/* * driver/dma/coh901318.c * * Copyright (C) 2007-2009 ST-Ericsson * License terms: GNU General Public License (GPL) version 2 * DMA driver for COH 901 318 * Author: Per Friden <per.friden@stericsson.com> */ #include <linux/init.h> #include <linux/module.h> #include <linux/kernel.h> /* printk() */ #include <linux/fs.h> /* everything... */ #include <linux/scatterlist.h> #include <linux/slab.h> /* kmalloc() */ #include <linux/dmaengine.h> #include <linux/platform_device.h> #include <linux/device.h> #include <linux/irqreturn.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/uaccess.h> #include <linux/debugfs.h> #include <mach/coh901318.h> #include "coh901318_lli.h" #include "dmaengine.h" #define COHC_2_DEV(cohc) (&cohc->chan.dev->device) #ifdef VERBOSE_DEBUG #define COH_DBG(x) ({ if (1) x; 0; }) #else #define COH_DBG(x) ({ if (0) x; 0; }) #endif struct coh901318_desc { struct dma_async_tx_descriptor desc; struct list_head node; struct scatterlist *sg; unsigned int sg_len; struct coh901318_lli *lli; enum dma_transfer_direction dir; unsigned long flags; u32 head_config; u32 head_ctrl; }; struct coh901318_base { struct device *dev; void __iomem *virtbase; struct coh901318_pool pool; struct powersave pm; struct dma_device dma_slave; struct dma_device dma_memcpy; struct coh901318_chan *chans; struct coh901318_platform *platform; }; struct coh901318_chan { spinlock_t lock; int allocated; int id; int stopped; struct work_struct free_work; struct dma_chan chan; struct tasklet_struct tasklet; struct list_head active; struct list_head queue; struct list_head free; unsigned long nbr_active_done; unsigned long busy; u32 runtime_addr; u32 runtime_ctrl; struct coh901318_base *base; }; static void coh901318_list_print(struct coh901318_chan *cohc, struct coh901318_lli *lli) { struct coh901318_lli *l = lli; int i = 0; while (l) { dev_vdbg(COHC_2_DEV(cohc), "i %d, lli %p, ctrl 0x%x, src 0x%x" ", dst 0x%x, link 0x%x virt_link_addr 0x%p\n", i, l, l->control, l->src_addr, l->dst_addr, l->link_addr, l->virt_link_addr); i++; l = l->virt_link_addr; } } #ifdef CONFIG_DEBUG_FS #define COH901318_DEBUGFS_ASSIGN(x, y) (x = y) static struct coh901318_base *debugfs_dma_base; static struct dentry *dma_dentry; static int coh901318_debugfs_read(struct file *file, char __user *buf, size_t count, loff_t *f_pos) { u64 started_channels = debugfs_dma_base->pm.started_channels; int pool_count = debugfs_dma_base->pool.debugfs_pool_counter; int i; int ret = 0; char *dev_buf; char *tmp; int dev_size; dev_buf = kmalloc(4*1024, GFP_KERNEL); if (dev_buf == NULL) goto err_kmalloc; tmp = dev_buf; tmp += sprintf(tmp, "DMA -- enabled dma channels\n"); for (i = 0; i < debugfs_dma_base->platform->max_channels; i++) if (started_channels & (1 << i)) tmp += sprintf(tmp, "channel %d\n", i); tmp += sprintf(tmp, "Pool alloc nbr %d\n", pool_count); dev_size = tmp - dev_buf; /* No more to read if offset != 0 */ if (*f_pos > dev_size) goto out; if (count > dev_size - *f_pos) count = dev_size - *f_pos; if (copy_to_user(buf, dev_buf + *f_pos, count)) ret = -EINVAL; ret = count; *f_pos += count; out: kfree(dev_buf); return ret; err_kmalloc: return 0; } static const struct file_operations coh901318_debugfs_status_operations = { .owner = THIS_MODULE, .open = simple_open, .read = coh901318_debugfs_read, .llseek = default_llseek, }; static int __init init_coh901318_debugfs(void) { dma_dentry = debugfs_create_dir("dma", NULL); (void) debugfs_create_file("status", S_IFREG | S_IRUGO, dma_dentry, NULL, &coh901318_debugfs_status_operations); return 0; } static void __exit exit_coh901318_debugfs(void) { debugfs_remove_recursive(dma_dentry); } module_init(init_coh901318_debugfs); module_exit(exit_coh901318_debugfs); #else #define COH901318_DEBUGFS_ASSIGN(x, y) #endif /* CONFIG_DEBUG_FS */ static inline struct coh901318_chan *to_coh901318_chan(struct dma_chan *chan) { return container_of(chan, struct coh901318_chan, chan); } static inline dma_addr_t cohc_dev_addr(struct coh901318_chan *cohc) { /* Runtime supplied address will take precedence */ if (cohc->runtime_addr) return cohc->runtime_addr; return cohc->base->platform->chan_conf[cohc->id].dev_addr; } static inline const struct coh901318_params * cohc_chan_param(struct coh901318_chan *cohc) { return &cohc->base->platform->chan_conf[cohc->id].param; } static inline const struct coh_dma_channel * cohc_chan_conf(struct coh901318_chan *cohc) { return &cohc->base->platform->chan_conf[cohc->id]; } static void enable_powersave(struct coh901318_chan *cohc) { unsigned long flags; struct powersave *pm = &cohc->base->pm; spin_lock_irqsave(&pm->lock, flags); pm->started_channels &= ~(1ULL << cohc->id); if (!pm->started_channels) { /* DMA no longer intends to access memory */ cohc->base->platform->access_memory_state(cohc->base->dev, false); } spin_unlock_irqrestore(&pm->lock, flags); } static void disable_powersave(struct coh901318_chan *cohc) { unsigned long flags; struct powersave *pm = &cohc->base->pm; spin_lock_irqsave(&pm->lock, flags); if (!pm->started_channels) { /* DMA intends to access memory */ cohc->base->platform->access_memory_state(cohc->base->dev, true); } pm->started_channels |= (1ULL << cohc->id); spin_unlock_irqrestore(&pm->lock, flags); } static inline int coh901318_set_ctrl(struct coh901318_chan *cohc, u32 control) { int channel = cohc->id; void __iomem *virtbase = cohc->base->virtbase; writel(control, virtbase + COH901318_CX_CTRL + COH901318_CX_CTRL_SPACING * channel); return 0; } static inline int coh901318_set_conf(struct coh901318_chan *cohc, u32 conf) { int channel = cohc->id; void __iomem *virtbase = cohc->base->virtbase; writel(conf, virtbase + COH901318_CX_CFG + COH901318_CX_CFG_SPACING*channel); return 0; } static int coh901318_start(struct coh901318_chan *cohc) { u32 val; int channel = cohc->id; void __iomem *virtbase = cohc->base->virtbase; disable_powersave(cohc); val = readl(virtbase + COH901318_CX_CFG + COH901318_CX_CFG_SPACING * channel); /* Enable channel */ val |= COH901318_CX_CFG_CH_ENABLE; writel(val, virtbase + COH901318_CX_CFG + COH901318_CX_CFG_SPACING * channel); return 0; } static int coh901318_prep_linked_list(struct coh901318_chan *cohc, struct coh901318_lli *lli) { int channel = cohc->id; void __iomem *virtbase = cohc->base->virtbase; BUG_ON(readl(virtbase + COH901318_CX_STAT + COH901318_CX_STAT_SPACING*channel) & COH901318_CX_STAT_ACTIVE); writel(lli->src_addr, virtbase + COH901318_CX_SRC_ADDR + COH901318_CX_SRC_ADDR_SPACING * channel); writel(lli->dst_addr, virtbase + COH901318_CX_DST_ADDR + COH901318_CX_DST_ADDR_SPACING * channel); writel(lli->link_addr, virtbase + COH901318_CX_LNK_ADDR + COH901318_CX_LNK_ADDR_SPACING * channel); writel(lli->control, virtbase + COH901318_CX_CTRL + COH901318_CX_CTRL_SPACING * channel); return 0; } static struct coh901318_desc * coh901318_desc_get(struct coh901318_chan *cohc) { struct coh901318_desc *desc; if (list_empty(&cohc->free)) { /* alloc new desc because we're out of used ones * TODO: alloc a pile of descs instead of just one, * avoid many small allocations. */ desc = kzalloc(sizeof(struct coh901318_desc), GFP_NOWAIT); if (desc == NULL) goto out; INIT_LIST_HEAD(&desc->node); dma_async_tx_descriptor_init(&desc->desc, &cohc->chan); } else { /* Reuse an old desc. */ desc = list_first_entry(&cohc->free, struct coh901318_desc, node); list_del(&desc->node); /* Initialize it a bit so it's not insane */ desc->sg = NULL; desc->sg_len = 0; desc->desc.callback = NULL; desc->desc.callback_param = NULL; } out: return desc; } static void coh901318_desc_free(struct coh901318_chan *cohc, struct coh901318_desc *cohd) { list_add_tail(&cohd->node, &cohc->free); } /* call with irq lock held */ static void coh901318_desc_submit(struct coh901318_chan *cohc, struct coh901318_desc *desc) { list_add_tail(&desc->node, &cohc->active); } static struct coh901318_desc * coh901318_first_active_get(struct coh901318_chan *cohc) { struct coh901318_desc *d; if (list_empty(&cohc->active)) return NULL; d = list_first_entry(&cohc->active, struct coh901318_desc, node); return d; } static void coh901318_desc_remove(struct coh901318_desc *cohd) { list_del(&cohd->node); } static void coh901318_desc_queue(struct coh901318_chan *cohc, struct coh901318_desc *desc) { list_add_tail(&desc->node, &cohc->queue); } static struct coh901318_desc * coh901318_first_queued(struct coh901318_chan *cohc) { struct coh901318_desc *d; if (list_empty(&cohc->queue)) return NULL; d = list_first_entry(&cohc->queue, struct coh901318_desc, node); return d; } static inline u32 coh901318_get_bytes_in_lli(struct coh901318_lli *in_lli) { struct coh901318_lli *lli = in_lli; u32 bytes = 0; while (lli) { bytes += lli->control & COH901318_CX_CTRL_TC_VALUE_MASK; lli = lli->virt_link_addr; } return bytes; } /* * Get the number of bytes left to transfer on this channel, * it is unwise to call this before stopping the channel for * absolute measures, but for a rough guess you can still call * it. */ static u32 coh901318_get_bytes_left(struct dma_chan *chan) { struct coh901318_chan *cohc = to_coh901318_chan(chan); struct coh901318_desc *cohd; struct list_head *pos; unsigned long flags; u32 left = 0; int i = 