizer voice structure
Each register field.
---------------------------------------------------------------------------*/
void snd_trident_write_voice_regs(struct snd_trident * trident,
struct snd_trident_voice * voice)
{
unsigned int FmcRvolCvol;
unsigned int regs[5];
regs[1] = voice->LBA;
regs[4] = (voice->GVSel << 31) |
((voice->Pan & 0x0000007f) << 24) |
((voice->CTRL & 0x0000000f) << 12);
FmcRvolCvol = ((voice->FMC & 3) << 14) |
((voice->RVol & 0x7f) << 7) |
(voice->CVol & 0x7f);
switch (trident->device) {
case TRIDENT_DEVICE_ID_SI7018:
regs[4] |= voice->number > 31 ?
(voice->Vol & 0x000003ff) :
((voice->Vol & 0x00003fc) << (16-2)) |
(voice->EC & 0x00000fff);
regs[0] = (voice->CSO << 16) | ((voice->Alpha & 0x00000fff) << 4) |
(voice->FMS & 0x0000000f);
regs[2] = (voice->ESO << 16) | (voice->Delta & 0x0ffff);
regs[3] = (voice->Attribute << 16) | FmcRvolCvol;
break;
case TRIDENT_DEVICE_ID_DX:
regs[4] |= ((voice->Vol & 0x000003fc) << (16-2)) |
(voice->EC & 0x00000fff);
regs[0] = (voice->CSO << 16) | ((voice->Alpha & 0x00000fff) << 4) |
(voice->FMS & 0x0000000f);
regs[2] = (voice->ESO << 16) | (voice->Delta & 0x0ffff);
regs[3] = FmcRvolCvol;
break;
case TRIDENT_DEVICE_ID_NX:
regs[4] |= ((voice->Vol & 0x000003fc) << (16-2)) |
(voice->EC & 0x00000fff);
regs[0] = (voice->Delta << 24) | (voice->CSO & 0x00ffffff);
regs[2] = ((voice->Delta << 16) & 0xff000000) |
(voice->ESO & 0x00ffffff);
regs[3] = (voice->Alpha << 20) |
((voice->FMS & 0x0000000f) << 16) | FmcRvolCvol;
break;
default:
snd_BUG();
return;
}
outb(voice->number, TRID_REG(trident, T4D_LFO_GC_CIR));
outl(regs[0], TRID_REG(trident, CH_START + 0));
outl(regs[1], TRID_REG(trident, CH_START + 4));
outl(regs[2], TRID_REG(trident, CH_START + 8));
outl(regs[3], TRID_REG(trident, CH_START + 12));
outl(regs[4], TRID_REG(trident, CH_START + 16));
#if 0
printk(KERN_DEBUG "written %i channel:\n", voice->number);
printk(KERN_DEBUG " regs[0] = 0x%x/0x%x\n",
regs[0], inl(TRID_REG(trident, CH_START + 0)));
printk(KERN_DEBUG " regs[1] = 0x%x/0x%x\n",
regs[1], inl(TRID_REG(trident, CH_START + 4)));
printk(KERN_DEBUG " regs[2] = 0x%x/0x%x\n",
regs[2], inl(TRID_REG(trident, CH_START + 8)));
printk(KERN_DEBUG " regs[3] = 0x%x/0x%x\n",
regs[3], inl(TRID_REG(trident, CH_START + 12)));
printk(KERN_DEBUG " regs[4] = 0x%x/0x%x\n",
regs[4], inl(TRID_REG(trident, CH_START + 16)));
#endif
}
EXPORT_SYMBOL(snd_trident_write_voice_regs);
/*---------------------------------------------------------------------------
snd_trident_write_cso_reg
Description: This routine will write the new CSO offset
register to hardware.
Parameters: trident - pointer to target device class for 4DWave.
voice - synthesizer voice structure
CSO - new CSO value
---------------------------------------------------------------------------*/
static void snd_trident_write_cso_reg(struct snd_trident * trident,
struct snd_trident_voice * voice,
unsigned int CSO)
{
voice->CSO = CSO;
outb(voice->number, TRID_REG(trident, T4D_LFO_GC_CIR));
if (trident->device != TRIDENT_DEVICE_ID_NX) {
outw(voice->CSO, TRID_REG(trident, CH_DX_CSO_ALPHA_FMS) + 2);
} else {
outl((voice->Delta << 24) |
(voice->CSO & 0x00ffffff), TRID_REG(trident, CH_NX_DELTA_CSO));
}
}
/*---------------------------------------------------------------------------
snd_trident_write_eso_reg
Description: This routine will write the new ESO offset
register to hardware.
Parameters: trident - pointer to target device class for 4DWave.
voice - synthesizer voice structure
ESO - new ESO value
---------------------------------------------------------------------------*/
static void snd_trident_write_eso_reg(struct snd_trident * trident,
struct snd_trident_voice * voice,
unsigned int ESO)
{
voice->ESO = ESO;
outb(voice->number, TRID_REG(trident, T4D_LFO_GC_CIR));
if (trident->device != TRIDENT_DEVICE_ID_NX) {
outw(voice->ESO, TRID_REG(trident, CH_DX_ESO_DELTA) + 2);
} else {
outl(((voice->Delta << 16) & 0xff000000) | (voice->ESO & 0x00ffffff),
TRID_REG(trident, CH_NX_DELTA_ESO));
}
}
/*---------------------------------------------------------------------------
snd_trident_write_vol_reg
Description: This routine will write the new voice volume
register to hardware.
Parameters: trident - pointer to target device class for 4DWave.
voice - synthesizer voice structure
Vol - new voice volume
---------------------------------------------------------------------------*/
static void snd_trident_write_vol_reg(struct snd_trident * trident,
struct snd_trident_voice * voice,
unsigned int Vol)
{
voice->Vol = Vol;
outb(voice->number, TRID_REG(trident, T4D_LFO_GC_CIR));
switch (trident->device) {
case TRIDENT_DEVICE_ID_DX:
case TRIDENT_DEVICE_ID_NX:
outb(voice->Vol >> 2, TRID_REG(trident, CH_GVSEL_PAN_VOL_CTRL_EC + 2));
break;
case TRIDENT_DEVICE_ID_SI7018:
/* printk(KERN_DEBUG "voice->Vol = 0x%x\n", voice->Vol); */
outw((voice->CTRL << 12) | voice->Vol,
TRID_REG(trident, CH_GVSEL_PAN_VOL_CTRL_EC));
break;
}
}
/*---------------------------------------------------------------------------
snd_trident_write_pan_reg
Description: This routine will write the new voice pan
register to hardware.
Parameters: trident - pointer to target device class for 4DWave.
voice - synthesizer voice structure
Pan - new pan value
---------------------------------------------------------------------------*/
static void snd_trident_write_pan_reg(struct snd_trident * trident,
struct snd_trident_voice * voice,
unsigned int Pan)
{
voice->Pan = Pan;
outb(voice->number, TRID_REG(trident, T4D_LFO_GC_CIR));
outb(((voice->GVSel & 0x01) << 7) | (voice->Pan & 0x7f),
TRID_REG(trident, CH_GVSEL_PAN_VOL_CTRL_EC + 3));
}
/*---------------------------------------------------------------------------
snd_trident_write_rvol_reg
Description: This routine will write the new reverb volume
register to hardware.
Parameters: trident - pointer to target device class for 4DWave.
voice - synthesizer voice structure
RVol - new reverb volume
---------------------------------------------------------------------------*/
static void snd_trident_write_rvol_reg(struct snd_trident * trident,
struct snd_trident_voice * voice,
unsigned int RVol)
{
voice->RVol = RVol;
outb(voice->number, TRID_REG(trident, T4D_LFO_GC_CIR));
outw(((voice->FMC & 0x0003) << 14) | ((voice->RVol & 0x007f) << 7) |
(voice->CVol & 0x007f),
TRID_REG(trident, trident->device == TRIDENT_DEVICE_ID_NX ?
CH_NX_ALPHA_FMS_FMC_RVOL_CVOL : CH_DX_FMC_RVOL_CVOL));
}
/*---------------------------------------------------------------------------
snd_trident_write_cvol_reg
Description: This routine will write the new chorus volume
register to hardware.
Parameters: trident - pointer to target device class for 4DWave.
voice - synthesizer voice structure
CVol - new chorus volume
---------------------------------------------------------------------------*/
static void snd_trident_write_cvol_reg(struct snd_trident * trident,
struct snd_trident_voice * voice,
unsigned int CVol)
{
voice->CVol = CVol;
outb(voice->number, TRID_REG(trident, T4D_LFO_GC_CIR));
outw(((voice->FMC & 0x0003) << 14) | ((voice->RVol & 0x007f) << 7) |
(voice->CVol & 0x007f),
TRID_REG(trident, trident->device == TRIDENT_DEVICE_ID_NX ?
CH_NX_ALPHA_FMS_FMC_RVOL_CVOL : CH_DX_FMC_RVOL_CVOL));
}
/*---------------------------------------------------------------------------
snd_trident_convert_rate
Description: This routine converts rate in HZ to hardware delta value.
Parameters: trident - pointer to target device class for 4DWave.
rate - Real or Virtual channel number.
Returns: Delta value.
---------------------------------------------------------------------------*/
static unsigned int snd_trident_convert_rate(unsigned int rate)
{
unsigned int delta;
// We special case 44100 and 8000 since rounding with the equation
// does not give us an accurate enough value. For 11025 and 22050
// the equation gives us the best answer. All other frequencies will
// also use the equation. JDW
if (rate == 44100)
delta = 0xeb3;
else if (rate == 8000)
delta = 0x2ab;
else if (rate == 48000)
delta = 0x1000;
else
delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
return delta;
}
/*---------------------------------------------------------------------------
snd_trident_convert_adc_rate
Description: This routine converts rate in HZ to hardware delta value.
Parameters: trident - pointer to target device class for 4DWave.
rate - Real or Virtual channel number.
Returns: Delta value.
---------------------------------------------------------------------------*/
static unsigned int snd_trident_convert_adc_rate(unsigned int rate)
{
unsigned int delta;
// We special case 44100 and 8000 since rounding with the equation
// does not give us an accurate enough value. For 11025 and 22050
// the equation gives us the best answer. All other frequencies will
// also use the equation. JDW
if (rate == 44100)
delta = 0x116a;
else if (rate == 8000)
delta = 0x6000;
else if (rate == 48000)
delta = 0x1000;
else
delta = ((48000 << 12) / rate) & 0x0000ffff;
return delta;
}
/*---------------------------------------------------------------------------
snd_trident_spurious_threshold
Description: This routine converts rate in HZ to spurious threshold.
Parameters: trident - pointer to target device class for 4DWave.
rate - Real or Virtual channel number.
Returns: Delta value.
---------------------------------------------------------------------------*/
static unsigned int snd_trident_spurious_threshold(unsigned int rate,
unsigned int period_size)
{
unsigned int res = (rate * period_size) / 48000;
if (res < 64)
res = res / 2;
else
res -= 32;
return res;
}
/*---------------------------------------------------------------------------
snd_trident_control_mode
Description: This routine returns a control mode for a PCM channel.
Parameters: trident - pointer to target device class for 4DWave.
substream - PCM substream
Returns: Control value.
---------------------------------------------------------------------------*/
static unsigned int snd_trident_control_mode(struct snd_pcm_substream *substream)
{
unsigned int CTRL;
struct snd_pcm_runtime *runtime = substream->runtime;
/* set ctrl mode
CTRL default: 8-bit (unsigned) mono, loop mode enabled
*/
CTRL = 0x00000001;
if (snd_pcm_format_width(runtime->format) == 16)
CTRL |= 0x00000008; // 16-bit data
if (snd_pcm_format_signed(runtime->format))
CTRL |= 0x00000002; // signed data
if (runtime->channels > 1)
CTRL |= 0x00000004; // stereo data
return CTRL;
}
/*
* PCM part
*/
/*---------------------------------------------------------------------------
snd_trident_ioctl
Description: Device I/O control handler for playback/capture parameters.
Parameters: substream - PCM substream class
cmd - what ioctl message to process
arg - additional message infoarg
Returns: Error status
---------------------------------------------------------------------------*/
static int snd_trident_ioctl(struct snd_pcm_substream *substream,
unsigned int cmd,
void *arg)
{
/* FIXME: it seems that with small periods the behaviour of
trident hardware is unpredictable and interrupt generator
is broken */
return snd_pcm_lib_ioctl(substream, cmd, arg);
}
/*---------------------------------------------------------------------------
snd_trident_allocate_pcm_mem
Description: Allocate PCM ring buffer for given substream
Parameters: substream - PCM substream class
hw_params - hardware parameters
Returns: Error status
---------------------------------------------------------------------------*/
static int snd_trident_allocate_pcm_mem(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_trident_voice *voice = runtime->private_data;
int err;
if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
return err;
if (trident->tlb.entries) {
if (err > 0) { /* change */
if (voice->memblk)
snd_trident_free_pages(trident, voice->memblk);
voice->memblk = snd_trident_alloc_pages(trident, substream);
if (voice->memblk == NULL)
return -ENOMEM;
}
}
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_allocate_evoice
Description: Allocate extra voice as interrupt generator
Parameters: substream - PCM substream class
hw_params - hardware parameters
Returns: Error status
---------------------------------------------------------------------------*/
static int snd_trident_allocate_evoice(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_trident_voice *voice = runtime->private_data;
struct snd_trident_voice *evoice = voice->extra;
/* voice management */
if (params_buffer_size(hw_params) / 2 != params_period_size(hw_params)) {
if (evoice == NULL) {
evoice = snd_trident_alloc_voice(trident, SNDRV_TRIDENT_VOICE_TYPE_PCM, 0, 0);
if (evoice == NULL)
return -ENOMEM;
voice->extra = evoice;
evoice->substream = substream;
}
} else {
if (evoice != NULL) {
snd_trident_free_voice(trident, evoice);
voice->extra = evoice = NULL;
}
}
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_hw_params
Description: Set the hardware parameters for the playback device.
