/* * Disk Array driver for Compaq SMART2 Controllers * Copyright 1998 Compaq Computer Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Questions/Comments/Bugfixes to iss_storagedev@hp.com * */ #include <linux/module.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/bio.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/major.h> #include <linux/fs.h> #include <linux/blkpg.h> #include <linux/timer.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/init.h> #include <linux/hdreg.h> #include <linux/mutex.h> #include <linux/spinlock.h> #include <linux/blkdev.h> #include <linux/genhd.h> #include <linux/scatterlist.h> #include <asm/uaccess.h> #include <asm/io.h> #define SMART2_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin)) #define DRIVER_NAME "Compaq SMART2 Driver (v 2.6.0)" #define DRIVER_VERSION SMART2_DRIVER_VERSION(2,6,0) /* Embedded module documentation macros - see modules.h */ /* Original author Chris Frantz - Compaq Computer Corporation */ MODULE_AUTHOR("Compaq Computer Corporation"); MODULE_DESCRIPTION("Driver for Compaq Smart2 Array Controllers version 2.6.0"); MODULE_LICENSE("GPL"); #include "cpqarray.h" #include "ida_cmd.h" #include "smart1,2.h" #include "ida_ioctl.h" #define READ_AHEAD 128 #define NR_CMDS 128 /* This could probably go as high as ~400 */ #define MAX_CTLR 8 #define CTLR_SHIFT 8 #define CPQARRAY_DMA_MASK 0xFFFFFFFF /* 32 bit DMA */ static DEFINE_MUTEX(cpqarray_mutex); static int nr_ctlr; static ctlr_info_t *hba[MAX_CTLR]; static int eisa[8]; #define NR_PRODUCTS ARRAY_SIZE(products) /* board_id = Subsystem Device ID & Vendor ID * product = Marketing Name for the board * access = Address of the struct of function pointers */ static struct board_type products[] = { { 0x0040110E, "IDA", &smart1_access }, { 0x0140110E, "IDA-2", &smart1_access }, { 0x1040110E, "IAES", &smart1_access }, { 0x2040110E, "SMART", &smart1_access }, { 0x3040110E, "SMART-2/E", &smart2e_access }, { 0x40300E11, "SMART-2/P", &smart2_access }, { 0x40310E11, "SMART-2SL", &smart2_access }, { 0x40320E11, "Smart Array 3200", &smart2_access }, { 0x40330E11, "Smart Array 3100ES", &smart2_access }, { 0x40340E11, "Smart Array 221", &smart2_access }, { 0x40400E11, "Integrated Array", &smart4_access }, { 0x40480E11, "Compaq Raid LC2", &smart4_access }, { 0x40500E11, "Smart Array 4200", &smart4_access }, { 0x40510E11, "Smart Array 4250ES", &smart4_access }, { 0x40580E11, "Smart Array 431", &smart4_access }, }; /* define the PCI info for the PCI cards this driver can control */ static const struct pci_device_id cpqarray_pci_device_id[] = { { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_COMPAQ_42XX, 0x0E11, 0x4058, 0, 0, 0}, /* SA431 */ { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_COMPAQ_42XX, 0x0E11, 0x4051, 0, 0, 0}, /* SA4250ES */ { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_COMPAQ_42XX, 0x0E11, 0x4050, 0, 0, 0}, /* SA4200 */ { PCI_VENDOR_ID_NCR, PCI_DEVICE_ID_NCR_53C1510, 0x0E11, 0x4048, 0, 0, 0}, /* LC2 */ { PCI_VENDOR_ID_NCR, PCI_DEVICE_ID_NCR_53C1510, 0x0E11, 0x4040, 0, 0, 0}, /* Integrated Array */ { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P, 0x0E11, 0x4034, 0, 0, 0}, /* SA 221 */ { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P, 0x0E11, 0x4033, 0, 0, 0}, /* SA 3100ES*/ { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P, 0x0E11, 0x4032, 0, 0, 0}, /* SA 3200*/ { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P, 0x0E11, 0x4031, 0, 0, 0}, /* SA 2SL*/ { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_SMART2P, 0x0E11, 0x4030, 0, 0, 0}, /* SA 2P */ { 0 } }; MODULE_DEVICE_TABLE(pci, cpqarray_pci_device_id); static struct gendisk *ida_gendisk[MAX_CTLR][NWD]; /* Debug... */ #define DBG(s) do { s } while(0) /* Debug (general info)... */ #define DBGINFO(s) do { } while(0) /* Debug Paranoid... */ #define DBGP(s) do { } while(0) /* Debug Extra Paranoid... */ #define DBGPX(s) do { } while(0) static int cpqarray_pci_init(ctlr_info_t *c, struct pci_dev *pdev); static void __iomem *remap_pci_mem(ulong base, ulong size); static int cpqarray_eisa_detect(void); static int pollcomplete(int ctlr); static void getgeometry(int ctlr); static void start_fwbk(int ctlr); static cmdlist_t * cmd_alloc(ctlr_info_t *h, int get_from_pool); static void cmd_free(ctlr_info_t *h, cmdlist_t *c, int got_from_pool); static void free_hba(int i); static int alloc_cpqarray_hba(void); static int sendcmd( __u8 cmd, int ctlr, void *buff, size_t size, unsigned int blk, unsigned int blkcnt, unsigned int log_unit ); static int ida_unlocked_open(struct block_device *bdev, fmode_t mode); static int ida_release(struct gendisk *disk, fmode_t mode); static int ida_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg); static int ida_getgeo(struct block_device *bdev, struct hd_geometry *geo); static int ida_ctlr_ioctl(ctlr_info_t *h, int dsk, ida_ioctl_t *io); static void do_ida_request(struct request_queue *q); static void start_io(ctlr_info_t *h); static inline void addQ(cmdlist_t **Qptr, cmdlist_t *c); static inline cmdlist_t *removeQ(cmdlist_t **Qptr, cmdlist_t *c); static inline void complete_command(cmdlist_t *cmd, int timeout); static irqreturn_t do_ida_intr(int irq, void *dev_id); static void ida_timer(unsigned long tdata); static int ida_revalidate(struct gendisk *disk); static int revalidate_allvol(ctlr_info_t *host); static int cpqarray_register_ctlr(int ctlr, struct pci_dev *pdev); #ifdef CONFIG_PROC_FS static void ida_procinit(int i); #else static void ida_procinit(int i) {} #endif