0; spin_lock_irqsave(&cohc->lock, flags); /* * If there are many queued jobs, we iterate and add the * size of them all. We take a special look on the first * job though, since it is probably active. */ list_for_each(pos, &cohc->active) { /* * The first job in the list will be working on the * hardware. The job can be stopped but still active, * so that the transfer counter is somewhere inside * the buffer. */ cohd = list_entry(pos, struct coh901318_desc, node); if (i == 0) { struct coh901318_lli *lli; dma_addr_t ladd; /* Read current transfer count value */ left = readl(cohc->base->virtbase + COH901318_CX_CTRL + COH901318_CX_CTRL_SPACING * cohc->id) & COH901318_CX_CTRL_TC_VALUE_MASK; /* See if the transfer is linked... */ ladd = readl(cohc->base->virtbase + COH901318_CX_LNK_ADDR + COH901318_CX_LNK_ADDR_SPACING * cohc->id) & ~COH901318_CX_LNK_LINK_IMMEDIATE; /* Single transaction */ if (!ladd) continue; /* * Linked transaction, follow the lli, find the * currently processing lli, and proceed to the next */ lli = cohd->lli; while (lli && lli->link_addr != ladd) lli = lli->virt_link_addr; if (lli) lli = lli->virt_link_addr; /* * Follow remaining lli links around to count the total * number of bytes left */ left += coh901318_get_bytes_in_lli(lli); } else { left += coh901318_get_bytes_in_lli(cohd->lli); } i++; } /* Also count bytes in the queued jobs */ list_for_each(pos, &cohc->queue) { cohd = list_entry(pos, struct coh901318_desc, node); left += coh901318_get_bytes_in_lli(cohd->lli); } spin_unlock_irqrestore(&cohc->lock, flags); return left; } /* * Pauses a transfer without losing data. Enables power save. * Use this function in conjunction with coh901318_resume. */ static void coh901318_pause(struct dma_chan *chan) { u32 val; unsigned long flags; struct coh901318_chan *cohc = to_coh901318_chan(chan); int channel = cohc->id; void __iomem *virtbase = cohc->base->virtbase; spin_lock_irqsave(&cohc->lock, flags); /* Disable channel in HW */ val = readl(virtbase + COH901318_CX_CFG + COH901318_CX_CFG_SPACING * channel); /* Stopping infinite transfer */ if ((val & COH901318_CX_CTRL_TC_ENABLE) == 0 && (val & COH901318_CX_CFG_CH_ENABLE)) cohc->stopped = 1; val &= ~COH901318_CX_CFG_CH_ENABLE; /* Enable twice, HW bug work around */ writel(val, virtbase + COH901318_CX_CFG + COH901318_CX_CFG_SPACING * channel); writel(val, virtbase + COH901318_CX_CFG + COH901318_CX_CFG_SPACING * channel); /* Spin-wait for it to actually go inactive */ while (readl(virtbase + COH901318_CX_STAT+COH901318_CX_STAT_SPACING * channel) & COH901318_CX_STAT_ACTIVE) cpu_relax(); /* Check if we stopped an active job */ if ((readl(virtbase + COH901318_CX_CTRL+COH901318_CX_CTRL_SPACING * channel) & COH901318_CX_CTRL_TC_VALUE_MASK) > 0) cohc->stopped = 1; enable_powersave(cohc); spin_unlock_irqrestore(&cohc->lock, flags); } /* Resumes a transfer that has been stopped via 300_dma_stop(..). Power save is handled. */ static void coh901318_resume(struct dma_chan *chan) { u32 val; unsigned long flags; struct coh901318_chan *cohc = to_coh901318_chan(chan); int channel = cohc->id; spin_lock_irqsave(&cohc->lock, flags); disable_powersave(cohc); if (cohc->stopped) { /* Enable channel in HW */ val = readl(cohc->base->virtbase + COH901318_CX_CFG + COH901318_CX_CFG_SPACING * channel); val |= COH901318_CX_CFG_CH_ENABLE; writel(val, cohc->base->virtbase + COH901318_CX_CFG + COH901318_CX_CFG_SPACING*channel); cohc->stopped = 0; } spin_unlock_irqrestore(&cohc->lock, flags); } bool coh901318_filter_id(struct dma_chan *chan, void *chan_id) { unsigned int ch_nr = (unsigned int) chan_id; if (ch_nr == to_coh901318_chan(chan)->id) return true; return false; } EXPORT_SYMBOL(coh901318_filter_id); /* * DMA channel allocation */ static int coh901318_config(struct coh901318_chan *cohc, struct coh901318_params *param) { unsigned long flags; const struct coh901318_params *p; int channel = cohc->id; void __iomem *virtbase = cohc->base->virtbase; spin_lock_irqsave(&cohc->lock, flags); if (param) p = param; else p = &cohc->base->platform->chan_conf[channel].param; /* Clear any pending BE or TC interrupt */ if (channel < 32) { writel(1 << channel, virtbase + COH901318_BE_INT_CLEAR1); writel(1 << channel, virtbase + COH901318_TC_INT_CLEAR1); } else { writel(1 << (channel - 32), virtbase + COH901318_BE_INT_CLEAR2); writel(1 << (channel - 32), virtbase + COH901318_TC_INT_CLEAR2); } coh901318_set_conf(cohc, p->config); coh901318_set_ctrl(cohc, p->ctrl_lli_last); spin_unlock_irqrestore(&cohc->lock, flags); return 0; } /* must lock when calling this function * start queued jobs, if any * TODO: start all