Parameters: substream - PCM substream class
hw_params - hardware parameters
Returns: Error status
---------------------------------------------------------------------------*/
static int snd_trident_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
int err;
err = snd_trident_allocate_pcm_mem(substream, hw_params);
if (err >= 0)
err = snd_trident_allocate_evoice(substream, hw_params);
return err;
}
/*---------------------------------------------------------------------------
snd_trident_playback_hw_free
Description: Release the hardware resources for the playback device.
Parameters: substream - PCM substream class
Returns: Error status
---------------------------------------------------------------------------*/
static int snd_trident_hw_free(struct snd_pcm_substream *substream)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_trident_voice *voice = runtime->private_data;
struct snd_trident_voice *evoice = voice ? voice->extra : NULL;
if (trident->tlb.entries) {
if (voice && voice->memblk) {
snd_trident_free_pages(trident, voice->memblk);
voice->memblk = NULL;
}
}
snd_pcm_lib_free_pages(substream);
if (evoice != NULL) {
snd_trident_free_voice(trident, evoice);
voice->extra = NULL;
}
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_playback_prepare
Description: Prepare playback device for playback.
Parameters: substream - PCM substream class
Returns: Error status
---------------------------------------------------------------------------*/
static int snd_trident_playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_trident_voice *voice = runtime->private_data;
struct snd_trident_voice *evoice = voice->extra;
struct snd_trident_pcm_mixer *mix = &trident->pcm_mixer[substream->number];
spin_lock_irq(&trident->reg_lock);
/* set delta (rate) value */
voice->Delta = snd_trident_convert_rate(runtime->rate);
voice->spurious_threshold = snd_trident_spurious_threshold(runtime->rate, runtime->period_size);
/* set Loop Begin Address */
if (voice->memblk)
voice->LBA = voice->memblk->offset;
else
voice->LBA = runtime->dma_addr;
voice->CSO = 0;
voice->ESO = runtime->buffer_size - 1; /* in samples */
voice->CTRL = snd_trident_control_mode(substream);
voice->FMC = 3;
voice->GVSel = 1;
voice->EC = 0;
voice->Alpha = 0;
voice->FMS = 0;
voice->Vol = mix->vol;
voice->RVol = mix->rvol;
voice->CVol = mix->cvol;
voice->Pan = mix->pan;
voice->Attribute = 0;
#if 0
voice->Attribute = (1<<(30-16))|(2<<(26-16))|
(0<<(24-16))|(0x1f<<(19-16));
#else
voice->Attribute = 0;
#endif
snd_trident_write_voice_regs(trident, voice);
if (evoice != NULL) {
evoice->Delta = voice->Delta;
evoice->spurious_threshold = voice->spurious_threshold;
evoice->LBA = voice->LBA;
evoice->CSO = 0;
evoice->ESO = (runtime->period_size * 2) + 4 - 1; /* in samples */
evoice->CTRL = voice->CTRL;
evoice->FMC = 3;
evoice->GVSel = trident->device == TRIDENT_DEVICE_ID_SI7018 ? 0 : 1;
evoice->EC = 0;
evoice->Alpha = 0;
evoice->FMS = 0;
evoice->Vol = 0x3ff; /* mute */
evoice->RVol = evoice->CVol = 0x7f; /* mute */
evoice->Pan = 0x7f; /* mute */
#if 0
evoice->Attribute = (1<<(30-16))|(2<<(26-16))|
(0<<(24-16))|(0x1f<<(19-16));
#else
evoice->Attribute = 0;
#endif
snd_trident_write_voice_regs(trident, evoice);
evoice->isync2 = 1;
evoice->isync_mark = runtime->period_size;
evoice->ESO = (runtime->period_size * 2) - 1;
}
spin_unlock_irq(&trident->reg_lock);
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_capture_hw_params
Description: Set the hardware parameters for the capture device.
Parameters: substream - PCM substream class
hw_params - hardware parameters
Returns: Error status
---------------------------------------------------------------------------*/
static int snd_trident_capture_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_trident_allocate_pcm_mem(substream, hw_params);
}
/*---------------------------------------------------------------------------
snd_trident_capture_prepare
Description: Prepare capture device for playback.
Parameters: substream - PCM substream class
Returns: Error status
---------------------------------------------------------------------------*/
static int snd_trident_capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_trident_voice *voice = runtime->private_data;
unsigned int val, ESO_bytes;
spin_lock_irq(&trident->reg_lock);
// Initialize the channel and set channel Mode
outb(0, TRID_REG(trident, LEGACY_DMAR15));
// Set DMA channel operation mode register
outb(0x54, TRID_REG(trident, LEGACY_DMAR11));
// Set channel buffer Address, DMAR0 expects contiguous PCI memory area
voice->LBA = runtime->dma_addr;
outl(voice->LBA, TRID_REG(trident, LEGACY_DMAR0));
if (voice->memblk)
voice->LBA = voice->memblk->offset;
// set ESO
ESO_bytes = snd_pcm_lib_buffer_bytes(substream) - 1;
outb((ESO_bytes & 0x00ff0000) >> 16, TRID_REG(trident, LEGACY_DMAR6));
outw((ESO_bytes & 0x0000ffff), TRID_REG(trident, LEGACY_DMAR4));
ESO_bytes++;
// Set channel sample rate, 4.12 format
val = (((unsigned int) 48000L << 12) + (runtime->rate/2)) / runtime->rate;
outw(val, TRID_REG(trident, T4D_SBDELTA_DELTA_R));
// Set channel interrupt blk length
if (snd_pcm_format_width(runtime->format) == 16) {
val = (unsigned short) ((ESO_bytes >> 1) - 1);
} else {
val = (unsigned short) (ESO_bytes - 1);
}
outl((val << 16) | val, TRID_REG(trident, T4D_SBBL_SBCL));
// Right now, set format and start to run captureing,
// continuous run loop enable.
trident->bDMAStart = 0x19; // 0001 1001b
if (snd_pcm_format_width(runtime->format) == 16)
trident->bDMAStart |= 0x80;
if (snd_pcm_format_signed(runtime->format))
trident->bDMAStart |= 0x20;
if (runtime->channels > 1)
trident->bDMAStart |= 0x40;
// Prepare capture intr channel
voice->Delta = snd_trident_convert_rate(runtime->rate);
voice->spurious_threshold = snd_trident_spurious_threshold(runtime->rate, runtime->period_size);
voice->isync = 1;
voice->isync_mark = runtime->period_size;
voice->isync_max = runtime->buffer_size;
// Set voice parameters
voice->CSO = 0;
voice->ESO = voice->isync_ESO = (runtime->period_size * 2) + 6 - 1;
voice->CTRL = snd_trident_control_mode(substream);
voice->FMC = 3;
voice->RVol = 0x7f;
voice->CVol = 0x7f;
voice->GVSel = 1;
voice->Pan = 0x7f; /* mute */
voice->Vol = 0x3ff; /* mute */
voice->EC = 0;
voice->Alpha = 0;
voice->FMS = 0;
voice->Attribute = 0;
snd_trident_write_voice_regs(trident, voice);
spin_unlock_irq(&trident->reg_lock);
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_si7018_capture_hw_params
Description: Set the hardware parameters for the capture device.
Parameters: substream - PCM substream class
hw_params - hardware parameters
Returns: Error status
---------------------------------------------------------------------------*/
static int snd_trident_si7018_capture_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
int err;
if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
return err;
return snd_trident_allocate_evoice(substream, hw_params);
}
/*---------------------------------------------------------------------------
snd_trident_si7018_capture_hw_free
Description: Release the hardware resources for the capture device.
Parameters: substream - PCM substream class
Returns: Error status
---------------------------------------------------------------------------*/
static int snd_trident_si7018_capture_hw_free(struct snd_pcm_substream *substream)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_trident_voice *voice = runtime->private_data;
struct snd_trident_voice *evoice = voice ? voice->extra : NULL;
snd_pcm_lib_free_pages(substream);
if (evoice != NULL) {
snd_trident_free_voice(trident, evoice);
voice->extra = NULL;
}
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_si7018_capture_prepare
Description: Prepare capture device for playback.
Parameters: substream - PCM substream class
Returns: Error status
---------------------------------------------------------------------------*/
static int snd_trident_si7018_capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_trident_voice *voice = runtime->private_data;
struct snd_trident_voice *evoice = voice->extra;
spin_lock_irq(&trident->reg_lock);
voice->LBA = runtime->dma_addr;
voice->Delta = snd_trident_convert_adc_rate(runtime->rate);
voice->spurious_threshold = snd_trident_spurious_threshold(runtime->rate, runtime->period_size);
// Set voice parameters
voice->CSO = 0;
voice->ESO = runtime->buffer_size - 1; /* in samples */
voice->CTRL = snd_trident_control_mode(substream);
voice->FMC = 0;
voice->RVol = 0;
voice->CVol = 0;
voice->GVSel = 1;
voice->Pan = T4D_DEFAULT_PCM_PAN;
voice->Vol = 0;
voice->EC = 0;
voice->Alpha = 0;
voice->FMS = 0;
voice->Attribute = (2 << (30-16)) |
(2 << (26-16)) |
(2 << (24-16)) |
(1 << (23-16));
snd_trident_write_voice_regs(trident, voice);
if (evoice != NULL) {
evoice->Delta = snd_trident_convert_rate(runtime->rate);
evoice->spurious_threshold = voice->spurious_threshold;
evoice->LBA = voice->LBA;
evoice->CSO = 0;
evoice->ESO = (runtime->period_size * 2) + 20 - 1; /* in samples, 20 means correction */
evoice->CTRL = voice->CTRL;
evoice->FMC = 3;
evoice->GVSel = 0;
evoice->EC = 0;
evoice->Alpha = 0;
evoice->FMS = 0;
evoice->Vol = 0x3ff; /* mute */
evoice->RVol = evoice->CVol = 0x7f; /* mute */
evoice->Pan = 0x7f; /* mute */
evoice->Attribute = 0;
snd_trident_write_voice_regs(trident, evoice);
evoice->isync2 = 1;
evoice->isync_mark = runtime->period_size;
evoice->ESO = (runtime->period_size * 2) - 1;
}
spin_unlock_irq(&trident->reg_lock);
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_foldback_prepare
Description: Prepare foldback capture device for playback.
Parameters: substream - PCM substream class
Returns: Error status
---------------------------------------------------------------------------*/
static int snd_trident_foldback_prepare(struct snd_pcm_substream *substream)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_trident_voice *voice = runtime->private_data;
struct snd_trident_voice *evoice = voice->extra;
spin_lock_irq(&trident->reg_lock);
/* Set channel buffer Address */
if (voice->memblk)
voice->LBA = voice->memblk->offset;
else
voice->LBA = runtime->dma_addr;
/* set target ESO for channel */
voice->ESO = runtime->buffer_size - 1; /* in samples */
/* set sample rate */
voice->Delta = 0x1000;
voice->spurious_threshold = snd_trident_spurious_threshold(48000, runtime->period_size);
voice->CSO = 0;
voice->CTRL = snd_trident_control_mode(substream);
voice->FMC = 3;
voice->RVol = 0x7f;
voice->CVol = 0x7f;
voice->GVSel = 1;
voice->Pan = 0x7f; /* mute */
voice->Vol = 0x3ff; /* mute */
voice->EC = 0;
voice->Alpha = 0;
voice->FMS = 0;
voice->Attribute = 0;
/* set up capture channel */
outb(((voice->number & 0x3f) | 0x80), TRID_REG(trident, T4D_RCI + voice->foldback_chan));
snd_trident_write_voice_regs(trident, voice);
if (evoice != NULL) {
evoice->Delta = voice->Delta;
evoice->spurious_threshold = voice->spurious_threshold;
evoice->LBA = voice->LBA;
evoice->CSO = 0;
evoice->ESO = (runtime->period_size * 2) + 4 - 1; /* in samples */
evoice->CTRL = voice->CTRL;
evoice->FMC = 3;
evoice->GVSel = trident->device == TRIDENT_DEVICE_ID_SI7018 ? 0 : 1;
evoice->EC = 0;
evoice->Alpha = 0;
evoice->FMS = 0;
evoice->Vol = 0x3ff; /* mute */
evoice->RVol = evoice->CVol = 0x7f; /* mute */
evoice->Pan = 0x7f; /* mute */
evoice->Attribute = 0;
snd_trident_write_voice_regs(trident, evoice);
evoice->isync2 = 1;
evoice->isync_mark = runtime->period_size;
evoice->ESO = (runtime->period_size * 2) - 1;
}
spin_unlock_irq(&trident->reg_lock);
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_spdif_hw_params
Description: Set the hardware parameters for the spdif device.
Parameters: substream - PCM substream class
hw_params - hardware parameters
Returns: Error status
---------------------------------------------------------------------------*/
static int snd_trident_spdif_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
unsigned int old_bits = 0, change = 0;
int err;
err = snd_trident_allocate_pcm_mem(substream, hw_params);
if (err < 0)
return err;
if (trident->device == TRIDENT_DEVICE_ID_SI7018) {
err = snd_trident_allocate_evoice(substream, hw_params);
if (err < 0)
return err;
}
/* prepare SPDIF channel */
spin_lock_irq(&trident->reg_lock);
old_bits = trident->spdif_pcm_bits;
if (old_bits & IEC958_AES0_PROFESSIONAL)
trident->spdif_pcm_bits &= ~IEC958_AES0_PRO_FS;
else
trident->spdif_pcm_bits &= ~(IEC958_AES3_CON_FS << 24);
if (params_rate(hw_params) >= 48000) {
trident->spdif_pcm_ctrl = 0x3c; // 48000 Hz
trident->spdif_pcm_bits |=
trident->spdif_bits & IEC958_AES0_PROFESSIONAL ?