static inline drv_info_t *get_drv(struct gendisk *disk) { return disk->private_data; } static inline ctlr_info_t *get_host(struct gendisk *disk) { return disk->queue->queuedata; } static const struct block_device_operations ida_fops = { .owner = THIS_MODULE, .open = ida_unlocked_open, .release = ida_release, .ioctl = ida_ioctl, .getgeo = ida_getgeo, .revalidate_disk= ida_revalidate, }; #ifdef CONFIG_PROC_FS static struct proc_dir_entry *proc_array; static const struct file_operations ida_proc_fops; /* * Get us a file in /proc/array that says something about each controller. * Create /proc/array if it doesn't exist yet. */ static void __init ida_procinit(int i) { if (proc_array == NULL) { proc_array = proc_mkdir("driver/cpqarray", NULL); if (!proc_array) return; } proc_create_data(hba[i]->devname, 0, proc_array, &ida_proc_fops, hba[i]); } /* * Report information about this controller. */ static int ida_proc_show(struct seq_file *m, void *v) { int i, ctlr; ctlr_info_t *h = (ctlr_info_t*)m->private; drv_info_t *drv; #ifdef CPQ_PROC_PRINT_QUEUES cmdlist_t *c; unsigned long flags; #endif ctlr = h->ctlr; seq_printf(m, "%s: Compaq %s Controller\n" " Board ID: 0x%08lx\n" " Firmware Revision: %c%c%c%c\n" " Controller Sig: 0x%08lx\n" " Memory Address: 0x%08lx\n" " I/O Port: 0x%04x\n" " IRQ: %d\n" " Logical drives: %d\n" " Physical drives: %d\n\n" " Current Q depth: %d\n" " Max Q depth since init: %d\n\n", h->devname, h->product_name, (unsigned long)h->board_id, h->firm_rev[0], h->firm_rev[1], h->firm_rev[2], h->firm_rev[3], (unsigned long)h->ctlr_sig, (unsigned long)h->vaddr, (unsigned int) h->io_mem_addr, (unsigned int)h->intr, h->log_drives, h->phys_drives, h->Qdepth, h->maxQsinceinit); seq_puts(m, "Logical Drive Info:\n"); for(i=0; i<h->log_drives; i++) { drv = &h->drv[i]; seq_printf(m, "ida/c%dd%d: blksz=%d nr_blks=%d\n", ctlr, i, drv->blk_size, drv->nr_blks); } #ifdef CPQ_PROC_PRINT_QUEUES spin_lock_irqsave(IDA_LOCK(h->ctlr), flags); seq_puts(m, "\nCurrent Queues:\n"); c = h->reqQ; seq_printf(m, "reqQ = %p", c); if (c) c=c->next; while(c && c != h->reqQ) { seq_printf(m, "->%p", c); c=c->next; } c = h->cmpQ; seq_printf(m, "\ncmpQ = %p", c); if (c) c=c->next; while(c && c != h->cmpQ) { seq_printf(m, "->%p", c); c=c->next; } seq_putc(m, '\n'); spin_unlock_irqrestore(IDA_LOCK(h->ctlr), flags); #endif seq_printf(m, "nr_allocs = %d\nnr_frees = %d\n", h->nr_allocs, h->nr_frees); return 0; } static int ida_proc_open(struct inode *inode, struct file *file) { return single_open(file, ida_proc_show, PDE(inode)->data); } static const struct file_operations ida_proc_fops = { .owner = THIS_MODULE, .open = ida_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; #endif /* CONFIG_PROC_FS */ module_param_array(eisa, int, NULL, 0); static void release_io_mem(ctlr_info_t *c) { /* if IO mem was not protected do nothing */ if( c->io_mem_addr == 0) return; release_region(c->io_mem_addr, c->io_mem_length); c->io_mem_addr = 0; c->io_mem_length = 0; } static void __devexit cpqarray_remove_one(int i) { int j; char buff[4]; /* sendcmd will turn off interrupt, and send the flush... * To write all data in the battery backed cache to disks * no data returned, but don't want to send NULL to sendcmd */ if( sendcmd(FLUSH_CACHE, i, buff, 4, 0, 0, 0)) { printk(KERN_WARNING "Unable to flush cache on controller %d\n", i); } free_irq(hba[i]->intr, hba[i]); iounmap(hba[i]->vaddr); unregister_blkdev(COMPAQ_SMART2_MAJOR+i, hba[i]->devname); del_timer(&hba[i]->timer); remove_proc_entry(hba[i]->devname, proc_array); pci_free_consistent(hba[i]->pci_dev, NR_CMDS * sizeof(cmdlist_t), (hba[i]->cmd_pool), hba[i]->cmd_pool_dhandle); kfree(hba[i]->cmd_pool_bits); for(j = 0; j < NWD; j++) { if (ida_gendisk[i][j]->flags & GENHD_FL_UP) del_gendisk(ida_gendisk[i][j]); put_disk(ida_gendisk[i][j]); } blk_cleanup_queue(hba[i]->queue); release_io_mem(hba[i]); free_hba(i); } static void __devexit cpqarray_remove_one_pci (struct pci_dev *pdev) { int i; ctlr_info_t *tmp_ptr; if (pci_get_drvdata(pdev) == NULL) { printk( KERN_ERR "cpqarray: Unable to remove device \n"); return; } tmp_ptr = pci_get_drvdata(pdev); i = tmp_ptr->ctlr; if (hba[i] == NULL) { printk(KERN_ERR "cpqarray: controller %d appears to have" "already been removed \n", i); return; } pci_set_drvdata(pdev, NULL); cpqarray_remove_one(i); } /* removing an instance that was not removed automatically.. * must be an eisa card. */ static void __devexit cpqarray_remove_one_eisa (int i) { if (hba[i] == NULL) { printk(KERN_ERR "cpqarray: controller %d appears to have" "already been removed \n", i); return; } cpqarray_remove_one(i); } /* pdev is NULL for eisa */ static int __devinit cpqarray_register_ctlr( int i, struct pci_dev *pdev) { struct request_queue *q; int j; /* * register block devices * Find disks and fill in structs * Get an interrupt, set the Q depth and get into /proc */ /* If this successful it should insure that we are the only */ /* instance of the driver */ if (register_blkdev(COMPAQ_SMART2_MAJOR+i, hba[i]->devname)) { goto Enomem4; } hba[i]->access.set_intr_mask(hba[i], 0); if (request_irq(hba[i]->intr, do_ida_intr, IRQF_DISABLED|IRQF_SHARED, hba[i]->devname, hba[i])) { printk(KERN_ERR "cpqarray: Unable to get irq %d for %s\n", hba[i]->intr, hba[i]->devname); goto Enomem3; } for (j=0; j<NWD; j++) { ida_gendisk[i][j] = alloc_disk(1 << NWD_SHIFT); if (!ida_gendisk[i][j]) goto Enomem2; } hba[i]->cmd_pool = pci_alloc_consistent( hba[i]->pci_dev, NR_CMDS * sizeof(cmdlist_t), &(hba[i]->cmd_pool_dhandle)); hba[i]->cmd_pool_bits = kcalloc( DIV_ROUND_UP(NR_CMDS, BITS_PER_LONG), sizeof(unsigned long), GFP_KERNEL); if (!hba[i]->cmd_pool_bits || !hba[i]->cmd_pool) goto Enomem1; memset(hba[i]->cmd_pool, 0, NR_CMDS * sizeof(cmdlist_t)); printk(KERN_INFO "cpqarray: Finding drives on %s", hba[i]->devname); spin_lock_init(&hba[i]->lock); q = blk_init_queue(do_ida_request, &hba[i]->lock); if (!q) goto Enomem1; hba[i]->queue = q; q->queuedata = hba[i]; getgeometry(i); start_fwbk(i); ida_procinit(i); if (pdev) blk_queue_bounce_limit(q, hba[i]->pci_dev->dma_mask); /* This is a hardware imposed limit. */ blk_queue_max_segments(q, SG_MAX); init_timer(&hba[i]->timer); hba[i]->timer.expires = jiffies + IDA_TIMER; hba[i]->timer.data = (unsigned long)hba[i]; hba[i]->timer.function = ida_timer; add_timer(&hba[i]->timer); /* Enable IRQ now that spinlock and rate limit timer are set up */ hba[i]->access.set_intr_mask(hba[i], FIFO_NOT_EMPTY); for(j=0; j<NWD; j++) { struct gendisk *disk = ida_gendisk[i][j]; drv_info_t *drv = &hba[i]->drv[j]; sprintf(disk->disk_name, "ida/c%dd%d", i, j); disk->major = COMPAQ_SMART2_MAJOR + i; disk->first_minor = j<<NWD_SHIFT; disk->fops = &ida_fops; if (j && !drv->nr_blks) continue; blk_queue_logical_block_size(hba[i]->queue, drv->blk_size); set_capacity(disk, drv->nr_blks); disk->queue = hba[i]->queue; disk->private_data = drv; add_disk(disk); } /* done ! */ return(i); Enomem1: nr_ctlr = i; kfree(hba[i]->cmd_pool_bits); if (hba[i]->cmd_pool) pci_free_consistent(hba[i]->pci_dev, NR_CMDS*sizeof(cmdlist_t), hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle); Enomem2: while (j--) { put_disk(ida_gendisk[i][j]); ida_gendisk[i][j] = NULL; } free_irq(hba[i]->intr, hba[i]); Enomem3: unregister_blkdev(COMPAQ_SMART2_MAJOR+i, hba[i]->devname); Enomem4: if (pdev) pci_set_drvdata(pdev, NULL); release_io_mem(hba[i]); free_hba(i); printk( KERN_ERR "cpqarray: out of memory"); return -1; } static int __devinit cpqarray_init_one( struct pci_dev *pdev, const struct pci_device_id *ent) { int i; printk(KERN_DEBUG "cpqarray: Device 0x%x has been found at" " bus %d dev %d func %d\n", pdev->device, pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); i = alloc_cpqarray_hba(); if( i < 0 ) return (-1); memset(hba[i], 0, sizeof(ctlr_info_t)); sprintf(hba[i]->devname, "ida%d", i); hba[i]->ctlr = i; /* Initialize the pdev driver private data */ pci_set_drvdata(pdev, hba[i]); if (cpqarray_pci_init(hba[i], pdev) != 0) { pci_set_drvdata(pdev, NULL); release_io_mem(hba[i]); free_hba(i); return -1; } return (cpqarray_register_ctlr(i, pdev)); } static struct pci_driver cpqarray_pci_driver = { .name = "cpqarray", .probe = cpqarray_init_one, .remove = __devexit_p(cpqarray_remove_one_pci), .id_table = cpqarray_pci_device_id, }; /* * This is it. Find all the controllers and register them. * returns the number of block devices registered. */ static int __init cpqarray_init(void) { int num_cntlrs_reg = 0; int i; int rc = 0; /* detect controllers */ printk(DRIVER_NAME "\n"); rc = pci_register_driver(&cpqarray_pci_driver); if (rc) return rc; cpqarray_eisa_detect(); for (i=0; i < MAX_CTLR; i++) { if (hba[i] != NULL) num_cntlrs_reg++; } if (num_cntlrs_reg) return 0; else { pci_unregister_driver(&cpqarray_pci_driver); return -ENODEV; } } /* Function to find the first free pointer into our hba[] array */ /* Returns -1 if no free entries are left. */ static int alloc_cpqarray_hba(void) { int i; for(i=0; i< MAX_CTLR; i++) { if (hba[i] == NULL) { hba[i] = kmalloc(sizeof(ctlr_info_t), GFP_KERNEL); if(hba[i]==NULL) { printk(KERN_ERR "cpqarray: out of memory.\n"); return (-1); } return (i); } } printk(KERN_WARNING "cpqarray: This driver supports a maximum" " of 8 controllers.\n"); return(-1); } static void free_hba(int i) { kfree(hba[i]); hba[i]=NULL; } /* * Find the IO address of the controller, its IRQ and so forth. Fill * in some basic stuff into the ctlr_info_t structure. */ static int cpqarray_pci_init(ctlr_info_t *c, struct pci_dev *pdev) { ushort vendor_id, device_id, command; unchar cache_line_size, latency_timer; unchar irq, revision; unsigned long addr[6]; __u32 board_id; int i; c->pci_dev = pdev; pci_set_master(pdev); if (pci_enable_device(pdev)) { printk(KERN_ERR "cpqarray: Unable to Enable PCI device\n"); return -1; } vendor_id = pdev->vendor; device_id = pdev->device; revision = pdev->revision; irq = pdev->irq; for(i=0; i<6; i++) addr[i] = pci_resource_start(pdev, i); if (pci_set_dma_mask(pdev, CPQARRAY_DMA_MASK) != 0) { printk(KERN_ERR "cpqarray: Unable to set DMA mask\n"); return -1; } pci_read_config_word(pdev, PCI_COMMAND, &command); pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_line_size); pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency_timer); pci_read_config_dword(pdev, 0x2c, &board_id); /* check to see if controller has been disabled */ if(!(command & 0x02)) { printk(KERN_WARNING "cpqarray: controller appears to be disabled\n"); return(-1); } DBGINFO( printk("vendor_id = %x\n", vendor_id); printk("device_id = %x\n", device_id); printk("command = %x\n", command); for(i=0; i<6; i++) printk("addr[%d] = %lx\n", i, addr[i]); printk("revision = %x\n", revision); printk("irq = %x\n", irq); printk("cache_line_size = %x\n", cache_line_size); printk("latency_timer = %x\n", latency_timer); printk("board_id = %x\n", board_id); ); c->intr = irq; for(i=0; i<6; i++) { if (pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE_IO) { /* IO space */ c->io_mem_addr = addr[i]; c->io_mem_length = pci_resource_end(pdev, i) - pci_resource_start(pdev, i) + 1; if(!request_region( c->io_mem_addr, c->io_mem_length, "cpqarray")) { printk( KERN_WARNING "cpqarray I/O memory range already in use addr %lx length = %ld\n", c->io_mem_addr, c->io_mem_length); c->io_mem_addr = 0; c->io_mem_length = 0; } break; } } c->paddr = 0; for(i=0; i<6; i++) if (!(pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE_IO)) { c->paddr = pci_resource_start (pdev, i); break; } if (!c->paddr) return -1; c->vaddr = remap_pci_mem(c->paddr, 128); if (!c->vaddr) return -1; c->board_id = board_id; for(i=0; i<NR_PRODUCTS; i++) { if (board_id == products[i].board_id) { c->product_name = products[i].product_name; c->access = *(products[i].access); break; } } if (i == NR_PRODUCTS) { printk(KERN_WARNING "cpqarray: Sorry, I don't know how" " to access the SMART Array controller %08lx\n", (unsigned long)board_id); return -1; } return 0; } /* * Map (physical) PCI mem into (virtual) kernel space */ static void __iomem *remap_pci_mem(ulong base, ulong size) { ulong page_base = ((ulong) base) & PAGE_MASK; ulong page_offs = ((ulong) base) - page_base; void __iomem *page_remapped = ioremap(page_base, page_offs+size); return (page_remapped ? (page_remapped + page_offs) : NULL); } #ifndef MODULE /* * Config string is a comma separated set of i/o addresses of EISA cards. */ static int cpqarray_setup(char *str) { int i, ints[9]; (void)get_options(str, ARRAY_SIZE(ints), ints); for(i=0; i<ints[0] && i<8; i++) eisa[i] = ints[i+1]; return 1; } __setup("smart2=", cpqarray_setup); #endif /* * Find an EISA controller's signature. Set up an hba if we find it. */ static int __devinit cpqarray_eisa_detect(void) { int i=0, j; __u32 board_id; int intr; int ctlr; int num_ctlr = 0; while(i<8 && eisa[i]) { ctlr = alloc_cpqarray_hba(); if(ctlr == -1) break; board_id = inl(eisa[i]+0xC80); for(j=0; j < NR_PRODUCTS; j++) if (board_id == products[j].board_id) break; if (j == NR_PRODUCTS) { printk(KERN_WARNING "cpqarray: Sorry, I don't know how" " to access the SMART Array controller %08lx\n", (unsigned long)board_id); continue; } memset(hba[ctlr], 0, sizeof(ctlr_info_t)); hba[ctlr]->io_mem_addr = eisa[i]; hba[ctlr]->io_mem_length = 0x7FF; if(!request_region(hba[ctlr]->io_mem_addr, hba[ctlr]->io_mem_length, "cpqarray")) { printk(KERN_WARNING "cpqarray: I/O range already in " "use addr = %lx length = %ld\n", hba[ctlr]->io_mem_addr, hba[ctlr]->io_mem_length); free_hba(ctlr); continue; } /* * Read the config register to find our interrupt */ intr = inb(eisa[i]+0xCC0) >> 4; if (intr & 1) intr = 11; else if (intr & 2) intr = 10; else if (intr & 4) intr = 14; else if (intr & 8) intr = 15; hba[ctlr]->intr = intr; sprintf(hba[ctlr]->devname, "ida%d", nr_ctlr); hba[ctlr]->product_name = products[j].product_name; hba[ctlr]->access = *(products[j].access); hba[ctlr]->ctlr = ctlr; hba[ctlr]->board_id = board_id; hba[ctlr]->pci_dev = NULL; /* not PCI */ DBGINFO( printk("i = %d, j = %d\n", i, j); printk("irq = %x\n", intr); printk("product name = %s\n", products[j].product_name); printk("board_id = %x\n", board_id); ); num_ctlr++; i++; if (cpqarray_register_ctlr(ctlr, NULL) == -1) printk(KERN_WARNING "cpqarray: Can't register EISA controller %d\n", ctlr); } return num_ctlr; } /* * Open. Make sure the device is really there. */ static int ida_open(struct block_device *bdev, fmode_t mode) { drv_info_t *drv = get_drv(bdev->bd_disk); ctlr_info_t *host = get_host(bdev->bd_disk); DBGINFO(printk("ida_open %s\n", bdev->bd_disk->disk_name)); /* * Root is allowed to open raw volume zero even if it's not configured * so array config can still work. I don't think I really like this, * but I'm already using way to many device nodes to claim another one * for "raw controller". */ if (!drv->nr_blks) { if (!capable(CAP_SYS_RAWIO)) return -ENXIO; if (!capable(CAP_SYS_ADMIN) && drv != host->drv) return -ENXIO; } host->usage_count++; return 0; } static int ida_unlocked_open(struct block_device *bdev, fmode_t mode) { int ret; mutex_lock(&cpqarray_mutex); ret = ida_open(bdev, mode); mutex_unlock(&cpqarray_mutex); return ret; } /* * Close. Sync first. */ static int ida_release(struct gendisk *disk, fmode_t mode) { ctlr_info_t *host; mutex_lock(&cpqarray_mutex); host = get_host(disk); host->usage_count--; mutex_unlock(&cpqarray_mutex); return 0; } /* * Enqueuing and dequeuing functions for cmdlists. */ static inline void addQ(cmdlist_t **Qptr, cmdlist_t *c) { if (*Qptr == NULL) { *Qptr = c; c->next = c->prev = c; } else { c->prev = (*Qptr)->prev; c->next = (*Qptr); (*Qptr)->prev->next = c; (*Qptr)->prev = c; } } static inline cmdlist_t *removeQ(cmdlist_t **Qptr, cmdlist_t *c) { if (c && c->next != c) { if (*Qptr == c) *Qptr = c->next; c->prev->next = c->next; c->next->prev = c->prev; } else { *Qptr = NULL; } return c; } /* * Get a request and submit it to the controller. * This routine needs to grab all the requests it possibly can from the * req Q and submit them. Interrupts are off (and need to be off) when you * are in here (either via the dummy do_ida_request functions or by being * called from the interrupt handler */ static void do_ida_request(struct request_queue *q) { ctlr_info_t *h = q->queuedata; cmdlist_t *c; struct request *creq; struct scatterlist tmp_sg[SG_MAX]; int i, dir, seg; queue_next: creq = blk_peek_request(q); if (!creq) goto startio; BUG_ON(creq->nr_phys_segments > SG_MAX); if ((c = cmd_alloc(h,1)) == NULL) goto startio; blk_start_request(creq); c->ctlr = h->ctlr; c->hdr.unit = (drv_info_t *)(creq->rq_disk->private_data) - h->drv; c->hdr.size = sizeof(rblk_t) >> 2; c->size += sizeof(rblk_t); c->req.hdr.blk = blk_rq_pos(creq); c->rq = creq; DBGPX( printk("sector=%d, nr_sectors=%u\n", blk_rq_pos(creq), blk_rq_sectors(creq)); ); sg_init_table(tmp_sg, SG_MAX); seg = blk_rq_map_sg(q, creq, tmp_sg); /* Now do all the DMA Mappings */ if (rq_data_dir(creq) == READ) dir = PCI_DMA_FROMDEVICE; else dir = PCI_DMA_TODEVICE; for( i=0; i < seg; i++) { c->req.sg[i].size = tmp_sg[i].length; c->req.sg[i].addr = (__u32) pci_map_page(h->pci_dev, sg_page(&tmp_sg[i]), tmp_sg[i].offset, tmp_sg[i].length, dir); } DBGPX( printk("Submitting %u sectors in %d segments\n", blk_rq_sectors(creq), seg); ); c->req.hdr.sg_cnt = seg; c->req.hdr.blk_cnt = blk_rq_sectors(creq); c->req.hdr.cmd = (rq_data_dir(creq) == READ) ? IDA_READ : IDA_WRITE; c->type = CMD_RWREQ; /* Put the request on the tail of the request queue */ addQ(&h->reqQ, c); h->Qdepth++; if (h->Qdepth > h->maxQsinceinit) h->maxQsinceinit = h->Qdepth; goto queue_next; startio: start_io(h); } /* * start_io submits everything on a controller's request queue * and moves it to the completion queue. * * Interrupts had better be off if you're in here */ static void start_io(ctlr_info_t *h) { cmdlist_t *c; while((c = h->reqQ) != NULL) { /* Can't do anything if we're busy */ if (h->access.fifo_full(h) == 0) return; /* Get the first entry from the request Q */ removeQ(&h->reqQ, c); h->Qdepth--; /* Tell the controller to do our bidding */ h->access.submit_command(h, c); /* Get onto the completion Q */ addQ(&h->cmpQ, c); } } /* * Mark all buffers that cmd was responsible for */ static inline void complete_command(cmdlist_t *cmd, int timeout) { struct request *rq = cmd->rq; int error = 0; int i, ddir; if (cmd->req.hdr.rcode & RCODE_NONFATAL && (hba[cmd->ctlr]->misc_tflags & MISC_NONFATAL_WARN) == 0) { printk(KERN_NOTICE "Non Fatal error on ida/c%dd%d\n", cmd->ctlr, cmd->hdr.unit); hba[cmd->ctlr]->misc_tflags |= MISC_NONFATAL_WARN; } if (cmd->req.hdr.rcode & RCODE_FATAL) { printk(KERN_WARNING "Fatal error on ida/c%dd%d\n", cmd->ctlr, cmd->hdr.unit); error = -EIO; } if (cmd->req.hdr.rcode & RCODE_INVREQ) { printk(KERN_WARNING "Invalid request on ida/c%dd%d = (cmd=%x sect=%d cnt=%d sg=%d ret=%x)\n", cmd->ctlr, cmd->hdr.unit, cmd->req.hdr.cmd, cmd->req.hdr.blk, cmd->req.hdr.blk_cnt, cmd->req.hdr.sg_cnt, cmd->req.hdr.rcode); error = -EIO; } if (timeout) error = -EIO; /* unmap the DMA mapping for all the scatter gather elements */ if (cmd->req.hdr.cmd == IDA_READ) ddir = PCI_DMA_FROMDEVICE; else ddir = PCI_DMA_TODEVICE; for(i=0; i<cmd->req.hdr.sg_cnt; i++) pci_unmap_page(hba[cmd->ctlr]->pci_dev, cmd->req.sg[i].addr, cmd->req.sg[i].size, ddir); DBGPX(printk("Done with %p\n", rq);); __blk_end_request_all(rq, error); } /* * The controller will interrupt us upon completion of commands. * Find the command on the completion queue, remove it, tell the OS and * try to queue up more IO */ static irqreturn_t do_ida_intr(int irq, void *dev_id) { ctlr_info_t *h = dev_id; cmdlist_t *c; unsigned long istat; unsigned long flags; __u32 a,a1; istat = h->access.intr_pending(h); /* Is this interrupt for us? */ if (istat == 0) return IRQ_NONE; /* * If there are completed commands in the completion queue, * we had better do something about it. */ spin_lock_irqsave(IDA_LOCK(h->ctlr), flags); if (istat & FIFO_NOT_EMPTY) { while((a = h->access.command_completed(h))) { a1 = a; a &= ~3; if ((c = h->cmpQ) == NULL) { printk(KERN_WARNING "cpqarray: Completion of %08lx ignored\n", (unsigned long)a1); continue; } while(c->busaddr != a) { c = c->next; if (c == h->cmpQ) break; } /* * If we've found the command, take it off the * completion Q and free it */ if (c->busaddr == a) { removeQ(&h->cmpQ, c); /* Check for invalid command. * Controller returns command error, * But rcode = 0. */ if((a1 & 0x03) && (c->req.hdr.rcode == 0)) { c->req.hdr.rcode = RCODE_INVREQ; } if (c->type == CMD_RWREQ) { complete_command(c, 0); cmd_free(h, c, 1); } else if (c->type == CMD_IOCTL_PEND) { c->type = CMD_IOCTL_DONE; } continue; } } } /* * See if we can queue up some more IO */ do_ida_request(h->queue); spin_unlock_irqrestore(IDA_LOCK(h->ctlr), flags); return IRQ_HANDLED; } /* * This timer was for timing out requests that haven't happened after * IDA_TIMEOUT. That wasn't such a good idea. This timer is used to * reset a flags structure so we don't flood the user with * "Non-Fatal error" messages. */ static void ida_timer(unsigned long tdata) { ctlr_info_t *h = (ctlr_info_t*)tdata; h->timer.expires = jiffies + IDA_TIMER; add_timer(&h->timer); h->misc_tflags = 0; } static int ida_getgeo(struct block_device *bdev, struct hd_geometry *geo) { drv_info_t *drv = get_drv(bdev->bd_disk); if (drv->cylinders) { geo->heads = drv->heads; geo->sectors = drv->sectors; geo->cylinders = drv->cylinders; } else { geo->heads = 0xff; geo->sectors = 0x3f; geo->cylinders = drv->nr_blks / (0xff*0x3f); } return 0; } /* * ida_ioctl does some miscellaneous stuff like reporting drive geometry, * setting readahead and submitting commands from userspace to the controller. */ static int ida_locked_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { drv_info_t *drv = get_drv(bdev->bd_disk); ctlr_info_t *host = get_host(bdev->bd_disk); int error; ida_ioctl_t __user *io = (ida_ioctl_t __user *)arg; ida_ioctl_t *my_io; switch(cmd) { case IDAGETDRVINFO: if (copy_to_user(&io->c.drv, drv, sizeof(drv_info_t))) return -EFAULT; return 0; case IDAPASSTHRU: if (!capable(CAP_SYS_RAWIO)) return -EPERM; my_io = kmalloc(sizeof(ida_ioctl_t), GFP_KERNEL); if (!my_io) return -ENOMEM; error = -EFAULT; if (copy_from_user(my_io, io, sizeof(*my_io))) goto out_passthru; error = ida_ctlr_ioctl(host, drv - host->drv, my_io); if (error) goto out_passthru; error = -EFAULT; if (copy_to_user(io, my_io, sizeof(*my_io))) goto out_passthru; error = 0; out_passthru: kfree(my_io); return error; case IDAGETCTLRSIG: if (!arg) return -EINVAL; if (put_user(host->ctlr_sig, (int __user *)arg)) return -EFAULT; return 0; case IDAREVALIDATEVOLS: if (MINOR(bdev->bd_dev) != 0) return -ENXIO; return revalidate_allvol(host); case IDADRIVERVERSION: if (!arg) return -EINVAL; if (put_user(DRIVER_VERSION, (unsigned long __user *)arg)) return -EFAULT; return 0; case IDAGETPCIINFO: { ida_pci_info_struct pciinfo; if (!arg) return -EINVAL; memset(&pciinfo, 0, sizeof(pciinfo)); pciinfo.bus = host->pci_dev->bus->number; pciinfo.dev_fn = host->pci_dev->devfn; pciinfo.board_id = host->board_id; if(copy_to_user((void __user *) arg, &pciinfo, sizeof( ida_pci_info_struct))) return -EFAULT; return(0); } default: return -EINVAL; } } static int ida_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long param) { int ret; mutex_lock(&cpqarray_mutex); ret = ida_locked_ioctl(bdev, mode, cmd, param); mutex_unlock(&cpqarray_mutex); return ret; } /* * ida_ctlr_ioctl is for passing commands to the controller from userspace. * The command block (io) has already been copied to kernel space for us, * however, any elements in the sglist need to be copied to kernel space * or copied back to userspace. * * Only root may perform a controller passthru command, however I'm not doing * any serious sanity checking on the arguments. Doing an IDA_WRITE_MEDIA and * putting a 64M buffer in the sglist is probably a *bad* idea. */ static int ida_ctlr_ioctl(ctlr_info_t *h, int dsk, ida_ioctl_t *io) { int ctlr = h->ctlr; cmdlist_t *c; void *p = NULL; unsigned long flags; int error; if ((c = cmd_alloc(h, 0)) == NULL) return -ENOMEM; c->ctlr = ctlr; c->hdr.unit = (io->unit & UNITVALID) ? (io->unit & ~UNITVALID) : dsk; c->hdr.size = sizeof(rblk_t) >> 2; c->size += sizeof(rblk_t); c->req.hdr.cmd = io->cmd; c->req.hdr.blk = io->blk; c->req.hdr.blk_cnt = io->blk_cnt; c->type = CMD_IOCTL_PEND; /* Pre submit processing */ switch(io->cmd) { case PASSTHRU_A: p = memdup_user(io->sg[0].addr, io->sg[0].size); if (IS_ERR(p)) { error = PTR_ERR(p); cmd_free(h, c, 0); return error; } c->req.hdr.blk = pci_map_single(h->pci_dev, &(io->c), sizeof(ida_ioctl_t), PCI_DMA_BIDIRECTIONAL); c->req.sg[0].size = io->sg[0].size; c->req.sg[0].addr = pci_map_single(h->pci_dev, p, c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL); c->req.hdr.sg_cnt = 1; break; case IDA_READ: case READ_FLASH_ROM: case SENSE_CONTROLLER_PERFORMANCE: p = kmalloc(io->sg[0].size, GFP_KERNEL); if (!p) { error = -ENOMEM; cmd_free(h, c, 0); return(error); } c->req.sg[0].size = io->sg[0].size; c->req.sg[0].addr = pci_map_single(h->pci_dev, p, c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL); c->req.hdr.sg_cnt = 1; break; case IDA_WRITE: case IDA_WRITE_MEDIA: case DIAG_PASS_THRU: case COLLECT_BUFFER: case WRITE_FLASH_ROM: p = memdup_user(io->sg[0].addr, io->sg[0].size); if (IS_ERR(p)) { error = PTR_ERR(p); cmd_free(h, c, 0); return error; } c->req.sg[0].size = io->sg[0].size; c->req.sg[0].addr = pci_map_single(h->pci_dev, p, c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL); c->req.hdr.sg_cnt = 1; break; default: c->req.sg[0].size = sizeof(io->c); c->req.sg[0].addr = pci_map_single(h->pci_dev,&io->c, c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL); c->req.hdr.sg_cnt = 1; } /* Put the request on the tail of the request queue */ spin_lock_irqsave(IDA_LOCK(ctlr), flags); addQ(&h->reqQ, c); h->Qdepth++; start_io(h); spin_unlock_irqrestore(IDA_LOCK(ctlr), flags); /* Wait for completion */ while(c->type != CMD_IOCTL_DONE) schedule(); /* Unmap the DMA */ pci_unmap_single(h->pci_dev, c->req.sg[0].addr, c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL); /* Post submit processing */ switch(io->cmd) { case PASSTHRU_A: pci_unmap_single(h->pci_dev, c->req.hdr.blk, sizeof(ida_ioctl_t), PCI_DMA_BIDIRECTIONAL); case IDA_READ: case DIAG_PASS_THRU: case SENSE_CONTROLLER_PERFORMANCE: case READ_FLASH_ROM: if (copy_to_user(io->sg[0].addr, p, io->sg[0].size)) { kfree(p); return -EFAULT; } /* fall through and free p */ case IDA_WRITE: case IDA_WRITE_MEDIA: case COLLECT_BUFFER: case WRITE_FLASH_ROM: kfree(p); break; default:; /* Nothing to do */ } io->rcode = c->req.hdr.rcode; cmd_free(h, c, 0); return(0); } /* * Commands are pre-allocated in a large block. Here we use a simple bitmap * scheme to suballocte them to the driver. Operations that are not time * critical (and can wait for kmalloc and possibly sleep) can pass in NULL * as the first argument to get a new command. */ static cmdlist_t * cmd_alloc(ctlr_info_t *h, int get_from_pool) { cmdlist_t * c; int i; dma_addr_t cmd_dhandle; if (!get_from_pool) { c = (cmdlist_t*)pci_alloc_consistent(h->pci_dev, sizeof(cmdlist_t), &cmd_dhandle); if(c==NULL) return NULL; } else { do { i = find_first_zero_bit(h->cmd_pool_bits, NR_CMDS); if (i == NR_CMDS) return NULL; } while(test_and_set_bit(i&(BITS_PER_LONG-1), h->cmd_pool_bits+(i/BITS_PER_LONG)) != 0); c = h->cmd_pool + i; cmd_dhandle = h->cmd_pool_dhandle + i*sizeof(cmdlist_t); h->nr_allocs++; } memset(c, 0, sizeof(cmdlist_t)); c->busaddr = cmd_dhandle; return c; } static void cmd_free(ctlr_info_t *h, cmdlist_t *c, int