queued jobs in one go * * Returns descriptor if queued job is started otherwise NULL. * If the queue is empty NULL is returned. */ static struct coh901318_desc *coh901318_queue_start(struct coh901318_chan *cohc) { struct coh901318_desc *cohd; /* * start queued jobs, if any * TODO: transmit all queued jobs in one go */ cohd = coh901318_first_queued(cohc); if (cohd != NULL) { /* Remove from queue */ coh901318_desc_remove(cohd); /* initiate DMA job */ cohc->busy = 1; coh901318_desc_submit(cohc, cohd); /* Program the transaction head */ coh901318_set_conf(cohc, cohd->head_config); coh901318_set_ctrl(cohc, cohd->head_ctrl); coh901318_prep_linked_list(cohc, cohd->lli); /* start dma job on this channel */ coh901318_start(cohc); } return cohd; } /* * This tasklet is called from the interrupt handler to * handle each descriptor (DMA job) that is sent to a channel. */ static void dma_tasklet(unsigned long data) { struct coh901318_chan *cohc = (struct coh901318_chan *) data; struct coh901318_desc *cohd_fin; unsigned long flags; dma_async_tx_callback callback; void *callback_param; dev_vdbg(COHC_2_DEV(cohc), "[%s] chan_id %d" " nbr_active_done %ld\n", __func__, cohc->id, cohc->nbr_active_done); spin_lock_irqsave(&cohc->lock, flags); /* get first active descriptor entry from list */ cohd_fin = coh901318_first_active_get(cohc); if (cohd_fin == NULL) goto err; /* locate callback to client */ callback = cohd_fin->desc.callback; callback_param = cohd_fin->desc.callback_param; /* sign this job as completed on the channel */ dma_cookie_complete(&cohd_fin->desc); /* release the lli allocation and remove the descriptor */ coh901318_lli_free(&cohc->base->pool, &cohd_fin->lli); /* return desc to free-list */ coh901318_desc_remove(cohd_fin); coh901318_desc_free(cohc, cohd_fin); spin_unlock_irqrestore(&cohc->lock, flags); /* Call the callback when we're done */ if (callback) callback(callback_param); spin_lock_irqsave(&cohc->lock, flags); /* * If another interrupt fired while the tasklet was scheduling, * we don't get called twice, so we have this number of active * counter that keep track of the number of IRQs expected to * be handled for this channel. If there happen to be more than * one IRQ to be ack:ed, we simply schedule this tasklet again. */ cohc->nbr_active_done--; if (cohc->nbr_active_done) { dev_dbg(COHC_2_DEV(cohc), "scheduling tasklet again, new IRQs " "came in while we were scheduling this tasklet\n"); if (cohc_chan_conf(cohc)->priority_high) tasklet_hi_schedule(&cohc->tasklet); else tasklet_schedule(&cohc->tasklet); } spin_unlock_irqrestore(&cohc->lock, flags); return; err: spin_unlock_irqrestore(&cohc->lock, flags); dev_err(COHC_2_DEV(cohc), "[%s] No active dma desc\n", __func__); } /* called from interrupt context */ static void dma_tc_handle(struct coh901318_chan *cohc) { /* * If the channel is not allocated, then we shouldn't have * any TC interrupts on it. */ if (!cohc->allocated) { dev_err(COHC_2_DEV(cohc), "spurious interrupt from " "unallocated channel\n"); return; } spin_lock(&cohc->lock); /* * When we reach this point, at least one queue item * should have been moved over from cohc->queue to * cohc->active and run to completion, that is why we're * getting a terminal count interrupt is it not? * If you get this BUG() the most probable cause is that * the individual nodes in the lli chain have IRQ enabled, * so check your platform config for lli chain ctrl. */ BUG_ON(list_empty(&cohc->active)); cohc->nbr_active_done++; /* * This attempt to take a job from cohc->queue, put it * into cohc->active and start it. */ if (coh901318_queue_start(cohc) == NULL) cohc->busy = 0; spin_unlock(&cohc->lock); /* * This tasklet will remove items from cohc->active * and thus terminates them. */ if (cohc_chan_conf(cohc)->priority_high) tasklet_hi_schedule(&cohc->tasklet); else tasklet_schedule(&cohc->tasklet); } static irqreturn_t dma_irq_handler(int irq, void *dev_id) { u32 status1; u32 status2; int i; int ch; struct coh901318_base *base = dev_id; struct coh901318_chan *cohc; void __iomem *virtbase = base->virtbase; status1 = readl(virtbase + COH901318_INT_STATUS1); status2 = readl(virtbase + COH901318_INT_STATUS2); if (unlikely(status1 == 0 && status2 == 0)) { dev_warn(base->dev, "spurious DMA IRQ from no channel!\n"); return IRQ_HANDLED; } /* TODO: consider handle IRQ in tasklet here to * minimize interrupt latency */ /* Check the first 32 DMA channels for IRQ */ while (status1) { /* Find first bit set, return as a number. */ i = ffs(status1) - 1; ch = i; cohc = &base->chans[ch]; spin_lock(&cohc->lock); /* Mask off this bit */ status1 &= ~(1 << i); /* Check the individual channel bits */ if (test_bit(i, virtbase + COH901318_BE_INT_STATUS1)) { dev_crit(COHC_2_DEV(cohc), "DMA bus error on channel %d!