IEC958_AES0_PRO_FS_48000 :
(IEC958_AES3_CON_FS_48000 << 24);
}
else if (params_rate(hw_params) >= 44100) {
trident->spdif_pcm_ctrl = 0x3e; // 44100 Hz
trident->spdif_pcm_bits |=
trident->spdif_bits & IEC958_AES0_PROFESSIONAL ?
IEC958_AES0_PRO_FS_44100 :
(IEC958_AES3_CON_FS_44100 << 24);
}
else {
trident->spdif_pcm_ctrl = 0x3d; // 32000 Hz
trident->spdif_pcm_bits |=
trident->spdif_bits & IEC958_AES0_PROFESSIONAL ?
IEC958_AES0_PRO_FS_32000 :
(IEC958_AES3_CON_FS_32000 << 24);
}
change = old_bits != trident->spdif_pcm_bits;
spin_unlock_irq(&trident->reg_lock);
if (change)
snd_ctl_notify(trident->card, SNDRV_CTL_EVENT_MASK_VALUE, &trident->spdif_pcm_ctl->id);
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_spdif_prepare
Description: Prepare SPDIF device for playback.
Parameters: substream - PCM substream class
Returns: Error status
---------------------------------------------------------------------------*/
static int snd_trident_spdif_prepare(struct snd_pcm_substream *substream)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_trident_voice *voice = runtime->private_data;
struct snd_trident_voice *evoice = voice->extra;
struct snd_trident_pcm_mixer *mix = &trident->pcm_mixer[substream->number];
unsigned int RESO, LBAO;
unsigned int temp;
spin_lock_irq(&trident->reg_lock);
if (trident->device != TRIDENT_DEVICE_ID_SI7018) {
/* set delta (rate) value */
voice->Delta = snd_trident_convert_rate(runtime->rate);
voice->spurious_threshold = snd_trident_spurious_threshold(runtime->rate, runtime->period_size);
/* set Loop Back Address */
LBAO = runtime->dma_addr;
if (voice->memblk)
voice->LBA = voice->memblk->offset;
else
voice->LBA = LBAO;
voice->isync = 1;
voice->isync3 = 1;
voice->isync_mark = runtime->period_size;
voice->isync_max = runtime->buffer_size;
/* set target ESO for channel */
RESO = runtime->buffer_size - 1;
voice->ESO = voice->isync_ESO = (runtime->period_size * 2) + 6 - 1;
/* set ctrl mode */
voice->CTRL = snd_trident_control_mode(substream);
voice->FMC = 3;
voice->RVol = 0x7f;
voice->CVol = 0x7f;
voice->GVSel = 1;
voice->Pan = 0x7f;
voice->Vol = 0x3ff;
voice->EC = 0;
voice->CSO = 0;
voice->Alpha = 0;
voice->FMS = 0;
voice->Attribute = 0;
/* prepare surrogate IRQ channel */
snd_trident_write_voice_regs(trident, voice);
outw((RESO & 0xffff), TRID_REG(trident, NX_SPESO));
outb((RESO >> 16), TRID_REG(trident, NX_SPESO + 2));
outl((LBAO & 0xfffffffc), TRID_REG(trident, NX_SPLBA));
outw((voice->CSO & 0xffff), TRID_REG(trident, NX_SPCTRL_SPCSO));
outb((voice->CSO >> 16), TRID_REG(trident, NX_SPCTRL_SPCSO + 2));
/* set SPDIF setting */
outb(trident->spdif_pcm_ctrl, TRID_REG(trident, NX_SPCTRL_SPCSO + 3));
outl(trident->spdif_pcm_bits, TRID_REG(trident, NX_SPCSTATUS));
} else { /* SiS */
/* set delta (rate) value */
voice->Delta = 0x800;
voice->spurious_threshold = snd_trident_spurious_threshold(48000, runtime->period_size);
/* set Loop Begin Address */
if (voice->memblk)
voice->LBA = voice->memblk->offset;
else
voice->LBA = runtime->dma_addr;
voice->CSO = 0;
voice->ESO = runtime->buffer_size - 1; /* in samples */
voice->CTRL = snd_trident_control_mode(substream);
voice->FMC = 3;
voice->GVSel = 1;
voice->EC = 0;
voice->Alpha = 0;
voice->FMS = 0;
voice->Vol = mix->vol;
voice->RVol = mix->rvol;
voice->CVol = mix->cvol;
voice->Pan = mix->pan;
voice->Attribute = (1<<(30-16))|(7<<(26-16))|
(0<<(24-16))|(0<<(19-16));
snd_trident_write_voice_regs(trident, voice);
if (evoice != NULL) {
evoice->Delta = voice->Delta;
evoice->spurious_threshold = voice->spurious_threshold;
evoice->LBA = voice->LBA;
evoice->CSO = 0;
evoice->ESO = (runtime->period_size * 2) + 4 - 1; /* in samples */
evoice->CTRL = voice->CTRL;
evoice->FMC = 3;
evoice->GVSel = trident->device == TRIDENT_DEVICE_ID_SI7018 ? 0 : 1;
evoice->EC = 0;
evoice->Alpha = 0;
evoice->FMS = 0;
evoice->Vol = 0x3ff; /* mute */
evoice->RVol = evoice->CVol = 0x7f; /* mute */
evoice->Pan = 0x7f; /* mute */
evoice->Attribute = 0;
snd_trident_write_voice_regs(trident, evoice);
evoice->isync2 = 1;
evoice->isync_mark = runtime->period_size;
evoice->ESO = (runtime->period_size * 2) - 1;
}
outl(trident->spdif_pcm_bits, TRID_REG(trident, SI_SPDIF_CS));
temp = inl(TRID_REG(trident, T4D_LFO_GC_CIR));
temp &= ~(1<<19);
outl(temp, TRID_REG(trident, T4D_LFO_GC_CIR));
temp = inl(TRID_REG(trident, SI_SERIAL_INTF_CTRL));
temp |= SPDIF_EN;
outl(temp, TRID_REG(trident, SI_SERIAL_INTF_CTRL));
}
spin_unlock_irq(&trident->reg_lock);
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_trigger
Description: Start/stop devices
Parameters: substream - PCM substream class
cmd - trigger command (STOP, GO)
Returns: Error status
---------------------------------------------------------------------------*/
static int snd_trident_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
struct snd_pcm_substream *s;
unsigned int what, whati, capture_flag, spdif_flag;
struct snd_trident_voice *voice, *evoice;
unsigned int val, go;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
go = 1;
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_SUSPEND:
go = 0;
break;
default:
return -EINVAL;
}
what = whati = capture_flag = spdif_flag = 0;
spin_lock(&trident->reg_lock);
val = inl(TRID_REG(trident, T4D_STIMER)) & 0x00ffffff;
snd_pcm_group_for_each_entry(s, substream) {
if ((struct snd_trident *) snd_pcm_substream_chip(s) == trident) {
voice = s->runtime->private_data;
evoice = voice->extra;
what |= 1 << (voice->number & 0x1f);
if (evoice == NULL) {
whati |= 1 << (voice->number & 0x1f);
} else {
what |= 1 << (evoice->number & 0x1f);
whati |= 1 << (evoice->number & 0x1f);
if (go)
evoice->stimer = val;
}
if (go) {
voice->running = 1;
voice->stimer = val;
} else {
voice->running = 0;
}
snd_pcm_trigger_done(s, substream);
if (voice->capture)
capture_flag = 1;
if (voice->spdif)
spdif_flag = 1;
}
}
if (spdif_flag) {
if (trident->device != TRIDENT_DEVICE_ID_SI7018) {
outl(trident->spdif_pcm_bits, TRID_REG(trident, NX_SPCSTATUS));
val = trident->spdif_pcm_ctrl;
if (!go)
val &= ~(0x28);
outb(val, TRID_REG(trident, NX_SPCTRL_SPCSO + 3));
} else {
outl(trident->spdif_pcm_bits, TRID_REG(trident, SI_SPDIF_CS));
val = inl(TRID_REG(trident, SI_SERIAL_INTF_CTRL)) | SPDIF_EN;
outl(val, TRID_REG(trident, SI_SERIAL_INTF_CTRL));
}
}
if (!go)
outl(what, TRID_REG(trident, T4D_STOP_B));
val = inl(TRID_REG(trident, T4D_AINTEN_B));
if (go) {
val |= whati;
} else {
val &= ~whati;
}
outl(val, TRID_REG(trident, T4D_AINTEN_B));
if (go) {
outl(what, TRID_REG(trident, T4D_START_B));
if (capture_flag && trident->device != TRIDENT_DEVICE_ID_SI7018)
outb(trident->bDMAStart, TRID_REG(trident, T4D_SBCTRL_SBE2R_SBDD));
} else {
if (capture_flag && trident->device != TRIDENT_DEVICE_ID_SI7018)
outb(0x00, TRID_REG(trident, T4D_SBCTRL_SBE2R_SBDD));
}
spin_unlock(&trident->reg_lock);
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_playback_pointer
Description: This routine return the playback position
Parameters: substream - PCM substream class
Returns: position of buffer
---------------------------------------------------------------------------*/
static snd_pcm_uframes_t snd_trident_playback_pointer(struct snd_pcm_substream *substream)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_trident_voice *voice = runtime->private_data;
unsigned int cso;
if (!voice->running)
return 0;
spin_lock(&trident->reg_lock);
outb(voice->number, TRID_REG(trident, T4D_LFO_GC_CIR));
if (trident->device != TRIDENT_DEVICE_ID_NX) {
cso = inw(TRID_REG(trident, CH_DX_CSO_ALPHA_FMS + 2));
} else { // ID_4DWAVE_NX
cso = (unsigned int) inl(TRID_REG(trident, CH_NX_DELTA_CSO)) & 0x00ffffff;
}
spin_unlock(&trident->reg_lock);
if (cso >= runtime->buffer_size)
cso = 0;
return cso;
}
/*---------------------------------------------------------------------------
snd_trident_capture_pointer
Description: This routine return the capture position
Parameters: pcm1 - PCM device class
Returns: position of buffer
---------------------------------------------------------------------------*/
static snd_pcm_uframes_t snd_trident_capture_pointer(struct snd_pcm_substream *substream)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_trident_voice *voice = runtime->private_data;
unsigned int result;
if (!voice->running)
return 0;
result = inw(TRID_REG(trident, T4D_SBBL_SBCL));
if (runtime->channels > 1)
result >>= 1;
if (result > 0)
result = runtime->buffer_size - result;
return result;
}
/*---------------------------------------------------------------------------
snd_trident_spdif_pointer
Description: This routine return the SPDIF playback position
Parameters: substream - PCM substream class
Returns: position of buffer
---------------------------------------------------------------------------*/
static snd_pcm_uframes_t snd_trident_spdif_pointer(struct snd_pcm_substream *substream)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_trident_voice *voice = runtime->private_data;
unsigned int result;
if (!voice->running)
return 0;
result = inl(TRID_REG(trident, NX_SPCTRL_SPCSO)) & 0x00ffffff;
return result;
}
/*
* Playback support device description
*/
static struct snd_pcm_hardware snd_trident_playback =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START |
SNDRV_PCM_INFO_PAUSE /* | SNDRV_PCM_INFO_RESUME */),
.formats = (SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U16_LE),
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (256*1024),
.period_bytes_min = 64,
.period_bytes_max = (256*1024),
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
/*
* Capture support device description
*/
static struct snd_pcm_hardware snd_trident_capture =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START |
SNDRV_PCM_INFO_PAUSE /* | SNDRV_PCM_INFO_RESUME */),
.formats = (SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U16_LE),
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
/*
* Foldback capture support device description
*/
static struct snd_pcm_hardware snd_trident_foldback =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START |
SNDRV_PCM_INFO_PAUSE /* | SNDRV_PCM_INFO_RESUME */),
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_48000,
.rate_min = 48000,
.rate_max = 48000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
/*
* SPDIF playback support device description
*/
static struct snd_pcm_hardware snd_trident_spdif =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START |
SNDRV_PCM_INFO_PAUSE /* | SNDRV_PCM_INFO_RESUME */),
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.rates = (SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000),
.rate_min = 32000,
.rate_max = 48000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
static struct snd_pcm_hardware snd_trident_spdif_7018 =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START |
SNDRV_PCM_INFO_PAUSE /* | SNDRV_PCM_INFO_RESUME */),
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_48000,
.rate_min = 48000,
.rate_max = 48000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
static void snd_trident_pcm_free_substream(struct snd_pcm_runtime *runtime)
{
struct snd_trident_voice *voice = runtime->private_data;
struct snd_trident *trident;
if (voice) {
trident = voice->trident;
snd_trident_free_voice(trident, voice);
}
}
static int snd_trident_playback_open(struct snd_pcm_substream *substream)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_trident_voice *voice;
voice = snd_trident_alloc_voice(trident, SNDRV_TRIDENT_VOICE_TYPE_PCM, 0, 0);
if (voice == NULL)
return -EAGAIN;
snd_trident_pcm_mixer_build(trident, voice, substream);
voice->substream = substream;
runtime->private_data = voice;
runtime->private_free = snd_trident_pcm_free_substream;
runtime->hw = snd_trident_playback;
snd_pcm_set_sync(substream);
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 64*1024);
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_playback_close
Description: This routine will close the 4DWave playback device. For now
we will simply free the dma transfer buffer.