got_from_pool) { int i; if (!got_from_pool) { pci_free_consistent(h->pci_dev, sizeof(cmdlist_t), c, c->busaddr); } else { i = c - h->cmd_pool; clear_bit(i&(BITS_PER_LONG-1), h->cmd_pool_bits+(i/BITS_PER_LONG)); h->nr_frees++; } } /*********************************************************************** name: sendcmd Send a command to an IDA using the memory mapped FIFO interface and wait for it to complete. This routine should only be called at init time. ***********************************************************************/ static int sendcmd( __u8 cmd, int ctlr, void *buff, size_t size, unsigned int blk, unsigned int blkcnt, unsigned int log_unit ) { cmdlist_t *c; int complete; unsigned long temp; unsigned long i; ctlr_info_t *info_p = hba[ctlr]; c = cmd_alloc(info_p, 1); if(!c) return IO_ERROR; c->ctlr = ctlr; c->hdr.unit = log_unit; c->hdr.prio = 0; c->hdr.size = sizeof(rblk_t) >> 2; c->size += sizeof(rblk_t); /* The request information. */ c->req.hdr.next = 0; c->req.hdr.rcode = 0; c->req.bp = 0; c->req.hdr.sg_cnt = 1; c->req.hdr.reserved = 0; if (size == 0) c->req.sg[0].size = 512; else c->req.sg[0].size = size; c->req.hdr.blk = blk; c->req.hdr.blk_cnt = blkcnt; c->req.hdr.cmd = (unsigned char) cmd; c->req.sg[0].addr = (__u32) pci_map_single(info_p->pci_dev, buff, c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL); /* * Disable interrupt */ info_p->access.set_intr_mask(info_p, 0); /* Make sure there is room in the command FIFO */ /* Actually it should be completely empty at this time. */ for (i = 200000; i > 0; i--) { temp = info_p->access.fifo_full(info_p); if (temp != 0) { break; } udelay(10); DBG( printk(KERN_WARNING "cpqarray ida%d: idaSendPciCmd FIFO full," " waiting!\n", ctlr); ); } /* * Send the cmd */ info_p->access.submit_command(info_p, c); complete = pollcomplete(ctlr); pci_unmap_single(info_p->pci_dev, (dma_addr_t) c->req.sg[0].addr, c->req.sg[0].size, PCI_DMA_BIDIRECTIONAL); if (complete != 1) { if (complete != c->busaddr) { printk( KERN_WARNING "cpqarray ida%d: idaSendPciCmd " "Invalid command list address returned! (%08lx)\n", ctlr, (unsigned long)complete); cmd_free(info_p, c, 1); return (IO_ERROR); } } else { printk( KERN_WARNING "cpqarray ida%d: idaSendPciCmd Timeout out, " "No command list address returned!\n", ctlr); cmd_free(info_p, c, 1); return (IO_ERROR); } if (c->req.hdr.rcode & 0x00FE) { if (!(c->req.hdr.rcode & BIG_PROBLEM)) { printk( KERN_WARNING "cpqarray ida%d: idaSendPciCmd, error: " "Controller failed at init time " "cmd: 0x%x, return code = 0x%x\n", ctlr, c->req.hdr.cmd, c->req.hdr.rcode); cmd_free(info_p, c, 1); return (IO_ERROR); } } cmd_free(info_p, c, 1); return (IO_OK); } /* * revalidate_allvol is for online array config utilities. After a * utility reconfigures the drives in the array, it can use this function * (through an ioctl) to make the driver zap any previous disk structs for * that controller and get new ones. * * Right now I'm using the getgeometry() function to do this, but this * function should probably be finer grained and allow you to revalidate one * particualar logical volume (instead of all of them on a particular * controller). */ static int revalidate_allvol(ctlr_info_t *host) { int ctlr = host->ctlr; int i; unsigned long flags; spin_lock_irqsave(IDA_LOCK(ctlr), flags); if (host->usage_count > 1) { spin_unlock_irqrestore(IDA_LOCK(ctlr), flags); printk(KERN_WARNING "cpqarray: Device busy for volume" " revalidation (usage=%d)\n", host->usage_count); return -EBUSY; } host->usage_count++; spin_unlock_irqrestore(IDA_LOCK(ctlr), flags); /* * Set the partition and block size structures for all volumes * on this controller to zero. We will reread all of this data */ set_capacity(ida_gendisk[ctlr][0], 0); for (i = 1; i < NWD; i++) { struct gendisk *disk = ida_gendisk[ctlr][i]; if (disk->flags & GENHD_FL_UP) del_gendisk(disk); } memset(host->drv, 0, sizeof(drv_info_t)*NWD); /* * Tell the array controller not to give us any interrupts while * we check the new geometry. Then turn interrupts back on when * we're done. */ host->access.set_intr_mask(host, 0); getgeometry(ctlr); host->access.set_intr_mask(host, FIFO_NOT_EMPTY); for(i=0; i<NWD; i++) { struct gendisk *disk = ida_gendisk[ctlr][i]; drv_info_t *drv = &host->drv[i]; if (i && !drv->nr_blks) continue; blk_queue_logical_block_size(host->queue, drv->blk_size); set_capacity(disk, drv->nr_blks); disk->queue = host->queue; disk->private_data = drv; if (i) add_disk(disk); } host->usage_count--; return 0; } static int ida_revalidate(struct gendisk *disk) { drv_info_t *drv = disk->private_data; set_capacity(disk, drv->nr_blks); return 0; } /******************************************************************** name: pollcomplete Wait polling for a command to complete. The memory mapped FIFO is polled for the completion. Used only at init time, interrupts disabled. ********************************************************************/ static int pollcomplete(int ctlr) { int done; int i; /* Wait (up to 2 seconds) for a command to complete */ for (i = 200000; i > 0; i--) { done = hba[ctlr]->access.command_completed(hba[ctlr]); if (done == 0) { udelay(10); /* a short fixed delay */ } else return (done); } /* Invalid address to tell caller we ran out of time */ return 1; } /***************************************************************** start_fwbk Starts controller firmwares background processing. Currently only the Integrated Raid controller needs this done. If the PCI mem address registers are written to after this, data corruption may occur *****************************************************************/ static void start_fwbk(int ctlr) { id_ctlr_t *id_ctlr_buf; int ret_code; if( (hba[ctlr]->board_id != 0x40400E11) && (hba[ctlr]->board_id != 0x40480E11) ) /* Not a Integrated Raid, so there is nothing for us to do */ return; printk(KERN_DEBUG "cpqarray: Starting firmware's background" " processing\n"); /* Command does not return anything, but idasend command needs a buffer */ id_ctlr_buf = kmalloc(sizeof(id_ctlr_t), GFP_KERNEL); if(id_ctlr_buf==NULL) { printk(KERN_WARNING "cpqarray: Out of memory. " "Unable to start background processing.