\n", ch); BUG_ON(1); /* Clear BE interrupt */ __set_bit(i, virtbase + COH901318_BE_INT_CLEAR1); } else { /* Caused by TC, really? */ if (unlikely(!test_bit(i, virtbase + COH901318_TC_INT_STATUS1))) { dev_warn(COHC_2_DEV(cohc), "ignoring interrupt not caused by terminal count on channel %d\n", ch); /* Clear TC interrupt */ BUG_ON(1); __set_bit(i, virtbase + COH901318_TC_INT_CLEAR1); } else { /* Enable powersave if transfer has finished */ if (!(readl(virtbase + COH901318_CX_STAT + COH901318_CX_STAT_SPACING*ch) & COH901318_CX_STAT_ENABLED)) { enable_powersave(cohc); } /* Must clear TC interrupt before calling * dma_tc_handle * in case tc_handle initiate a new dma job */ __set_bit(i, virtbase + COH901318_TC_INT_CLEAR1); dma_tc_handle(cohc); } } spin_unlock(&cohc->lock); } /* Check the remaining 32 DMA channels for IRQ */ while (status2) { /* Find first bit set, return as a number. */ i = ffs(status2) - 1; ch = i + 32; cohc = &base->chans[ch]; spin_lock(&cohc->lock); /* Mask off this bit */ status2 &= ~(1 << i); /* Check the individual channel bits */ if (test_bit(i, virtbase + COH901318_BE_INT_STATUS2)) { dev_crit(COHC_2_DEV(cohc), "DMA bus error on channel %d!\n", ch); /* Clear BE interrupt */ BUG_ON(1); __set_bit(i, virtbase + COH901318_BE_INT_CLEAR2); } else { /* Caused by TC, really? */ if (unlikely(!test_bit(i, virtbase + COH901318_TC_INT_STATUS2))) { dev_warn(COHC_2_DEV(cohc), "ignoring interrupt not caused by terminal count on channel %d\n", ch); /* Clear TC interrupt */ __set_bit(i, virtbase + COH901318_TC_INT_CLEAR2); BUG_ON(1); } else { /* Enable powersave if transfer has finished */ if (!(readl(virtbase + COH901318_CX_STAT + COH901318_CX_STAT_SPACING*ch) & COH901318_CX_STAT_ENABLED)) { enable_powersave(cohc); } /* Must clear TC interrupt before calling * dma_tc_handle * in case tc_handle initiate a new dma job */ __set_bit(i, virtbase + COH901318_TC_INT_CLEAR2); dma_tc_handle(cohc); } } spin_unlock(&cohc->lock); } return IRQ_HANDLED; } static int coh901318_alloc_chan_resources(struct dma_chan *chan) { struct coh901318_chan *cohc = to_coh901318_chan(chan); unsigned long flags; dev_vdbg(COHC_2_DEV(cohc), "[%s] DMA channel %d\n", __func__, cohc->id); if (chan->client_count > 1) return -EBUSY; spin_lock_irqsave(&cohc->lock, flags); coh901318_config(cohc, NULL); cohc->allocated = 1; dma_cookie_init(chan); spin_unlock_irqrestore(&cohc->lock, flags); return 1; } static void coh901318_free_chan_resources(struct dma_chan *chan) { struct coh901318_chan *cohc = to_coh901318_chan(chan); int channel = cohc->id; unsigned long flags; spin_lock_irqsave(&cohc->lock, flags); /* Disable HW */ writel(0x00000000U, cohc->base->virtbase + COH901318_CX_CFG + COH901318_CX_CFG_SPACING*channel); writel(0x00000000U, cohc->base->virtbase + COH901318_CX_CTRL + COH901318_CX_CTRL_SPACING*channel); cohc->allocated = 0; spin_unlock_irqrestore(&cohc->lock, flags); chan->device->device_control(chan, DMA_TERMINATE_ALL, 0); } static dma_cookie_t coh901318_tx_submit(struct dma_async_tx_descriptor *tx) { struct coh901318_desc *cohd = container_of(tx, struct coh901318_desc, desc); struct coh901318_chan *cohc = to_coh901318_chan(tx->chan); unsigned long flags; dma_cookie_t cookie; spin_lock_irqsave(&cohc->lock, flags); cookie = dma_cookie_assign(tx); coh901318_desc_queue(cohc, cohd); spin_unlock_irqrestore(&cohc->lock, flags); return cookie; } static struct dma_async_tx_descriptor * coh901318_prep_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, size_t size, unsigned long flags) { struct coh901318_lli *lli; struct coh901318_desc *cohd; unsigned long flg; struct coh901318_chan *cohc = to_coh901318_chan(chan); int lli_len; u32 ctrl_last = cohc_chan_param(cohc)->ctrl_lli_last; int ret; spin_lock_irqsave(&cohc->lock, flg); dev_vdbg(COHC_2_DEV(cohc), "[%s] channel %d src 0x%x dest 0x%x size %d\n", __func__, cohc->id, src, dest, size); if (flags & DMA_PREP_INTERRUPT) /* Trigger interrupt after last lli */ ctrl_last |= COH901318_CX_CTRL_TC_IRQ_ENABLE; lli_len = size >> MAX_DMA_PACKET_SIZE_SHIFT; if ((lli_len << MAX_DMA_PACKET_SIZE_SHIFT) < size) lli_len++; lli = coh901318_lli_alloc(&cohc->base->pool, lli_len); if (lli == NULL) goto err; ret = coh901318_lli_fill_memcpy( &cohc->base->pool, lli, src, size, dest, cohc_chan_param(cohc)->ctrl_lli_chained, ctrl_last); if (ret) goto err; COH_DBG(coh901318_list_print(cohc, lli)); /* Pick a descriptor to handle this