Parameters: substream - PCM substream class
---------------------------------------------------------------------------*/
static int snd_trident_playback_close(struct snd_pcm_substream *substream)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_trident_voice *voice = runtime->private_data;
snd_trident_pcm_mixer_free(trident, voice, substream);
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_spdif_open
Description: This routine will open the 4DWave SPDIF device.
Parameters: substream - PCM substream class
Returns: status - success or failure flag
---------------------------------------------------------------------------*/
static int snd_trident_spdif_open(struct snd_pcm_substream *substream)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
struct snd_trident_voice *voice;
struct snd_pcm_runtime *runtime = substream->runtime;
voice = snd_trident_alloc_voice(trident, SNDRV_TRIDENT_VOICE_TYPE_PCM, 0, 0);
if (voice == NULL)
return -EAGAIN;
voice->spdif = 1;
voice->substream = substream;
spin_lock_irq(&trident->reg_lock);
trident->spdif_pcm_bits = trident->spdif_bits;
spin_unlock_irq(&trident->reg_lock);
runtime->private_data = voice;
runtime->private_free = snd_trident_pcm_free_substream;
if (trident->device == TRIDENT_DEVICE_ID_SI7018) {
runtime->hw = snd_trident_spdif;
} else {
runtime->hw = snd_trident_spdif_7018;
}
trident->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
snd_ctl_notify(trident->card, SNDRV_CTL_EVENT_MASK_VALUE |
SNDRV_CTL_EVENT_MASK_INFO, &trident->spdif_pcm_ctl->id);
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 64*1024);
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_spdif_close
Description: This routine will close the 4DWave SPDIF device.
Parameters: substream - PCM substream class
---------------------------------------------------------------------------*/
static int snd_trident_spdif_close(struct snd_pcm_substream *substream)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
unsigned int temp;
spin_lock_irq(&trident->reg_lock);
// restore default SPDIF setting
if (trident->device != TRIDENT_DEVICE_ID_SI7018) {
outb(trident->spdif_ctrl, TRID_REG(trident, NX_SPCTRL_SPCSO + 3));
outl(trident->spdif_bits, TRID_REG(trident, NX_SPCSTATUS));
} else {
outl(trident->spdif_bits, TRID_REG(trident, SI_SPDIF_CS));
temp = inl(TRID_REG(trident, SI_SERIAL_INTF_CTRL));
if (trident->spdif_ctrl) {
temp |= SPDIF_EN;
} else {
temp &= ~SPDIF_EN;
}
outl(temp, TRID_REG(trident, SI_SERIAL_INTF_CTRL));
}
spin_unlock_irq(&trident->reg_lock);
trident->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
snd_ctl_notify(trident->card, SNDRV_CTL_EVENT_MASK_VALUE |
SNDRV_CTL_EVENT_MASK_INFO, &trident->spdif_pcm_ctl->id);
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_capture_open
Description: This routine will open the 4DWave capture device.
Parameters: substream - PCM substream class
Returns: status - success or failure flag
---------------------------------------------------------------------------*/
static int snd_trident_capture_open(struct snd_pcm_substream *substream)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
struct snd_trident_voice *voice;
struct snd_pcm_runtime *runtime = substream->runtime;
voice = snd_trident_alloc_voice(trident, SNDRV_TRIDENT_VOICE_TYPE_PCM, 0, 0);
if (voice == NULL)
return -EAGAIN;
voice->capture = 1;
voice->substream = substream;
runtime->private_data = voice;
runtime->private_free = snd_trident_pcm_free_substream;
runtime->hw = snd_trident_capture;
snd_pcm_set_sync(substream);
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 64*1024);
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_capture_close
Description: This routine will close the 4DWave capture device. For now
we will simply free the dma transfer buffer.
Parameters: substream - PCM substream class
---------------------------------------------------------------------------*/
static int snd_trident_capture_close(struct snd_pcm_substream *substream)
{
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_foldback_open
Description: This routine will open the 4DWave foldback capture device.
Parameters: substream - PCM substream class
Returns: status - success or failure flag
---------------------------------------------------------------------------*/
static int snd_trident_foldback_open(struct snd_pcm_substream *substream)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
struct snd_trident_voice *voice;
struct snd_pcm_runtime *runtime = substream->runtime;
voice = snd_trident_alloc_voice(trident, SNDRV_TRIDENT_VOICE_TYPE_PCM, 0, 0);
if (voice == NULL)
return -EAGAIN;
voice->foldback_chan = substream->number;
voice->substream = substream;
runtime->private_data = voice;
runtime->private_free = snd_trident_pcm_free_substream;
runtime->hw = snd_trident_foldback;
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 64*1024);
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_foldback_close
Description: This routine will close the 4DWave foldback capture device.
For now we will simply free the dma transfer buffer.
Parameters: substream - PCM substream class
---------------------------------------------------------------------------*/
static int snd_trident_foldback_close(struct snd_pcm_substream *substream)
{
struct snd_trident *trident = snd_pcm_substream_chip(substream);
struct snd_trident_voice *voice;
struct snd_pcm_runtime *runtime = substream->runtime;
voice = runtime->private_data;
/* stop capture channel */
spin_lock_irq(&trident->reg_lock);
outb(0x00, TRID_REG(trident, T4D_RCI + voice->foldback_chan));
spin_unlock_irq(&trident->reg_lock);
return 0;
}
/*---------------------------------------------------------------------------
PCM operations
---------------------------------------------------------------------------*/
static struct snd_pcm_ops snd_trident_playback_ops = {
.open = snd_trident_playback_open,
.close = snd_trident_playback_close,
.ioctl = snd_trident_ioctl,
.hw_params = snd_trident_hw_params,
.hw_free = snd_trident_hw_free,
.prepare = snd_trident_playback_prepare,
.trigger = snd_trident_trigger,
.pointer = snd_trident_playback_pointer,
};
static struct snd_pcm_ops snd_trident_nx_playback_ops = {
.open = snd_trident_playback_open,
.close = snd_trident_playback_close,
.ioctl = snd_trident_ioctl,
.hw_params = snd_trident_hw_params,
.hw_free = snd_trident_hw_free,
.prepare = snd_trident_playback_prepare,
.trigger = snd_trident_trigger,
.pointer = snd_trident_playback_pointer,
.page = snd_pcm_sgbuf_ops_page,
};
static struct snd_pcm_ops snd_trident_capture_ops = {
.open = snd_trident_capture_open,
.close = snd_trident_capture_close,
.ioctl = snd_trident_ioctl,
.hw_params = snd_trident_capture_hw_params,
.hw_free = snd_trident_hw_free,
.prepare = snd_trident_capture_prepare,
.trigger = snd_trident_trigger,
.pointer = snd_trident_capture_pointer,
};
static struct snd_pcm_ops snd_trident_si7018_capture_ops = {
.open = snd_trident_capture_open,
.close = snd_trident_capture_close,
.ioctl = snd_trident_ioctl,
.hw_params = snd_trident_si7018_capture_hw_params,
.hw_free = snd_trident_si7018_capture_hw_free,
.prepare = snd_trident_si7018_capture_prepare,
.trigger = snd_trident_trigger,
.pointer = snd_trident_playback_pointer,
};
static struct snd_pcm_ops snd_trident_foldback_ops = {
.open = snd_trident_foldback_open,
.close = snd_trident_foldback_close,
.ioctl = snd_trident_ioctl,
.hw_params = snd_trident_hw_params,
.hw_free = snd_trident_hw_free,
.prepare = snd_trident_foldback_prepare,
.trigger = snd_trident_trigger,
.pointer = snd_trident_playback_pointer,
};
static struct snd_pcm_ops snd_trident_nx_foldback_ops = {
.open = snd_trident_foldback_open,
.close = snd_trident_foldback_close,
.ioctl = snd_trident_ioctl,
.hw_params = snd_trident_hw_params,
.hw_free = snd_trident_hw_free,
.prepare = snd_trident_foldback_prepare,
.trigger = snd_trident_trigger,
.pointer = snd_trident_playback_pointer,
.page = snd_pcm_sgbuf_ops_page,
};
static struct snd_pcm_ops snd_trident_spdif_ops = {
.open = snd_trident_spdif_open,
.close = snd_trident_spdif_close,
.ioctl = snd_trident_ioctl,
.hw_params = snd_trident_spdif_hw_params,
.hw_free = snd_trident_hw_free,
.prepare = snd_trident_spdif_prepare,
.trigger = snd_trident_trigger,
.pointer = snd_trident_spdif_pointer,
};
static struct snd_pcm_ops snd_trident_spdif_7018_ops = {
.open = snd_trident_spdif_open,
.close = snd_trident_spdif_close,
.ioctl = snd_trident_ioctl,
.hw_params = snd_trident_spdif_hw_params,
.hw_free = snd_trident_hw_free,
.prepare = snd_trident_spdif_prepare,
.trigger = snd_trident_trigger,
.pointer = snd_trident_playback_pointer,
};
/*---------------------------------------------------------------------------
snd_trident_pcm
Description: This routine registers the 4DWave device for PCM support.
Parameters: trident - pointer to target device class for 4DWave.
Returns: None
---------------------------------------------------------------------------*/
int __devinit snd_trident_pcm(struct snd_trident * trident,
int device, struct snd_pcm ** rpcm)
{
struct snd_pcm *pcm;
int err;
if (rpcm)
*rpcm = NULL;
if ((err = snd_pcm_new(trident->card, "trident_dx_nx", device, trident->ChanPCM, 1, &pcm)) < 0)
return err;
pcm->private_data = trident;
if (trident->tlb.entries) {
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_trident_nx_playback_ops);
} else {
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_trident_playback_ops);
}
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
trident->device != TRIDENT_DEVICE_ID_SI7018 ?
&snd_trident_capture_ops :
&snd_trident_si7018_capture_ops);
pcm->info_flags = 0;
pcm->dev_subclass = SNDRV_PCM_SUBCLASS_GENERIC_MIX;
strcpy(pcm->name, "Trident 4DWave");
trident->pcm = pcm;
if (trident->tlb.entries) {
struct snd_pcm_substream *substream;
for (substream = pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; substream; substream = substream->next)
snd_pcm_lib_preallocate_pages(substream, SNDRV_DMA_TYPE_DEV_SG,
snd_dma_pci_data(trident->pci),
64*1024, 128*1024);
snd_pcm_lib_preallocate_pages(pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream,
SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(trident->pci),
64*1024, 128*1024);
} else {
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(trident->pci), 64*1024, 128*1024);
}
if (rpcm)
*rpcm = pcm;
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_foldback_pcm
Description: This routine registers the 4DWave device for foldback PCM support.
Parameters: trident - pointer to target device class for 4DWave.
Returns: None
---------------------------------------------------------------------------*/
int __devinit snd_trident_foldback_pcm(struct snd_trident * trident,
int device, struct snd_pcm ** rpcm)
{
struct snd_pcm *foldback;
int err;
int num_chan = 3;
struct snd_pcm_substream *substream;
if (rpcm)
*rpcm = NULL;
if (trident->device == TRIDENT_DEVICE_ID_NX)
num_chan = 4;
if ((err = snd_pcm_new(trident->card, "trident_dx_nx", device, 0, num_chan, &foldback)) < 0)
return err;
foldback->private_data = trident;
if (trident->tlb.entries)
snd_pcm_set_ops(foldback, SNDRV_PCM_STREAM_CAPTURE, &snd_trident_nx_foldback_ops);
else
snd_pcm_set_ops(foldback, SNDRV_PCM_STREAM_CAPTURE, &snd_trident_foldback_ops);
foldback->info_flags = 0;
strcpy(foldback->name, "Trident 4DWave");
substream = foldback->streams[SNDRV_PCM_STREAM_CAPTURE].substream;
strcpy(substream->name, "Front Mixer");
substream = substream->next;
strcpy(substream->name, "Reverb Mixer");
substream = substream->next;
strcpy(substream->name, "Chorus Mixer");
if (num_chan == 4) {
substream = substream->next;
strcpy(substream->name, "Second AC'97 ADC");
}
trident->foldback = foldback;
if (trident->tlb.entries)
snd_pcm_lib_preallocate_pages_for_all(foldback, SNDRV_DMA_TYPE_DEV_SG,
snd_dma_pci_data(trident->pci), 0, 128*1024);
else
snd_pcm_lib_preallocate_pages_for_all(foldback, SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(trident->pci), 64*1024, 128*1024);
if (rpcm)
*rpcm = foldback;
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_spdif
Description: This routine registers the 4DWave-NX device for SPDIF support.
Parameters: trident - pointer to target device class for 4DWave-NX.