\n"); return; } ret_code = sendcmd(RESUME_BACKGROUND_ACTIVITY, ctlr, id_ctlr_buf, 0, 0, 0, 0); if(ret_code != IO_OK) printk(KERN_WARNING "cpqarray: Unable to start" " background processing\n"); kfree(id_ctlr_buf); } /***************************************************************** getgeometry Get ida logical volume geometry from the controller This is a large bit of code which once existed in two flavors, It is used only at init time. *****************************************************************/ static void getgeometry(int ctlr) { id_log_drv_t *id_ldrive; id_ctlr_t *id_ctlr_buf; sense_log_drv_stat_t *id_lstatus_buf; config_t *sense_config_buf; unsigned int log_unit, log_index; int ret_code, size; drv_info_t *drv; ctlr_info_t *info_p = hba[ctlr]; int i; info_p->log_drv_map = 0; id_ldrive = kzalloc(sizeof(id_log_drv_t), GFP_KERNEL); if (!id_ldrive) { printk( KERN_ERR "cpqarray: out of memory.\n"); goto err_0; } id_ctlr_buf = kzalloc(sizeof(id_ctlr_t), GFP_KERNEL); if (!id_ctlr_buf) { printk( KERN_ERR "cpqarray: out of memory.\n"); goto err_1; } id_lstatus_buf = kzalloc(sizeof(sense_log_drv_stat_t), GFP_KERNEL); if (!id_lstatus_buf) { printk( KERN_ERR "cpqarray: out of memory.\n"); goto err_2; } sense_config_buf = kzalloc(sizeof(config_t), GFP_KERNEL); if (!sense_config_buf) { printk( KERN_ERR "cpqarray: out of memory.\n"); goto err_3; } info_p->phys_drives = 0; info_p->log_drv_map = 0; info_p->drv_assign_map = 0; info_p->drv_spare_map = 0; info_p->mp_failed_drv_map = 0; /* only initialized here */ /* Get controllers info for this logical drive */ ret_code = sendcmd(ID_CTLR, ctlr, id_ctlr_buf, 0, 0, 0, 0); if (ret_code == IO_ERROR) { /* * If can't get controller info, set the logical drive map to 0, * so the idastubopen will fail on all logical drives * on the controller. */ printk(KERN_ERR "cpqarray: error sending ID controller\n"); goto err_4; } info_p->log_drives = id_ctlr_buf->nr_drvs; for(i=0;i<4;i++) info_p->firm_rev[i] = id_ctlr_buf->firm_rev[i]; info_p->ctlr_sig = id_ctlr_buf->cfg_sig; printk(" (%s)\n", info_p->product_name); /* * Initialize logical drive map to zero */ log_index = 0; /* * Get drive geometry for all logical drives */ if (id_ctlr_buf->nr_drvs > 16) printk(KERN_WARNING "cpqarray ida%d: This driver supports " "16 logical drives per controller.\n. " " Additional drives will not be " "detected\n", ctlr); for (log_unit = 0; (log_index < id_ctlr_buf->nr_drvs) && (log_unit < NWD); log_unit++) { size = sizeof(sense_log_drv_stat_t); /* Send "Identify logical drive status" cmd */ ret_code = sendcmd(SENSE_LOG_DRV_STAT, ctlr, id_lstatus_buf, size, 0, 0, log_unit); if (ret_code == IO_ERROR) { /* If can't get logical drive status, set the logical drive map to 0, so the idastubopen will fail for all logical drives on the controller. */ info_p->log_drv_map = 0; printk( KERN_WARNING "cpqarray ida%d: idaGetGeometry - Controller" " failed to report status of logical drive %d\n" "Access to this controller has been disabled\n", ctlr, log_unit); goto err_4; } /* Make sure the logical drive is configured */ if (id_lstatus_buf->status != LOG_NOT_CONF) { ret_code = sendcmd(ID_LOG_DRV, ctlr, id_ldrive, sizeof(id_log_drv_t), 0, 0, log_unit); /* If error, the bit for this logical drive won't be set and idastubopen will return error. */ if (ret_code != IO_ERROR) { drv = &info_p->drv[log_unit]; drv->blk_size = id_ldrive->blk_size; drv->nr_blks = id_ldrive->nr_blks; drv->cylinders = id_ldrive->drv.cyl; drv->heads = id_ldrive->drv.heads; drv->sectors = id_ldrive->drv.sect_per_track; info_p->log_drv_map |= (1 << log_unit); printk(KERN_INFO "cpqarray ida/c%dd%d: blksz=%d nr_blks=%d\n", ctlr, log_unit, drv->blk_size, drv->nr_blks); ret_code = sendcmd(SENSE_CONFIG, ctlr, sense_config_buf, sizeof(config_t), 0, 0, log_unit); if (ret_code == IO_ERROR) { info_p->log_drv_map = 0; printk(KERN_ERR "cpqarray: error sending sense config\n"); goto err_4; } info_p->phys_drives = sense_config_buf->ctlr_phys_drv; info_p->drv_assign_map |= sense_config_buf->drv_asgn_map; info_p->drv_assign_map |= sense_config_buf->spare_asgn_map; info_p->drv_spare_map |= sense_config_buf->spare_asgn_map; } /* end of if no error on id_ldrive */ log_index = log_index + 1; } /* end of if logical drive configured */ } /* end of for log_unit */ /* Free all the buffers and return */ err_4: kfree(sense_config_buf); err_3: kfree(id_lstatus_buf); err_2: kfree(id_ctlr_buf); err_1: kfree(id_ldrive); err_0: return; } static void __exit cpqarray_exit(void) { int i; pci_unregister_driver(&cpqarray_pci_driver); /* Double check that all controller entries have been removed */ for(i=0; i<MAX_CTLR; i++) { if (hba[i] != NULL) { printk(KERN_WARNING "cpqarray: Removing EISA " "controller %d\n", i); cpqarray_remove_one_eisa(i); } } remove_proc_entry("driver/cpqarray", NULL); } module_init(cpqarray_init) module_exit(cpqarray_exit)