transfer */ cohd = coh901318_desc_get(cohc); cohd->lli = lli; cohd->flags = flags; cohd->desc.tx_submit = coh901318_tx_submit; spin_unlock_irqrestore(&cohc->lock, flg); return &cohd->desc; err: spin_unlock_irqrestore(&cohc->lock, flg); return NULL; } static struct dma_async_tx_descriptor * coh901318_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct coh901318_chan *cohc = to_coh901318_chan(chan); struct coh901318_lli *lli; struct coh901318_desc *cohd; const struct coh901318_params *params; struct scatterlist *sg; int len = 0; int size; int i; u32 ctrl_chained = cohc_chan_param(cohc)->ctrl_lli_chained; u32 ctrl = cohc_chan_param(cohc)->ctrl_lli; u32 ctrl_last = cohc_chan_param(cohc)->ctrl_lli_last; u32 config; unsigned long flg; int ret; if (!sgl) goto out; if (sgl->length == 0) goto out; spin_lock_irqsave(&cohc->lock, flg); dev_vdbg(COHC_2_DEV(cohc), "[%s] sg_len %d dir %d\n", __func__, sg_len, direction); if (flags & DMA_PREP_INTERRUPT) /* Trigger interrupt after last lli */ ctrl_last |= COH901318_CX_CTRL_TC_IRQ_ENABLE; params = cohc_chan_param(cohc); config = params->config; /* * Add runtime-specific control on top, make * sure the bits you set per peripheral channel are * cleared in the default config from the platform. */ ctrl_chained |= cohc->runtime_ctrl; ctrl_last |= cohc->runtime_ctrl; ctrl |= cohc->runtime_ctrl; if (direction == DMA_MEM_TO_DEV) { u32 tx_flags = COH901318_CX_CTRL_PRDD_SOURCE | COH901318_CX_CTRL_SRC_ADDR_INC_ENABLE; config |= COH901318_CX_CFG_RM_MEMORY_TO_PRIMARY; ctrl_chained |= tx_flags; ctrl_last |= tx_flags; ctrl |= tx_flags; } else if (direction == DMA_DEV_TO_MEM) { u32 rx_flags = COH901318_CX_CTRL_PRDD_DEST | COH901318_CX_CTRL_DST_ADDR_INC_ENABLE; config |= COH901318_CX_CFG_RM_PRIMARY_TO_MEMORY; ctrl_chained |= rx_flags; ctrl_last |= rx_flags; ctrl |= rx_flags; } else goto err_direction; /* The dma only supports transmitting packages up to * MAX_DMA_PACKET_SIZE. Calculate to total number of * dma elemts required to send the entire sg list */ for_each_sg(sgl, sg, sg_len, i) { unsigned int factor; size = sg_dma_len(sg); if (size <= MAX_DMA_PACKET_SIZE) { len++; continue; } factor = size >> MAX_DMA_PACKET_SIZE_SHIFT; if ((factor << MAX_DMA_PACKET_SIZE_SHIFT) < size) factor++; len += factor; } pr_debug("Allocate %d lli:s for this transfer\n", len); lli = coh901318_lli_alloc(&cohc->base->pool, len); if (lli == NULL) goto err_dma_alloc; /* initiate allocated lli list */ ret = coh901318_lli_fill_sg(&cohc->base->pool, lli, sgl, sg_len, cohc_dev_addr(cohc), ctrl_chained, ctrl, ctrl_last, direction, COH901318_CX_CTRL_TC_IRQ_ENABLE); if (ret) goto err_lli_fill; COH_DBG(coh901318_list_print(cohc, lli)); /* Pick a descriptor to handle this transfer */ cohd = coh901318_desc_get(cohc); cohd->head_config = config; /* * Set the default head ctrl for the channel to the one from the * lli, things may have changed due to odd buffer alignment * etc. */ cohd->head_ctrl = lli->control; cohd->dir = direction; cohd->flags = flags; cohd->desc.tx_submit = coh901318_tx_submit; cohd->lli = lli; spin_unlock_irqrestore(&cohc->lock, flg); return &cohd->desc; err_lli_fill: err_dma_alloc: err_direction: spin_unlock_irqrestore(&cohc->lock, flg); out: return NULL; } static enum dma_status coh901318_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct coh901318_chan *cohc = to_coh901318_chan(chan); enum dma_status ret; ret = dma_cookie_status(chan, cookie, txstate); /* FIXME: should be conditional on ret != DMA_SUCCESS? */ dma_set_residue(txstate, coh901318_get_bytes_left(chan)); if (ret == DMA_IN_PROGRESS && cohc->stopped) ret = DMA_PAUSED; return ret; } static void coh901318_issue_pending(struct dma_chan *chan) { struct coh901318_chan *cohc = to_coh901318_chan(chan); unsigned long flags; spin_lock_irqsave(&cohc->lock, flags); /* * Busy means that pending jobs are already being processed, * and then there is no point in starting the queue: the * terminal count interrupt on the channel will take the next * job on the queue and execute it anyway. */ if (!cohc->busy) coh901318_queue_start(cohc); spin_unlock_irqrestore(&cohc->lock, flags); } /* * Here we wrap in the runtime dma control interface */ struct burst_table { int burst_8bit; int burst_16bit; int burst_32bit; u32 reg; }; static const struct burst_table burst_sizes[] = { { .burst_8bit = 64, .burst_16bit = 32, .burst_32bit = 16, .reg = COH901318_CX_CTRL_BURST_COUNT_64_BYTES, }, { .burst_8bit = 48, .burst_16bit = 24, .burst_32bit = 12, .reg = COH901318_CX_CTRL_BURST_COUNT_48_BYTES, }, { .burst_8bit = 32, .burst_16bit = 16, .burst_32bit = 8, .reg = COH901318_CX_CTRL_BURST_COUNT_32_BYTES, }, { .burst_8bit = 16, .burst_16bit = 8, .burst_32bit = 4, .reg = COH901318_CX_CTRL_BURST_COUNT_16_BYTES, }, { .burst_8bit = 8, .burst_16bit = 4, .burst_32bit = 2, .reg = COH901318_CX_CTRL_BURST_COUNT_8_BYTES, }, { .burst_8bit = 4, .burst_16bit = 2, .burst_32bit = 1, .reg = COH901318_CX_CTRL_BURST_COUNT_4_BYTES, }, { .burst_8bit = 2, .burst_16bit = 1, .burst_32bit = 0, .reg = COH901318_CX_CTRL_BURST_COUNT_2_BYTES, }, { .burst_8bit = 1, .burst_16bit = 0, .burst_32bit = 0, .reg = COH901318_CX_CTRL_BURST_COUNT_1_BYTE, }, }; static void coh901318_dma_set_runtimeconfig(struct dma_chan *chan, struct dma_slave_config *config) { struct coh901318_chan *cohc = to_coh901318_chan(chan); dma_addr_t addr; enum dma_slave_buswidth addr_width; u32 maxburst; u32 runtime_ctrl = 0; int i = 0; /* We only support mem to per or per to mem transfers */ if (config->direction == DMA_DEV_TO_MEM) { addr = config->src_addr; addr_width = config->src_addr_width; maxburst = config->src_maxburst; } else if (config->direction == DMA_MEM_TO_DEV) { addr = config->dst_addr; addr_width = config->dst_addr_width; maxburst = config->dst_maxburst; } else { dev_err(COHC_2_DEV(cohc), "illegal channel mode\n"); return; } dev_dbg(COHC_2_DEV(cohc), "configure channel for %d byte transfers\n", addr_width); switch (addr_width) { case DMA_SLAVE_BUSWIDTH_1_BYTE: runtime_ctrl |= COH901318_CX_CTRL_SRC_BUS_SIZE_8_BITS | COH901318_CX_CTRL_DST_BUS_SIZE_8_BITS; while (i < ARRAY_SIZE(burst_sizes)) { if (burst_sizes[i].burst_8bit <= maxburst) break; i++; } break; case DMA_SLAVE_BUSWIDTH_2_BYTES: runtime_ctrl |= COH901318_CX_CTRL_SRC_BUS_SIZE_16_BITS | COH901318_CX_CTRL_DST_BUS_SIZE_16_BITS; while (i < ARRAY_SIZE(burst_sizes)) { if (burst_sizes[i].burst_16bit <= maxburst) break; i++; } break; case DMA_SLAVE_BUSWIDTH_4_BYTES: /* Direction doesn't matter here, it's 32/32 bits */ runtime_ctrl |= COH901318_CX_CTRL_SRC_BUS_SIZE_32_BITS | COH901318_CX_CTRL_DST_BUS_SIZE_32_BITS; while (i < ARRAY_SIZE(burst_sizes)) { if (burst_sizes[i].burst_32bit <= maxburst) break; i++; } break; default: dev_err(COHC_2_DEV(cohc), "bad runtimeconfig: alien address width\n"); return; } runtime_ctrl |= burst_sizes[i].reg; dev_dbg(COHC_2_DEV(cohc), "selected burst size %d bytes for address width %d bytes, maxburst %d\n", burst_sizes[i].burst_8bit, addr_width, maxburst); cohc->runtime_addr = addr; cohc->runtime_ctrl = runtime_ctrl; } static int coh901318_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) { unsigned long flags; struct coh901318_chan *cohc = to_coh901318_chan(chan); struct coh901318_desc *cohd; void __iomem *virtbase = cohc->base->virtbase; if (cmd == DMA_SLAVE_CONFIG) { struct dma_slave_config *config = (struct dma_slave_config *) arg; coh901318_dma_set_runtimeconfig(chan, config); return 0; } if (cmd == DMA_PAUSE) { coh901318_pause(chan); return 0; } if (cmd == DMA_RESUME) { coh901318_resume(chan); return 0; } if (cmd != DMA_TERMINATE_ALL) return -ENXIO; /* The remainder of this function terminates the transfer */ coh901318_pause(chan); spin_lock_irqsave(&cohc->lock, flags); /* Clear any pending BE or TC interrupt */ if (cohc->id < 32) { writel(1 << cohc->id, virtbase + COH901318_BE_INT_CLEAR1); writel(1 << cohc->id, virtbase + COH901318_TC_INT_CLEAR1); } else { writel(1 << (cohc->id - 32), virtbase + COH901318_BE_INT_CLEAR2); writel(1 << (cohc->id - 32), virtbase + COH901318_TC_INT_CLEAR2); } enable_powersave(cohc); while ((cohd = coh901318_first_active_get(cohc))) { /* release the lli allocation*/ coh901318_lli_free(&cohc->base->pool, &cohd->lli); /* return desc to free-list */ coh901318_desc_remove(cohd); coh901318_desc_free(cohc, cohd); } while ((cohd = coh901318_first_queued(cohc))) { /* release the lli allocation*/ coh901318_lli_free(&cohc->base->pool, &cohd->lli); /* return desc to free-list */ coh901318_desc_remove(cohd); coh901318_desc_free(cohc, cohd); } cohc->nbr_active_done = 0; cohc->busy = 0; spin_unlock_irqrestore(&cohc->lock, flags); return 0; } void coh901318_base_init(struct dma_device *dma, const int *pick_chans, struct coh901318_base *base) { int chans_i; int i = 0; struct coh901318_chan *cohc; INIT_LIST_HEAD(&dma->channels); for (chans_i = 0; pick_chans[chans_i] != -1; chans_i += 2) { for (i = pick_chans[chans_i]; i <= pick_chans[chans_i+1]; i++) { cohc = &base->chans[i]; cohc->base = base; cohc->chan.device = dma; cohc->id = i; /* TODO: do we really need this lock if only one * client is connected to each channel? */ spin_lock_init(&cohc->lock); cohc->nbr_active_done = 0; cohc->busy = 