Returns: None
---------------------------------------------------------------------------*/
int __devinit snd_trident_spdif_pcm(struct snd_trident * trident,
int device, struct snd_pcm ** rpcm)
{
struct snd_pcm *spdif;
int err;
if (rpcm)
*rpcm = NULL;
if ((err = snd_pcm_new(trident->card, "trident_dx_nx IEC958", device, 1, 0, &spdif)) < 0)
return err;
spdif->private_data = trident;
if (trident->device != TRIDENT_DEVICE_ID_SI7018) {
snd_pcm_set_ops(spdif, SNDRV_PCM_STREAM_PLAYBACK, &snd_trident_spdif_ops);
} else {
snd_pcm_set_ops(spdif, SNDRV_PCM_STREAM_PLAYBACK, &snd_trident_spdif_7018_ops);
}
spdif->info_flags = 0;
strcpy(spdif->name, "Trident 4DWave IEC958");
trident->spdif = spdif;
snd_pcm_lib_preallocate_pages_for_all(spdif, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(trident->pci), 64*1024, 128*1024);
if (rpcm)
*rpcm = spdif;
return 0;
}
/*
* Mixer part
*/
/*---------------------------------------------------------------------------
snd_trident_spdif_control
Description: enable/disable S/PDIF out from ac97 mixer
---------------------------------------------------------------------------*/
#define snd_trident_spdif_control_info snd_ctl_boolean_mono_info
static int snd_trident_spdif_control_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_trident *trident = snd_kcontrol_chip(kcontrol);
unsigned char val;
spin_lock_irq(&trident->reg_lock);
val = trident->spdif_ctrl;
ucontrol->value.integer.value[0] = val == kcontrol->private_value;
spin_unlock_irq(&trident->reg_lock);
return 0;
}
static int snd_trident_spdif_control_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_trident *trident = snd_kcontrol_chip(kcontrol);
unsigned char val;
int change;
val = ucontrol->value.integer.value[0] ? (unsigned char) kcontrol->private_value : 0x00;
spin_lock_irq(&trident->reg_lock);
/* S/PDIF C Channel bits 0-31 : 48khz, SCMS disabled */
change = trident->spdif_ctrl != val;
trident->spdif_ctrl = val;
if (trident->device != TRIDENT_DEVICE_ID_SI7018) {
if ((inb(TRID_REG(trident, NX_SPCTRL_SPCSO + 3)) & 0x10) == 0) {
outl(trident->spdif_bits, TRID_REG(trident, NX_SPCSTATUS));
outb(trident->spdif_ctrl, TRID_REG(trident, NX_SPCTRL_SPCSO + 3));
}
} else {
if (trident->spdif == NULL) {
unsigned int temp;
outl(trident->spdif_bits, TRID_REG(trident, SI_SPDIF_CS));
temp = inl(TRID_REG(trident, SI_SERIAL_INTF_CTRL)) & ~SPDIF_EN;
if (val)
temp |= SPDIF_EN;
outl(temp, TRID_REG(trident, SI_SERIAL_INTF_CTRL));
}
}
spin_unlock_irq(&trident->reg_lock);
return change;
}
static struct snd_kcontrol_new snd_trident_spdif_control __devinitdata =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
.info = snd_trident_spdif_control_info,
.get = snd_trident_spdif_control_get,
.put = snd_trident_spdif_control_put,
.private_value = 0x28,
};
/*---------------------------------------------------------------------------
snd_trident_spdif_default
Description: put/get the S/PDIF default settings
---------------------------------------------------------------------------*/
static int snd_trident_spdif_default_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_trident_spdif_default_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_trident *trident = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&trident->reg_lock);
ucontrol->value.iec958.status[0] = (trident->spdif_bits >> 0) & 0xff;
ucontrol->value.iec958.status[1] = (trident->spdif_bits >> 8) & 0xff;
ucontrol->value.iec958.status[2] = (trident->spdif_bits >> 16) & 0xff;
ucontrol->value.iec958.status[3] = (trident->spdif_bits >> 24) & 0xff;
spin_unlock_irq(&trident->reg_lock);
return 0;
}
static int snd_trident_spdif_default_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_trident *trident = snd_kcontrol_chip(kcontrol);
unsigned int val;
int change;
val = (ucontrol->value.iec958.status[0] << 0) |
(ucontrol->value.iec958.status[1] << 8) |
(ucontrol->value.iec958.status[2] << 16) |
(ucontrol->value.iec958.status[3] << 24);
spin_lock_irq(&trident->reg_lock);
change = trident->spdif_bits != val;
trident->spdif_bits = val;
if (trident->device != TRIDENT_DEVICE_ID_SI7018) {
if ((inb(TRID_REG(trident, NX_SPCTRL_SPCSO + 3)) & 0x10) == 0)
outl(trident->spdif_bits, TRID_REG(trident, NX_SPCSTATUS));
} else {
if (trident->spdif == NULL)
outl(trident->spdif_bits, TRID_REG(trident, SI_SPDIF_CS));
}
spin_unlock_irq(&trident->reg_lock);
return change;
}
static struct snd_kcontrol_new snd_trident_spdif_default __devinitdata =
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
.info = snd_trident_spdif_default_info,
.get = snd_trident_spdif_default_get,
.put = snd_trident_spdif_default_put
};
/*---------------------------------------------------------------------------
snd_trident_spdif_mask
Description: put/get the S/PDIF mask
---------------------------------------------------------------------------*/
static int snd_trident_spdif_mask_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_trident_spdif_mask_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = 0xff;
ucontrol->value.iec958.status[1] = 0xff;
ucontrol->value.iec958.status[2] = 0xff;
ucontrol->value.iec958.status[3] = 0xff;
return 0;
}
static struct snd_kcontrol_new snd_trident_spdif_mask __devinitdata =
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK),
.info = snd_trident_spdif_mask_info,
.get = snd_trident_spdif_mask_get,
};
/*---------------------------------------------------------------------------
snd_trident_spdif_stream
Description: put/get the S/PDIF stream settings
---------------------------------------------------------------------------*/
static int snd_trident_spdif_stream_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_trident_spdif_stream_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_trident *trident = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&trident->reg_lock);
ucontrol->value.iec958.status[0] = (trident->spdif_pcm_bits >> 0) & 0xff;
ucontrol->value.iec958.status[1] = (trident->spdif_pcm_bits >> 8) & 0xff;
ucontrol->value.iec958.status[2] = (trident->spdif_pcm_bits >> 16) & 0xff;
ucontrol->value.iec958.status[3] = (trident->spdif_pcm_bits >> 24) & 0xff;
spin_unlock_irq(&trident->reg_lock);
return 0;
}
static int snd_trident_spdif_stream_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_trident *trident = snd_kcontrol_chip(kcontrol);
unsigned int val;
int change;
val = (ucontrol->value.iec958.status[0] << 0) |
(ucontrol->value.iec958.status[1] << 8) |
(ucontrol->value.iec958.status[2] << 16) |
(ucontrol->value.iec958.status[3] << 24);
spin_lock_irq(&trident->reg_lock);
change = trident->spdif_pcm_bits != val;
trident->spdif_pcm_bits = val;
if (trident->spdif != NULL) {
if (trident->device != TRIDENT_DEVICE_ID_SI7018) {
outl(trident->spdif_pcm_bits, TRID_REG(trident, NX_SPCSTATUS));
} else {
outl(trident->spdif_bits, TRID_REG(trident, SI_SPDIF_CS));
}
}
spin_unlock_irq(&trident->reg_lock);
return change;
}
static struct snd_kcontrol_new snd_trident_spdif_stream __devinitdata =
{
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
.info = snd_trident_spdif_stream_info,
.get = snd_trident_spdif_stream_get,
.put = snd_trident_spdif_stream_put
};
/*---------------------------------------------------------------------------
snd_trident_ac97_control
Description: enable/disable rear path for ac97
---------------------------------------------------------------------------*/
#define snd_trident_ac97_control_info snd_ctl_boolean_mono_info
static int snd_trident_ac97_control_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_trident *trident = snd_kcontrol_chip(kcontrol);
unsigned char val;
spin_lock_irq(&trident->reg_lock);
val = trident->ac97_ctrl = inl(TRID_REG(trident, NX_ACR0_AC97_COM_STAT));
ucontrol->value.integer.value[0] = (val & (1 << kcontrol->private_value)) ? 1 : 0;
spin_unlock_irq(&trident->reg_lock);
return 0;
}
static int snd_trident_ac97_control_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_trident *trident = snd_kcontrol_chip(kcontrol);
unsigned char val;
int change = 0;
spin_lock_irq(&trident->reg_lock);
val = trident->ac97_ctrl = inl(TRID_REG(trident, NX_ACR0_AC97_COM_STAT));
val &= ~(1 << kcontrol->private_value);
if (ucontrol->value.integer.value[0])
val |= 1 << kcontrol->private_value;
change = val != trident->ac97_ctrl;
trident->ac97_ctrl = val;
outl(trident->ac97_ctrl = val, TRID_REG(trident, NX_ACR0_AC97_COM_STAT));
spin_unlock_irq(&trident->reg_lock);
return change;
}
static struct snd_kcontrol_new snd_trident_ac97_rear_control __devinitdata =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Rear Path",
.info = snd_trident_ac97_control_info,
.get = snd_trident_ac97_control_get,
.put = snd_trident_ac97_control_put,
.private_value = 4,
};
/*---------------------------------------------------------------------------
snd_trident_vol_control
Description: wave & music volume control
---------------------------------------------------------------------------*/
static int snd_trident_vol_control_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 255;
return 0;
}
static int snd_trident_vol_control_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_trident *trident = snd_kcontrol_chip(kcontrol);
unsigned int val;
val = trident->musicvol_wavevol;
ucontrol->value.integer.value[0] = 255 - ((val >> kcontrol->private_value) & 0xff);
ucontrol->value.integer.value[1] = 255 - ((val >> (kcontrol->private_value + 8)) & 0xff);
return 0;
}
static const DECLARE_TLV_DB_SCALE(db_scale_gvol, -6375, 25, 0);
static int snd_trident_vol_control_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_trident *trident = snd_kcontrol_chip(kcontrol);
unsigned int val;
int change = 0;
spin_lock_irq(&trident->reg_lock);
val = trident->musicvol_wavevol;
val &= ~(0xffff << kcontrol->private_value);
val |= ((255 - (ucontrol->value.integer.value[0] & 0xff)) |
((255 - (ucontrol->value.integer.value[1] & 0xff)) << 8)) << kcontrol->private_value;
change = val != trident->musicvol_wavevol;
outl(trident->musicvol_wavevol = val, TRID_REG(trident, T4D_MUSICVOL_WAVEVOL));
spin_unlock_irq(&trident->reg_lock);
return change;
}
static struct snd_kcontrol_new snd_trident_vol_music_control __devinitdata =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Music Playback Volume",
.info = snd_trident_vol_control_info,
.get = snd_trident_vol_control_get,
.put = snd_trident_vol_control_put,
.private_value = 16,
.tlv = { .p = db_scale_gvol },
};
static struct snd_kcontrol_new snd_trident_vol_wave_control __devinitdata =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Wave Playback Volume",
.info = snd_trident_vol_control_info,
.get = snd_trident_vol_control_get,
.put = snd_trident_vol_control_put,
.private_value = 0,
.tlv = { .p = db_scale_gvol },
};
/*---------------------------------------------------------------------------
snd_trident_pcm_vol_control
Description: PCM front volume control
---------------------------------------------------------------------------*/
static int snd_trident_pcm_vol_control_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct snd_trident *trident = snd_kcontrol_chip(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 255;
if (trident->device == TRIDENT_DEVICE_ID_SI7018)
uinfo->value.integer.max = 1023;
return 0;
}
static int snd_trident_pcm_vol_control_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_trident *trident = snd_kcontrol_chip(kcontrol);
struct snd_trident_pcm_mixer *mix = &trident->pcm_mixer[snd_ctl_get_ioffnum(kcontrol, &ucontrol->id)];
if (trident->device == TRIDENT_DEVICE_ID_SI7018) {
ucontrol->value.integer.value[0] = 1023 - mix->vol;
} else {
ucontrol->value.integer.value[0] = 255 - (mix->vol>>2);
}
return 0;
}
static int snd_trident_pcm_vol_control_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_trident *trident = snd_kcontrol_chip(kcontrol);
