/* * asynchronous raid6 recovery self test * Copyright (c) 2009, Intel Corporation. * * based on drivers/md/raid6test/test.c: * Copyright 2002-2007 H. Peter Anvin * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * */ #include <linux/async_tx.h> #include <linux/gfp.h> #include <linux/mm.h> #include <linux/random.h> #include <linux/module.h> #undef pr #define pr(fmt, args...) pr_info("raid6test: " fmt, ##args) #define NDISKS 16 /* Including P and Q */ static struct page *dataptrs[NDISKS]; static addr_conv_t addr_conv[NDISKS]; static struct page *data[NDISKS+3]; static struct page *spare; static struct page *recovi; static struct page *recovj; static void callback(void *param) { struct completion *cmp = param; complete(cmp); } static void makedata(int disks) { int i, j; for (i = 0; i < disks; i++) { for (j = 0; j < PAGE_SIZE/sizeof(u32); j += sizeof(u32)) { u32 *p = page_address(data[i]) + j; *p = random32(); } dataptrs[i] = data[i]; } } static char disk_type(int d, int disks) { if (d == disks - 2) return 'P'; else if (d == disks - 1) return 'Q'; else return 'D'; } /* Recover two failed blocks. */ static void raid6_dual_recov(int disks, size_t bytes, int faila, int failb, struct page **ptrs) { struct async_submit_ctl submit; struct completion cmp; struct dma_async_tx_descriptor *tx = NULL; enum sum_check_flags result = ~0; if (faila > failb) swap(faila, failb); if (failb == disks-1) { if (faila == disks-2) { /* P+Q failure. Just rebuild the syndrome. */ init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv); tx = async_gen_syndrome(ptrs, 0, disks, bytes, &submit); } else { struct page *blocks[disks]; struct page *dest; int count = 0; int i; /* data+Q failure. Reconstruct data from P, * then rebuild syndrome */ for (i = disks; i-- ; ) { if (i == faila || i == failb) continue; blocks[count++] = ptrs[i]; } dest = ptrs[faila]; init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, NULL, NULL, addr_conv); tx = async_xor(dest, blocks, 0, count, bytes, &submit); init_async_submit(&submit, 0, tx, NULL, NULL, addr_conv); tx = async_gen_syndrome(ptrs, 0, disks, bytes, &submit); } } else { if (failb == disks-2) { /* data+P failure. */ init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv); tx = async_raid6_datap_recov(disks, bytes, faila, ptrs, &submit); } else { /* data+data failure. */ init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv); tx = async_raid6_2data_recov(disks, bytes, faila, failb, ptrs, &submit); } } init_completion(&cmp); init_async_submit(&submit, ASYNC_TX_ACK, tx, callback, &cmp, addr_conv); tx = async_syndrome_val(ptrs, 0, disks, bytes, &result, spare, &submit); async_tx_issue_pending(tx); if (wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)) == 0) pr("%s: timeout! (faila: %d failb: %d disks: %d)\n", __func__, faila, failb, disks); if (result != 0) pr("%s: validation failure! faila: %d failb: %d sum_check_flags: %x\n", __func__, faila, failb, result); } static int test_disks(int i, int j, int disks) { int erra, errb; memset(page_address(recovi), 0xf0, PAGE_SIZE); memset(page_address(recovj), 0xba, PAGE_SIZE); dataptrs[i] = recovi; dataptrs[j] = recovj; raid6_dual_recov(disks, PAGE_SIZE, i, j, dataptrs); erra = memcmp(page_address(data[i]), page_address(recovi), PAGE_SIZE); errb = memcmp(page_address(data[j]), page_address(recovj), PAGE_SIZE); pr("%s(%d, %d): faila=%3d(%c) failb=%3d(%c) %s\n", __func__, i, j, i, disk_type(i, disks), j, disk_type(j, disks), (!erra && !errb) ? "OK" : !erra ? "ERRB" : !errb ? "ERRA" : "ERRAB"); dataptrs[i] = data[i]; dataptrs[j] = data[j]; return erra || errb; } static int test(int disks, int *tests) { struct dma_async_tx_descriptor *tx; struct async_submit_ctl submit; struct completion cmp; int err = 0; int i, j; recovi = data[disks]; recovj = data[disks+1]; spare = data[disks+2]; makedata(disks); /* Nuke syndromes */ memset(page_address(data[disks-2]), 0xee, PAGE_SIZE); memset(page_address(data[disks-1]), 0xee, PAGE_SIZE); /* Generate assumed good syndrome */ init_completion(&cmp); init_async_submit(&submit, ASYNC_TX_ACK, NULL, callback, &cmp, addr_conv); tx = async_gen_syndrome(dataptrs, 0, disks, PAGE_SIZE, &submit); async_tx_issue_pending(tx); if (wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)) == 0) { pr("error: initial gen_syndrome(%d) timed out\n", disks); return 1; } pr("testing the %d-disk case...\n", disks); for (i = 0; i < disks-1; i++) for (j = i+1; j < disks; j++) { (*tests)++; err += test_disks(i, j, disks); } return err; } static int raid6_test(void) { int err = 0; int tests = 0; int i; for (i = 0; i < NDISKS+3; i++) { data[i] = alloc_page(GFP_KERNEL); if (!data[i]) { while (i--) put_page(data[i]); return -ENOMEM; } } /* the 4-disk and 5-disk cases are special for the recovery code */ if (NDISKS > 4) err += test(4, &tests); if (NDISKS > 5) err += test(5, &tests); /* the 11 and 12 disk cases are special for ioatdma (p-disabled * q-continuation without extended descriptor) */ if (NDISKS > 12) { err += test(11, &tests); err += test(12, &tests); } err += test(NDISKS, &tests); pr("\n"); pr("complete (%d tests, %d failure%s)\n", tests, err, err == 1 ? "" : "s"); for (i = 0; i < NDISKS+3; i++) put_page(data[i]); return 0; } static void raid6_test_exit(void) { } /* when compiled-in wait for drivers to load first (assumes dma drivers * are also compliled-in) */ late_initcall(raid6_test); module_exit(raid6_test_exit); MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>"); MODULE_DESCRIPTION("asynchronous RAID-6 recovery self tests"); MODULE_LICENSE("GPL");