0; INIT_LIST_HEAD(&cohc->free); INIT_LIST_HEAD(&cohc->active); INIT_LIST_HEAD(&cohc->queue); tasklet_init(&cohc->tasklet, dma_tasklet, (unsigned long) cohc); list_add_tail(&cohc->chan.device_node, &dma->channels); } } } static int __init coh901318_probe(struct platform_device *pdev) { int err = 0; struct coh901318_platform *pdata; struct coh901318_base *base; int irq; struct resource *io; io = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!io) goto err_get_resource; /* Map DMA controller registers to virtual memory */ if (request_mem_region(io->start, resource_size(io), pdev->dev.driver->name) == NULL) { err = -EBUSY; goto err_request_mem; } pdata = pdev->dev.platform_data; if (!pdata) goto err_no_platformdata; base = kmalloc(ALIGN(sizeof(struct coh901318_base), 4) + pdata->max_channels * sizeof(struct coh901318_chan), GFP_KERNEL); if (!base) goto err_alloc_coh_dma_channels; base->chans = ((void *)base) + ALIGN(sizeof(struct coh901318_base), 4); base->virtbase = ioremap(io->start, resource_size(io)); if (!base->virtbase) { err = -ENOMEM; goto err_no_ioremap; } base->dev = &pdev->dev; base->platform = pdata; spin_lock_init(&base->pm.lock); base->pm.started_channels = 0; COH901318_DEBUGFS_ASSIGN(debugfs_dma_base, base); platform_set_drvdata(pdev, base); irq = platform_get_irq(pdev, 0); if (irq < 0) goto err_no_irq; err = request_irq(irq, dma_irq_handler, IRQF_DISABLED, "coh901318", base); if (err) { dev_crit(&pdev->dev, "Cannot allocate IRQ for DMA controller!\n"); goto err_request_irq; } err = coh901318_pool_create(&base->pool, &pdev->dev, sizeof(struct coh901318_lli), 32); if (err) goto err_pool_create; /* init channels for device transfers */ coh901318_base_init(&base->dma_slave, base->platform->chans_slave, base); dma_cap_zero(base->dma_slave.cap_mask); dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask); base->dma_slave.device_alloc_chan_resources = coh901318_alloc_chan_resources; base->dma_slave.device_free_chan_resources = coh901318_free_chan_resources; base->dma_slave.device_prep_slave_sg = coh901318_prep_slave_sg; base->dma_slave.device_tx_status = coh901318_tx_status; base->dma_slave.device_issue_pending = coh901318_issue_pending; base->dma_slave.device_control = coh901318_control; base->dma_slave.dev = &pdev->dev; err = dma_async_device_register(&base->dma_slave); if (err) goto err_register_slave; /* init channels for memcpy */ coh901318_base_init(&base->dma_memcpy, base->platform->chans_memcpy, base); dma_cap_zero(base->dma_memcpy.cap_mask); dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask); base->dma_memcpy.device_alloc_chan_resources = coh901318_alloc_chan_resources; base->dma_memcpy.device_free_chan_resources = coh901318_free_chan_resources; base->dma_memcpy.device_prep_dma_memcpy = coh901318_prep_memcpy; base->dma_memcpy.device_tx_status = coh901318_tx_status; base->dma_memcpy.device_issue_pending = coh901318_issue_pending; base->dma_memcpy.device_control = coh901318_control; base->dma_memcpy.dev = &pdev->dev; /* * This controller can only access address at even 32bit boundaries, * i.e. 2^2 */ base->dma_memcpy.copy_align = 2; err = dma_async_device_register(&base->dma_memcpy); if (err) goto err_register_memcpy; dev_info(&pdev->dev, "Initialized COH901318 DMA on virtual base 0x%08x\n", (u32) base->virtbase); return err; err_register_memcpy: dma_async_device_unregister(&base->dma_slave); err_register_slave: coh901318_pool_destroy(&base->pool); err_pool_create: free_irq(platform_get_irq(pdev, 0), base); err_request_irq: err_no_irq: iounmap(base->virtbase); err_no_ioremap: kfree(base); err_alloc_coh_dma_channels: err_no_platformdata: release_mem_region(pdev->resource->start, resource_size(pdev->resource)); err_request_mem: err_get_resource: return err; } static int __exit coh901318_remove(struct platform_device *pdev) { struct coh901318_base *base = platform_get_drvdata(pdev); dma_async_device_unregister(&base->dma_memcpy); dma_async_device_unregister(&base->dma_slave); coh901318_pool_destroy(&base->pool); free_irq(platform_get_irq(pdev, 0), base); iounmap(base->virtbase); kfree(base); release_mem_region(pdev->resource->start, resource_size(pdev->resource)); return 0; } static struct platform_driver coh901318_driver = { .remove = __exit_p(coh901318_remove), .driver = { .name = "coh901318", }, }; int __init coh901318_init(void) { return platform_driver_probe(&coh901318_driver, coh901318_probe); } subsys_initcall(coh901318_init); void __exit coh901318_exit(void) { platform_driver_unregister(&coh901318_driver); } module_exit(coh901318_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Per Friden");