struct snd_trident_pcm_mixer *mix = &trident->pcm_mixer[snd_ctl_get_ioffnum(kcontrol, &ucontrol->id)];
unsigned int val;
int change = 0;
if (trident->device == TRIDENT_DEVICE_ID_SI7018) {
val = 1023 - (ucontrol->value.integer.value[0] & 1023);
} else {
val = (255 - (ucontrol->value.integer.value[0] & 255)) << 2;
}
spin_lock_irq(&trident->reg_lock);
change = val != mix->vol;
mix->vol = val;
if (mix->voice != NULL)
snd_trident_write_vol_reg(trident, mix->voice, val);
spin_unlock_irq(&trident->reg_lock);
return change;
}
static struct snd_kcontrol_new snd_trident_pcm_vol_control __devinitdata =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "PCM Front Playback Volume",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
.count = 32,
.info = snd_trident_pcm_vol_control_info,
.get = snd_trident_pcm_vol_control_get,
.put = snd_trident_pcm_vol_control_put,
/* FIXME: no tlv yet */
};
/*---------------------------------------------------------------------------
snd_trident_pcm_pan_control
Description: PCM front pan control
---------------------------------------------------------------------------*/
static int snd_trident_pcm_pan_control_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 127;
return 0;
}
static int snd_trident_pcm_pan_control_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_trident *trident = snd_kcontrol_chip(kcontrol);
struct snd_trident_pcm_mixer *mix = &trident->pcm_mixer[snd_ctl_get_ioffnum(kcontrol, &ucontrol->id)];
ucontrol->value.integer.value[0] = mix->pan;
if (ucontrol->value.integer.value[0] & 0x40) {
ucontrol->value.integer.value[0] = (0x3f - (ucontrol->value.integer.value[0] & 0x3f));
} else {
ucontrol->value.integer.value[0] |= 0x40;
}
return 0;
}
static int snd_trident_pcm_pan_control_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_trident *trident = snd_kcontrol_chip(kcontrol);
struct snd_trident_pcm_mixer *mix = &trident->pcm_mixer[snd_ctl_get_ioffnum(kcontrol, &ucontrol->id)];
unsigned char val;
int change = 0;
if (ucontrol->value.integer.value[0] & 0x40)
val = ucontrol->value.integer.value[0] & 0x3f;
else
val = (0x3f - (ucontrol->value.integer.value[0] & 0x3f)) | 0x40;
spin_lock_irq(&trident->reg_lock);
change = val != mix->pan;
mix->pan = val;
if (mix->voice != NULL)
snd_trident_write_pan_reg(trident, mix->voice, val);
spin_unlock_irq(&trident->reg_lock);
return change;
}
static struct snd_kcontrol_new snd_trident_pcm_pan_control __devinitdata =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "PCM Pan Playback Control",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
.count = 32,
.info = snd_trident_pcm_pan_control_info,
.get = snd_trident_pcm_pan_control_get,
.put = snd_trident_pcm_pan_control_put,
};
/*---------------------------------------------------------------------------
snd_trident_pcm_rvol_control
Description: PCM reverb volume control
---------------------------------------------------------------------------*/
static int snd_trident_pcm_rvol_control_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 127;
return 0;
}
static int snd_trident_pcm_rvol_control_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_trident *trident = snd_kcontrol_chip(kcontrol);
struct snd_trident_pcm_mixer *mix = &trident->pcm_mixer[snd_ctl_get_ioffnum(kcontrol, &ucontrol->id)];
ucontrol->value.integer.value[0] = 127 - mix->rvol;
return 0;
}
static int snd_trident_pcm_rvol_control_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_trident *trident = snd_kcontrol_chip(kcontrol);
struct snd_trident_pcm_mixer *mix = &trident->pcm_mixer[snd_ctl_get_ioffnum(kcontrol, &ucontrol->id)];
unsigned short val;
int change = 0;
val = 0x7f - (ucontrol->value.integer.value[0] & 0x7f);
spin_lock_irq(&trident->reg_lock);
change = val != mix->rvol;
mix->rvol = val;
if (mix->voice != NULL)
snd_trident_write_rvol_reg(trident, mix->voice, val);
spin_unlock_irq(&trident->reg_lock);
return change;
}
static const DECLARE_TLV_DB_SCALE(db_scale_crvol, -3175, 25, 1);
static struct snd_kcontrol_new snd_trident_pcm_rvol_control __devinitdata =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "PCM Reverb Playback Volume",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
.count = 32,
.info = snd_trident_pcm_rvol_control_info,
.get = snd_trident_pcm_rvol_control_get,
.put = snd_trident_pcm_rvol_control_put,
.tlv = { .p = db_scale_crvol },
};
/*---------------------------------------------------------------------------
snd_trident_pcm_cvol_control
Description: PCM chorus volume control
---------------------------------------------------------------------------*/
static int snd_trident_pcm_cvol_control_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 127;
return 0;
}
static int snd_trident_pcm_cvol_control_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_trident *trident = snd_kcontrol_chip(kcontrol);
struct snd_trident_pcm_mixer *mix = &trident->pcm_mixer[snd_ctl_get_ioffnum(kcontrol, &ucontrol->id)];
ucontrol->value.integer.value[0] = 127 - mix->cvol;
return 0;
}
static int snd_trident_pcm_cvol_control_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_trident *trident = snd_kcontrol_chip(kcontrol);
struct snd_trident_pcm_mixer *mix = &trident->pcm_mixer[snd_ctl_get_ioffnum(kcontrol, &ucontrol->id)];
unsigned short val;
int change = 0;
val = 0x7f - (ucontrol->value.integer.value[0] & 0x7f);
spin_lock_irq(&trident->reg_lock);
change = val != mix->cvol;
mix->cvol = val;
if (mix->voice != NULL)
snd_trident_write_cvol_reg(trident, mix->voice, val);
spin_unlock_irq(&trident->reg_lock);
return change;
}
static struct snd_kcontrol_new snd_trident_pcm_cvol_control __devinitdata =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "PCM Chorus Playback Volume",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
.count = 32,
.info = snd_trident_pcm_cvol_control_info,
.get = snd_trident_pcm_cvol_control_get,
.put = snd_trident_pcm_cvol_control_put,
.tlv = { .p = db_scale_crvol },
};
static void snd_trident_notify_pcm_change1(struct snd_card *card,
struct snd_kcontrol *kctl,
int num, int activate)
{
struct snd_ctl_elem_id id;
if (! kctl)
return;
if (activate)
kctl->vd[num].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
else
kctl->vd[num].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE |
SNDRV_CTL_EVENT_MASK_INFO,
snd_ctl_build_ioff(&id, kctl, num));
}
static void snd_trident_notify_pcm_change(struct snd_trident *trident,
struct snd_trident_pcm_mixer *tmix,
int num, int activate)
{
snd_trident_notify_pcm_change1(trident->card, trident->ctl_vol, num, activate);
snd_trident_notify_pcm_change1(trident->card, trident->ctl_pan, num, activate);
snd_trident_notify_pcm_change1(trident->card, trident->ctl_rvol, num, activate);
snd_trident_notify_pcm_change1(trident->card, trident->ctl_cvol, num, activate);
}
static int snd_trident_pcm_mixer_build(struct snd_trident *trident,
struct snd_trident_voice *voice,
struct snd_pcm_substream *substream)
{
struct snd_trident_pcm_mixer *tmix;
if (snd_BUG_ON(!trident || !voice || !substream))
return -EINVAL;
tmix = &trident->pcm_mixer[substream->number];
tmix->voice = voice;
tmix->vol = T4D_DEFAULT_PCM_VOL;
tmix->pan = T4D_DEFAULT_PCM_PAN;
tmix->rvol = T4D_DEFAULT_PCM_RVOL;
tmix->cvol = T4D_DEFAULT_PCM_CVOL;
snd_trident_notify_pcm_change(trident, tmix, substream->number, 1);
return 0;
}
static int snd_trident_pcm_mixer_free(struct snd_trident *trident, struct snd_trident_voice *voice, struct snd_pcm_substream *substream)
{
struct snd_trident_pcm_mixer *tmix;
if (snd_BUG_ON(!trident || !substream))
return -EINVAL;
tmix = &trident->pcm_mixer[substream->number];
tmix->voice = NULL;
snd_trident_notify_pcm_change(trident, tmix, substream->number, 0);
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_mixer
Description: This routine registers the 4DWave device for mixer support.
Parameters: trident - pointer to target device class for 4DWave.
Returns: None
---------------------------------------------------------------------------*/
static int __devinit snd_trident_mixer(struct snd_trident * trident, int pcm_spdif_device)
{
struct snd_ac97_template _ac97;
struct snd_card *card = trident->card;
struct snd_kcontrol *kctl;
struct snd_ctl_elem_value *uctl;
int idx, err, retries = 2;
static struct snd_ac97_bus_ops ops = {
.write = snd_trident_codec_write,
.read = snd_trident_codec_read,
};
uctl = kzalloc(sizeof(*uctl), GFP_KERNEL);
if (!uctl)
return -ENOMEM;
if ((err = snd_ac97_bus(trident->card, 0, &ops, NULL, &trident->ac97_bus)) < 0)
goto __out;
memset(&_ac97, 0, sizeof(_ac97));
_ac97.private_data = trident;
trident->ac97_detect = 1;
__again:
if ((err = snd_ac97_mixer(trident->ac97_bus, &_ac97, &trident->ac97)) < 0) {
if (trident->device == TRIDENT_DEVICE_ID_SI7018) {
if ((err = snd_trident_sis_reset(trident)) < 0)
goto __out;
if (retries-- > 0)
goto __again;
err = -EIO;
}
goto __out;
}
/* secondary codec? */
if (trident->device == TRIDENT_DEVICE_ID_SI7018 &&
(inl(TRID_REG(trident, SI_SERIAL_INTF_CTRL)) & SI_AC97_PRIMARY_READY) != 0) {
_ac97.num = 1;
err = snd_ac97_mixer(trident->ac97_bus, &_ac97, &trident->ac97_sec);
if (err < 0)
snd_printk(KERN_ERR "SI7018: the secondary codec - invalid access\n");
#if 0 // only for my testing purpose --jk
{
struct snd_ac97 *mc97;
err = snd_ac97_modem(trident->card, &_ac97, &mc97);
if (err < 0)
snd_printk(KERN_ERR "snd_ac97_modem returned error %i\n", err);
}
#endif
}
trident->ac97_detect = 0;
if (trident->device != TRIDENT_DEVICE_ID_SI7018) {
if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_trident_vol_wave_control, trident))) < 0)
goto __out;
kctl->put(kctl, uctl);
if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_trident_vol_music_control, trident))) < 0)
goto __out;
kctl->put(kctl, uctl);
outl(trident->musicvol_wavevol = 0x00000000, TRID_REG(trident, T4D_MUSICVOL_WAVEVOL));
} else {
outl(trident->musicvol_wavevol = 0xffff0000, TRID_REG(trident, T4D_MUSICVOL_WAVEVOL));
}
for (idx = 0; idx < 32; idx++) {
struct snd_trident_pcm_mixer *tmix;
tmix = &trident->pcm_mixer[idx];
tmix->voice = NULL;
}
if ((trident->ctl_vol = snd_ctl_new1(&snd_trident_pcm_vol_control, trident)) == NULL)
goto __nomem;
if ((err = snd_ctl_add(card, trident->ctl_vol)))
goto __out;
if ((trident->ctl_pan = snd_ctl_new1(&snd_trident_pcm_pan_control, trident)) == NULL)
goto __nomem;
if ((err = snd_ctl_add(card, trident->ctl_pan)))
goto __out;
if ((trident->ctl_rvol = snd_ctl_new1(&snd_trident_pcm_rvol_control, trident)) == NULL)
goto __nomem;
if ((err = snd_ctl_add(card, trident->ctl_rvol)))
goto __out;
if ((trident->ctl_cvol = snd_ctl_new1(&snd_trident_pcm_cvol_control, trident)) == NULL)
goto __nomem;
if ((err = snd_ctl_add(card, trident->ctl_cvol)))
goto __out;
if (trident->device == TRIDENT_DEVICE_ID_NX) {
if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_trident_ac97_rear_control, trident))) < 0)
goto __out;
kctl->put(kctl, uctl);
}
if (trident->device == TRIDENT_DEVICE_ID_NX || trident->device == TRIDENT_DEVICE_ID_SI7018) {
kctl = snd_ctl_new1(&snd_trident_spdif_control, trident);
if (kctl == NULL) {
err = -ENOMEM;
goto __out;
}
if (trident->ac97->ext_id & AC97_EI_SPDIF)
kctl->id.index++;
if (trident->ac97_sec && (trident->ac97_sec->ext_id & AC97_EI_SPDIF))
kctl->id.index++;
idx = kctl->id.index;
if ((err = snd_ctl_add(card, kctl)) < 0)
goto __out;
kctl->put(kctl, uctl);
kctl = snd_ctl_new1(&snd_trident_spdif_default, trident);
if (kctl == NULL) {
err = -ENOMEM;
goto __out;
}
kctl->id.index = idx;
kctl->id.device = pcm_spdif_device;
if ((err = snd_ctl_add(card, kctl)) < 0)
goto __out;
kctl = snd_ctl_new1(&snd_trident_spdif_mask, trident);
if (kctl == NULL) {
err = -ENOMEM;
goto __out;
}
kctl->id.index = idx;
kctl->id.device = pcm_spdif_device;
if ((err = snd_ctl_add(card, kctl)) < 0)
goto __out;
kctl = snd_ctl_new1(&snd_trident_spdif_stream, trident);
if (kctl == NULL) {
err = -ENOMEM;
goto __out;
}
kctl->id.index = idx;
kctl->id.device = pcm_spdif_device;
if ((err = snd_ctl_add(card, kctl)) < 0)
goto __out;
trident->spdif_pcm_ctl = kctl;
}
err = 0;
goto __out;
__nomem:
err = -ENOMEM;
__out:
kfree(uctl);
return err;
}
/*
* gameport interface
*/
#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
static unsigned char snd_trident_gameport_read(struct gameport *gameport)
{
struct snd_trident *chip = gameport_get_port_data(gameport);
if (snd_BUG_ON(!chip))
return 0;
return inb(TRID_REG(chip, GAMEPORT_LEGACY));
}
static void snd_trident_gameport_trigger(struct gameport *gameport)
{
struct snd_trident *chip = gameport_get_port_data(gameport);
if (snd_BUG_ON(!chip))
return;
outb(0xff, TRID_REG(chip, GAMEPORT_LEGACY));
}
static int snd_trident_gameport_cooked_read(struct gameport *gameport, int *axes, int *buttons)
{
struct snd_trident *chip = gameport_get_port_data(gameport);
int i;
if (snd_BUG_ON(!chip))
return 0;
*buttons = (~inb(TRID_REG(chip, GAMEPORT_LEGACY)) >> 4) & 0xf;
for (i = 0; i < 4; i++) {
axes[i] = inw(TRID_REG(chip, GAMEPORT_AXES + i * 2));
if (axes[i] == 0xffff) axes[i] = -1;
}
return 0;
}
static int snd_trident_gameport_open(struct gameport *gameport, int mode)
{
struct snd_trident *chip = gameport_get_port_data(gameport);
if (snd_BUG_ON(!chip))
return 0;
switch (mode) {
case GAMEPORT_MODE_COOKED:
outb(GAMEPORT_MODE_ADC, TRID_REG(chip, GAMEPORT_GCR));
msleep(20);
return 0;
case GAMEPORT_MODE_RAW:
outb(0, TRID_REG(chip, GAMEPORT_GCR));
return 0;
default:
return -1;
}
}
int __devinit snd_trident_create_gameport(struct snd_trident *chip)
{
struct gameport *gp;
chip->gameport = gp = gameport_allocate_port();
if (!gp) {
printk(KERN_ERR "trident: cannot allocate memory for gameport\n");
return -ENOMEM;
}
gameport_set_name(gp, "Trident 4DWave");
gameport_set_phys(gp, "pci%s/gameport0", pci_name(chip->pci));
gameport_set_dev_parent(gp, &chip->pci->dev);
gameport_set_port_data(gp, chip);
gp->fuzz = 64;
gp->read = snd_trident_gameport_read;
gp->trigger = snd_trident_gameport_trigger;
gp->cooked_read = snd_trident_gameport_cooked_read;
gp->open = snd_trident_gameport_open;
gameport_register_port(gp);
return 0;
}
static inline void snd_trident_free_gameport(struct snd_trident *chip)
{
if (chip->gameport) {
gameport_unregister_port(chip->gameport);
chip->gameport = NULL;
}
}
#else
int __devinit snd_trident_create_gameport(struct snd_trident *chip) { return -ENOSYS; }
static inline void snd_trident_free_gameport(struct snd_trident *chip) { }
#endif /* CONFIG_GAMEPORT */
/*
* delay for 1 tick
*/
static inline void do_delay(struct snd_trident *chip)
{
schedule_timeout_uninterruptible(1);
}
/*
* SiS reset routine
*/
static int snd_trident_sis_reset(struct snd_trident *trident)
{
unsigned long end_time;
unsigned int i;
int r;
r = trident->in_suspend ? 0 : 2; /* count of retries */
__si7018_retry:
pci_write_config_byte(trident->pci, 0x46, 0x04); /* SOFTWARE RESET */
udelay(100);
pci_write_config_byte(trident->pci, 0x46, 0x00);
udelay(100);
/* disable AC97 GPIO interrupt */
outb(0x00, TRID_REG(trident, SI_AC97_GPIO));
/* initialize serial interface, force cold reset */
i = PCMOUT|SURROUT|CENTEROUT|LFEOUT|SECONDARY_ID|COLD_RESET;
outl(i, TRID_REG(trident, SI_SERIAL_INTF_CTRL));
udelay(1000);
/* remove cold reset */
i &= ~COLD_RESET;
outl(i, TRID_REG(trident, SI_SERIAL_INTF_CTRL));
udelay(2000);
/* wait, until the codec is ready */
end_time = (jiffies + (HZ * 3) / 4) + 1;
do {
if ((inl(TRID_REG(trident, SI_SERIAL_INTF_CTRL)) & SI_AC97_PRIMARY_READY) != 0)
goto __si7018_ok;
do_delay(trident);
} while (time_after_eq(end_time, jiffies));
snd_printk(KERN_ERR "AC'97 codec ready error [0x%x]\n", inl(TRID_REG(trident, SI_SERIAL_INTF_CTRL)));
if (r-- > 0) {
end_time = jiffies + HZ;
do {
do_delay(trident);
} while (time_after_eq(end_time, jiffies));
goto __si7018_retry;
}
__si7018_ok:
/* wait for the second codec */
do {
if ((inl(TRID_REG(trident, SI_SERIAL_INTF_CTRL)) & SI_AC97_SECONDARY_READY) != 0)
break;
do_delay(trident);
} while (time_after_eq(end_time, jiffies));
/* enable 64 channel mode */
outl(BANK_B_EN, TRID_REG(trident, T4D_LFO_GC_CIR));
return 0;
}
/*
* /proc interface
*/
static void snd_trident_proc_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct snd_trident *trident = entry->private_data;
char *s;
switch (trident->device) {
case TRIDENT_DEVICE_ID_SI7018:
s = "SiS 7018 Audio";
break;
case TRIDENT_DEVICE_ID_DX:
s = "Trident 4DWave PCI DX";
break;
case TRIDENT_DEVICE_ID_NX:
s = "Trident 4DWave PCI NX";
break;
default:
s = "???";
}
snd_iprintf(buffer, "%s\n\n", s);
snd_iprintf(buffer, "Spurious IRQs : %d\n", trident->spurious_irq_count);
snd_iprintf(buffer, "Spurious IRQ dlta: %d\n", trident->spurious_irq_max_delta);
if (trident->device == TRIDENT_DEVICE_ID_NX || trident->device == TRIDENT_DEVICE_ID_SI7018)
snd_iprintf(buffer, "IEC958 Mixer Out : %s\n", trident->spdif_ctrl == 0x28 ? "on" : "off");
if (trident->device == TRIDENT_DEVICE_ID_NX) {
snd_iprintf(buffer, "Rear Speakers : %s\n", trident->ac97_ctrl & 0x00000010 ? "on" : "off");
if (trident->tlb.entries) {
snd_iprintf(buffer,"\nVirtual Memory\n");
snd_iprintf(buffer, "Memory Maximum : %d\n", trident->tlb.memhdr->size);
snd_iprintf(buffer, "Memory Used : %d\n", trident->tlb.memhdr->used);
snd_iprintf(buffer, "Memory Free : %d\n", snd_util_mem_avail(trident->tlb.memhdr));
}
}
}
static void __devinit snd_trident_proc_init(struct snd_trident * trident)
{
struct snd_info_entry *entry;
const char *s = "trident";
if (trident->device == TRIDENT_DEVICE_ID_SI7018)
s = "sis7018";
if (! snd_card_proc_new(trident->card, s, &entry))
snd_info_set_text_ops(entry, trident, snd_trident_proc_read);
}
static int snd_trident_dev_free(struct snd_device *device)
{
struct snd_trident *trident = device->device_data;
return snd_trident_free(trident);
}
/*---------------------------------------------------------------------------
snd_trident_tlb_alloc
Description: Allocate and set up the TLB page table on 4D NX.
Each entry has 4 bytes (physical PCI address).
Parameters: trident - pointer to target device class for 4DWave.
Returns: 0 or negative error code
---------------------------------------------------------------------------*/
static int __devinit snd_trident_tlb_alloc(struct snd_trident *trident)
{
int i;
/* TLB array must be aligned to 16kB !!! so we allocate
32kB region and correct offset when necessary */
if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(trident->pci),
2 * SNDRV_TRIDENT_MAX_PAGES * 4, &trident->tlb.buffer) < 0) {
snd_printk(KERN_ERR "trident: unable to allocate TLB buffer\n");
return -ENOMEM;
}
trident->tlb.entries = (unsigned int*)ALIGN((unsigned long)trident->tlb.buffer.area, SNDRV_TRIDENT_MAX_PAGES * 4);
trident->tlb.entries_dmaaddr = ALIGN(trident->tlb.buffer.addr, SNDRV_TRIDENT_MAX_PAGES * 4);
/* allocate shadow TLB page table (virtual addresses) */
trident->tlb.shadow_entries = vmalloc(SNDRV_TRIDENT_MAX_PAGES*sizeof(unsigned long));
if (trident->tlb.shadow_entries == NULL) {
snd_printk(KERN_ERR "trident: unable to allocate shadow TLB entries\n");
return -ENOMEM;
}
/* allocate and setup silent page and initialise TLB entries */
if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(trident->pci),
SNDRV_TRIDENT_PAGE_SIZE, &trident->tlb.silent_page) < 0) {
snd_printk(KERN_ERR "trident: unable to allocate silent page\n");
return -ENOMEM;
}
memset(trident->tlb.silent_page.area, 0, SNDRV_TRIDENT_PAGE_SIZE);
for (i = 0; i < SNDRV_TRIDENT_MAX_PAGES; i++) {
trident->tlb.entries[i] = cpu_to_le32(trident->tlb.silent_page.addr & ~(SNDRV_TRIDENT_PAGE_SIZE-1));
trident->tlb.shadow_entries[i] = (unsigned long)trident->tlb.silent_page.area;
}
/* use emu memory block manager code to manage tlb page allocation */
trident->tlb.memhdr = snd_util_memhdr_new(SNDRV_TRIDENT_PAGE_SIZE * SNDRV_TRIDENT_MAX_PAGES);
if (trident->tlb.memhdr == NULL)
return -ENOMEM;
trident->tlb.memhdr->block_extra_size = sizeof(struct snd_trident_memblk_arg);
return 0;
}
/*
* initialize 4D DX chip
*/
static void snd_trident_stop_all_voices(struct snd_trident *trident)
{
outl(0xffffffff, TRID_REG(trident, T4D_STOP_A));
outl(0xffffffff, TRID_REG(trident, T4D_STOP_B));
outl(0, TRID_REG(trident, T4D_AINTEN_A));
outl(0, TRID_REG(trident, T4D_AINTEN_B));
}
static int snd_trident_4d_dx_init(struct snd_trident *trident)
{
struct pci_dev *pci = trident->pci;
unsigned long end_time;
/* reset the legacy configuration and whole audio/wavetable block */
pci_write_config_dword(pci, 0x40, 0); /* DDMA */
pci_write_config_byte(pci, 0x44, 0); /* ports */
pci_write_config_byte(pci, 0x45, 0); /* Legacy DMA */
pci_write_config_byte(pci, 0x46, 4); /* reset */
udelay(100);
pci_write_config_byte(pci, 0x46, 0); /* release reset */
udelay(100);
/* warm reset of the AC'97 codec */
outl(0x00000001, TRID_REG(trident, DX_ACR2_AC97_COM_STAT));
udelay(100);
outl(0x00000000, TRID_REG(trident, DX_ACR2_AC97_COM_STAT));
/* DAC on, disable SB IRQ and try to force ADC valid signal */
trident->ac97_ctrl = 0x0000004a;
outl(trident->ac97_ctrl, TRID_REG(trident, DX_ACR2_AC97_COM_STAT));
/* wait, until the codec is ready */
end_time = (jiffies + (HZ * 3) / 4) + 1;
do {
if ((inl(TRID_REG(trident, DX_ACR2_AC97_COM_STAT)) & 0x0010) != 0)
goto __dx_ok;
do_delay(trident);
} while (time_after_eq(end_time, jiffies));
snd_printk(KERN_ERR "AC'97 codec ready error\n");
return -EIO;
__dx_ok:
snd_trident_stop_all_voices(trident);
return 0;
}
/*
* initialize 4D NX chip
*/
static int snd_trident_4d_nx_init(struct snd_trident *trident)
{
struct pci_dev *pci = trident->pci;
unsigned long end_time;
/* reset the legacy configuration and whole audio/wavetable block */
pci_write_config_dword(pci, 0x40, 0); /* DDMA */
pci_write_config_byte(pci, 0x44, 0); /* ports */
pci_write_config_byte(pci, 0x45, 0); /* Legacy DMA */
pci_write_config_byte(pci, 0x46, 1); /* reset */
udelay(100);
pci_write_config_byte(pci, 0x46, 0); /* release reset */
udelay(100);
/* warm reset of the AC'97 codec */
outl(0x00000001, TRID_REG(trident, NX_ACR0_AC97_COM_STAT));
udelay(100);
outl(0x00000000, TRID_REG(trident, NX_ACR0_AC97_COM_STAT));
/* wait, until the codec is ready */
end_time = (jiffies + (HZ * 3) / 4) + 1;
do {
if ((inl(TRID_REG(trident, NX_ACR0_AC97_COM_STAT)) & 0x0008) != 0)
goto __nx_ok;
do_delay(trident);
} while (time_after_eq(end_time, jiffies));
snd_printk(KERN_ERR "AC'97 codec ready error [0x%x]\n", inl(TRID_REG(trident, NX_ACR0_AC97_COM_STAT)));
return -EIO;
__nx_ok:
/* DAC on */
trident->ac97_ctrl = 0x00000002;
outl(trident->ac97_ctrl, TRID_REG(trident, NX_ACR0_AC97_COM_STAT));
/* disable SB IRQ */
outl(NX_SB_IRQ_DISABLE, TRID_REG(trident, T4D_MISCINT));
snd_trident_stop_all_voices(trident);
if (trident->tlb.entries != NULL) {
unsigned int i;
/* enable virtual addressing via TLB */
i = trident->tlb.entries_dmaaddr;
i |= 0x00000001;
outl(i, TRID_REG(trident, NX_TLBC));
} else {
outl(0, TRID_REG(trident, NX_TLBC));
}
/* initialize S/PDIF */
outl(trident->spdif_bits, TRID_REG(trident, NX_SPCSTATUS));
outb(trident->spdif_ctrl, TRID_REG(trident, NX_SPCTRL_SPCSO + 3));
return 0;
}
/*
* initialize sis7018 chip
*/
static int snd_trident_sis_init(struct snd_trident *trident)
{
int err;
if ((err = snd_trident_sis_reset(trident)) < 0)
return err;
snd_trident_stop_all_voices(trident);
/* initialize S/PDIF */
outl(trident->spdif_bits, TRID_REG(trident, SI_SPDIF_CS));
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_create
Description: This routine will create the device specific class for
the 4DWave card. It will also perform basic initialization.
Parameters: card - which card to create
pci - interface to PCI bus resource info
dma1ptr - playback dma buffer
dma2ptr - capture dma buffer
irqptr - interrupt resource info
Returns: 4DWave device class private data
---------------------------------------------------------------------------*/
int __devinit snd_trident_create(struct snd_card *card,
struct pci_dev *pci,
int pcm_streams,
int pcm_spdif_device,
int max_wavetable_size,
struct snd_trident ** rtrident)
{
struct snd_trident *trident;
int i, err;
struct snd_trident_voice *voice;
struct snd_trident_pcm_mixer *tmix;
static struct snd_device_ops ops = {
.dev_free = snd_trident_dev_free,
};
*rtrident = NULL;
/* enable PCI device */
if ((err = pci_enable_device(pci)) < 0)
return err;
/* check, if we can restrict PCI DMA transfers to 30 bits */
if (pci_set_dma_mask(pci, DMA_BIT_MASK(30)) < 0 ||
pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(30)) < 0) {
snd_printk(KERN_ERR "architecture does not support 30bit PCI busmaster DMA\n");
pci_disable_device(pci);
return -ENXIO;
}
trident = kzalloc(sizeof(*trident), GFP_KERNEL);
if (trident == NULL) {
pci_disable_device(pci);
return -ENOMEM;
}
trident->device = (pci->vendor << 16) | pci->device;
trident->card = card;
trident->pci = pci;
spin_lock_init(&trident->reg_lock);
spin_lock_init(&trident->event_lock);
spin_lock_init(&trident->voice_alloc);
if (pcm_streams < 1)
pcm_streams = 1;
if (pcm_streams > 32)
pcm_streams = 32;
trident->ChanPCM = pcm_streams;
if (max_wavetable_size < 0 )
max_wavetable_size = 0;
trident->synth.max_size = max_wavetable_size * 1024;
trident->irq = -1;
trident->midi_port = TRID_REG(trident, T4D_MPU401_BASE);
pci_set_master(pci);
if ((err = pci_request_regions(pci, "Trident Audio")) < 0) {
kfree(trident);
pci_disable_device(pci);
return err;
}
trident->port = pci_resource_start(pci, 0);
if (request_irq(pci->irq, snd_trident_interrupt, IRQF_SHARED,
KBUILD_MODNAME, trident)) {
snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
snd_trident_free(trident);
return -EBUSY;
}
trident->irq = pci->irq;
/* allocate 16k-aligned TLB for NX cards */
trident->tlb.entries = NULL;
trident->tlb.buffer.area = NULL;
if (trident->device == TRIDENT_DEVICE_ID_NX) {
if ((err = snd_trident_tlb_alloc(trident)) < 0) {
snd_trident_free(trident);
return err;
}
}
trident->spdif_bits = trident->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF;
/* initialize chip */
switch (trident->device) {
case TRIDENT_DEVICE_ID_DX:
err = snd_trident_4d_dx_init(trident);
break;
case TRIDENT_DEVICE_ID_NX:
err = snd_trident_4d_nx_init(trident);
break;
case TRIDENT_DEVICE_ID_SI7018:
err = snd_trident_sis_init(trident);
break;
default:
snd_BUG();
break;
}
if (err < 0) {
snd_trident_free(trident);
return err;
}
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, trident, &ops)) < 0) {
snd_trident_free(trident);
return err;
}
if ((err = snd_trident_mixer(trident, pcm_spdif_device)) < 0)
return err;
/* initialise synth voices */
for (i = 0; i < 64; i++) {
voice = &trident->synth.voices[i];
voice->number = i;
voice->trident = trident;
}
/* initialize pcm mixer entries */
for (i = 0; i < 32; i++) {
tmix = &trident->pcm_mixer[i];
tmix->vol = T4D_DEFAULT_PCM_VOL;
tmix->pan = T4D_DEFAULT_PCM_PAN;
tmix->rvol = T4D_DEFAULT_PCM_RVOL;
tmix->cvol = T4D_DEFAULT_PCM_CVOL;
}
snd_trident_enable_eso(trident);
snd_trident_proc_init(trident);
snd_card_set_dev(card, &pci->dev);
*rtrident = trident;
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_free
Description: This routine will free the device specific class for
the 4DWave card.
Parameters: trident - device specific private data for 4DWave card
Returns: None.
---------------------------------------------------------------------------*/
static int snd_trident_free(struct snd_trident *trident)
{
snd_trident_free_gameport(trident);
snd_trident_disable_eso(trident);
// Disable S/PDIF out
if (trident->device == TRIDENT_DEVICE_ID_NX)
outb(0x00, TRID_REG(trident, NX_SPCTRL_SPCSO + 3));
else if (trident->device == TRIDENT_DEVICE_ID_SI7018) {
outl(0, TRID_REG(trident, SI_SERIAL_INTF_CTRL));
}
if (trident->irq >= 0)
free_irq(trident->irq, trident);
if (trident->tlb.buffer.area) {
outl(0, TRID_REG(trident, NX_TLBC));
if (trident->tlb.memhdr)
snd_util_memhdr_free(trident->tlb.memhdr);
if (trident->tlb.silent_page.area)
snd_dma_free_pages(&trident->tlb.silent_page);
vfree(trident->tlb.shadow_entries);
snd_dma_free_pages(&trident->tlb.buffer);
}
pci_release_regions(trident->pci);
pci_disable_device(trident->pci);
kfree(trident);
return 0;
}
/*---------------------------------------------------------------------------
snd_trident_interrupt
Description: ISR for Trident 4DWave device
Parameters: trident - device specific private data for 4DWave card
Problems: It seems that Trident chips generates interrupts more than
one time in special cases. The spurious interrupts are
detected via sample timer (T4D_STIMER) and computing
corresponding delta value. The limits are detected with
the method try & fail so it is possible that it won't
work on all computers. [jaroslav]
Returns: None.
---------------------------------------------------------------------------*/
static irqreturn_t snd_trident_interrupt(int irq, void *dev_id)
{
struct snd_trident *trident = dev_id;
unsigned int audio_int, chn_int, stimer, channel, mask, tmp;
int delta;
struct snd_trident_voice *voice;
audio_int = inl(TRID_REG(trident, T4D_MISCINT));
if ((audio_int & (ADDRESS_IRQ|MPU401_IRQ)) == 0)
return IRQ_NONE;
if (audio_int & ADDRESS_IRQ) {
// get interrupt status for all channels
spin_lock(&trident->reg_lock);
stimer = inl(TRID_REG(trident, T4D_STIMER)) & 0x00ffffff;
chn_int = inl(TRID_REG(trident, T4D_AINT_A));
if (chn_int == 0)
goto __skip1;
outl(chn_int, TRID_REG(trident, T4D_AINT_A)); /* ack */
__skip1:
chn_int = inl(TRID_REG(trident, T4D_AINT_B));
if (chn_int == 0)
goto __skip2;
for (channel = 63; channel >= 32; channel--) {
mask = 1 << (channel&0x1f);
if ((chn_int & mask) == 0)
continue;
voice = &trident->synth.voices[channel];
if (!voice->pcm || voice->substream == NULL) {
outl(mask, TRID_REG(trident, T4D_STOP_B));
continue;
}
delta = (int)stimer - (int)voice->stimer;
if (delta < 0)
delta = -delta;
if ((unsigned int)delta < voice->spurious_threshold) {
/* do some statistics here */
trident->spurious_irq_count++;
if (trident->spurious_irq_max_delta < (unsigned int)delta)
trident->spurious_irq_max_delta = delta;
continue;
}
voice->stimer = stimer;
if (voice->isync) {
if (!voice->isync3) {
tmp = inw(TRID_REG(trident, T4D_SBBL_SBCL));
if (trident->bDMAStart & 0x40)
tmp >>= 1;
if (tmp > 0)
tmp = voice->isync_max - tmp;
} else {
tmp = inl(TRID_REG(trident, NX_SPCTRL_SPCSO)) & 0x00ffffff;
}
if (tmp < voice->isync_mark) {
if (tmp > 0x10)
tmp = voice->isync_ESO - 7;
else
tmp = voice->isync_ESO + 2;
/* update ESO for IRQ voice to preserve sync */
snd_trident_stop_voice(trident, voice->number);
snd_trident_write_eso_reg(trident, voice, tmp);
snd_trident_start_voice(trident, voice->number);
}
} else if (voice->isync2) {
voice->isync2 = 0;
/* write original ESO and update CSO for IRQ voice to preserve sync */
snd_trident_stop_voice(trident, voice->number);
snd_trident_write_cso_reg(trident, voice, voice->isync_mark);
snd_trident_write_eso_reg(trident, voice, voice->ESO);
snd_trident_start_voice(trident, voice->number);
}
#if 0
if (voice->extra) {
/* update CSO for extra voice to preserve sync */
snd_trident_stop_voice(trident, voice->extra->number);
snd_trident_write_cso_reg(trident, voice->extra, 0);
snd_trident_start_voice(trident, voice->extra->number);
}
#endif
spin_unlock(&trident->reg_lock);
snd_pcm_period_elapsed(voice->substream);
spin_lock(&trident->reg_lock);
}
outl(chn_int, TRID_REG(trident, T4D_AINT_B)); /* ack */
__skip2:
spin_unlock(&trident->reg_lock);
}
if (audio_int & MPU401_IRQ) {
if (trident->rmidi) {
snd_mpu401_uart_interrupt(irq, trident->rmidi->private_data);
} else {
inb(TRID_REG(trident, T4D_MPUR0));
}
}
// outl((ST_TARGET_REACHED | MIXER_OVERFLOW | MIXER_UNDERFLOW), TRID_REG(trident, T4D_MISCINT));
return IRQ_HANDLED;
}
struct snd_trident_voice *snd_trident_alloc_voice(struct snd_trident * trident, int type, int client, int port)
{
struct snd_trident_voice *pvoice;
unsigned long flags;
int idx;
spin_lock_irqsave(&trident->voice_alloc, flags);
if (type == SNDRV_TRIDENT_VOICE_TYPE_PCM) {
idx = snd_trident_allocate_pcm_channel(trident);
if(idx < 0) {
spin_unlock_irqrestore(&trident->voice_alloc, flags);
return NULL;
}
pvoice = &trident->synth.voices[idx];
pvoice->use = 1;
pvoice->pcm = 1;
pvoice->capture = 0;
pvoice->spdif = 0;
pvoice->memblk = NULL;
pvoice->substream = NULL;
spin_unlock_irqrestore(&trident->voice_alloc, flags);
return pvoice;
}
if (type == SNDRV_TRIDENT_VOICE_TYPE_SYNTH) {
idx = snd_trident_allocate_synth_channel(trident);
if(idx < 0) {
spin_unlock_irqrestore(&trident->voice_alloc, flags);
return NULL;
}
pvoice = &trident->synth.voices[idx];
pvoice->use = 1;
pvoice->synth = 1;
pvoice->client = client;
pvoice->port = port;
pvoice->memblk = NULL;
spin_unlock_irqrestore(&trident->voice_alloc, flags);
return pvoice;
}
if (type == SNDRV_TRIDENT_VOICE_TYPE_MIDI) {
}
spin_unlock_irqrestore(&trident->voice_alloc, flags);
return NULL;
}
EXPORT_SYMBOL(snd_trident_alloc_voice);
void snd_trident_free_voice(struct snd_trident * trident, struct snd_trident_voice *voice)
{
unsigned long flags;
void (*private_free)(struct snd_trident_voice *);
void *private_data;
if (voice == NULL || !voice->use)
return;
snd_trident_clear_voices(trident, voice->number, voice->number);
spin_lock_irqsave(&trident->voice_alloc, flags);
private_free = voice->private_free;
private_data = voice->private_data;
voice->private_free = NULL;
voice->private_data = NULL;
if (voice->pcm)
snd_trident_free_pcm_channel(trident, voice->number);
if (voice->synth)
snd_trident_free_synth_channel(trident, voice->number);
voice->use = voice->pcm = voice->synth = voice->midi = 0;
voice->capture = voice->spdif = 0;
voice->sample_ops = NULL;
voice->substream = NULL;
voice->extra = NULL;
spin_unlock_irqrestore(&trident->voice_alloc, flags);
if (private_free)
private_free(voice);
}
EXPORT_SYMBOL(snd_trident_free_voice);
static void snd_trident_clear_voices(struct snd_trident * trident, unsigned short v_min, unsigned short v_max)
{
unsigned int i, val, mask[2] = { 0, 0 };
if (snd_BUG_ON(v_min > 63 || v_max > 63))
return;
for (i = v_min; i <= v_max; i++)
mask[i >> 5] |= 1 << (i & 0x1f);
if (mask[0]) {
outl(mask[0], TRID_REG(trident, T4D_STOP_A));
val = inl(TRID_REG(trident, T4D_AINTEN_A));
outl(val & ~mask[0], TRID_REG(trident, T4D_AINTEN_A));
}
if (mask[1]) {
outl(mask[1], TRID_REG(trident, T4D_STOP_B));
val = inl(TRID_REG(trident, T4D_AINTEN_B));
outl(val & ~mask[1], TRID_REG(trident, T4D_AINTEN_B));
}
}
#ifdef CONFIG_PM
int snd_trident_suspend(struct pci_dev *pci, pm_message_t state)
{
struct snd_card *card = pci_get_drvdata(pci);
struct snd_trident *trident = card->private_data;
trident->in_suspend = 1;
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
snd_pcm_suspend_all(trident->pcm);
snd_pcm_suspend_all(trident->foldback);
snd_pcm_suspend_all(trident->spdif);
snd_ac97_suspend(trident->ac97);
snd_ac97_suspend(trident->ac97_sec);
pci_disable_device(pci);
pci_save_state(pci);
pci_set_power_state(pci, pci_choose_state(pci, state));
return 0;
}
int snd_trident_resume(struct pci_dev *pci)
{
struct snd_card *card = pci_get_drvdata(pci);
struct snd_trident *trident = card->private_data;
pci_set_power_state(pci, PCI_D0);
pci_restore_state(pci);
if (pci_enable_device(pci) < 0) {
printk(KERN_ERR "trident: pci_enable_device failed, "
"disabling device\n");
snd_card_disconnect(card);
return -EIO;
}
pci_set_master(pci);
switch (trident->device) {
case TRIDENT_DEVICE_ID_DX:
snd_trident_4d_dx_init(trident);
break;
case TRIDENT_DEVICE_ID_NX:
snd_trident_4d_nx_init(trident);
break;
case TRIDENT_DEVICE_ID_SI7018:
snd_trident_sis_init(trident);
break;
}
snd_ac97_resume(trident->ac97);
snd_ac97_resume(trident->ac97_sec);
/* restore some registers */
outl(trident->musicvol_wavevol, TRID_REG(trident, T4D_MUSICVOL_WAVEVOL));
snd_trident_enable_eso(trident);
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
trident->in_suspend = 0;
return 0;
}
#endif /* CONFIG_PM */