/* * Intel I/OAT DMA Linux driver * Copyright(c) 2004 - 2009 Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * * The full GNU General Public License is included in this distribution in * the file called "COPYING". * */ /* * This driver supports an Intel I/OAT DMA engine (versions >= 2), which * does asynchronous data movement and checksumming operations. */ #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/pci.h> #include <linux/interrupt.h> #include <linux/dmaengine.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/workqueue.h> #include <linux/prefetch.h> #include <linux/i7300_idle.h> #include "dma.h" #include "dma_v2.h" #include "registers.h" #include "hw.h" #include "../dmaengine.h" int ioat_ring_alloc_order = 8; module_param(ioat_ring_alloc_order, int, 0644); MODULE_PARM_DESC(ioat_ring_alloc_order, "ioat2+: allocate 2^n descriptors per channel" " (default: 8 max: 16)"); static int ioat_ring_max_alloc_order = IOAT_MAX_ORDER; module_param(ioat_ring_max_alloc_order, int, 0644); MODULE_PARM_DESC(ioat_ring_max_alloc_order, "ioat2+: upper limit for ring size (default: 16)"); void __ioat2_issue_pending(struct ioat2_dma_chan *ioat) { struct ioat_chan_common *chan = &ioat->base; ioat->dmacount += ioat2_ring_pending(ioat); ioat->issued = ioat->head; writew(ioat->dmacount, chan->reg_base + IOAT_CHAN_DMACOUNT_OFFSET); dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x count: %#x\n", __func__, ioat->head, ioat->tail, ioat->issued, ioat->dmacount); } void ioat2_issue_pending(struct dma_chan *c) { struct ioat2_dma_chan *ioat = to_ioat2_chan(c); if (ioat2_ring_pending(ioat)) { spin_lock_bh(&ioat->prep_lock); __ioat2_issue_pending(ioat); spin_unlock_bh(&ioat->prep_lock); } } /** * ioat2_update_pending - log pending descriptors * @ioat: ioat2+ channel * * Check if the number of unsubmitted descriptors has exceeded the * watermark. Called with prep_lock held */ static void ioat2_update_pending(struct ioat2_dma_chan *ioat) { if (ioat2_ring_pending(ioat) > ioat_pending_level) __ioat2_issue_pending(ioat); } static void __ioat2_start_null_desc(struct ioat2_dma_chan *ioat) { struct ioat_ring_ent *desc; struct ioat_dma_descriptor *hw; if (ioat2_ring_space(ioat) < 1) { dev_err(to_dev(&ioat->base), "Unable to start null desc - ring full\n"); return; } dev_dbg(to_dev(&ioat->base), "%s: head: %#x tail: %#x issued: %#x\n", __func__, ioat->head, ioat->tail, ioat->issued); desc = ioat2_get_ring_ent(ioat, ioat->head); hw = desc->hw; hw->ctl = 0; hw->ctl_f.null = 1; hw->ctl_f.int_en = 1; hw->ctl_f.compl_write = 1; /* set size to non-zero value (channel returns error when size is 0) */ hw->size = NULL_DESC_BUFFER_SIZE; hw->src_addr = 0; hw->dst_addr = 0; async_tx_ack(&desc->txd); ioat2_set_chainaddr(ioat, desc->txd.phys); dump_desc_dbg(ioat, desc); wmb(); ioat->head += 1; __ioat2_issue_pending(ioat); } static void ioat2_start_null_desc(struct ioat2_dma_chan *ioat) { spin_lock_bh(&ioat->prep_lock); __ioat2_start_null_desc(ioat); spin_unlock_bh(&ioat->prep_lock); } static void __cleanup(struct ioat2_dma_chan *ioat, dma_addr_t phys_complete) { struct ioat_chan_common *chan = &ioat->base; struct dma_async_tx_descriptor *tx; struct ioat_ring_ent *desc; bool seen_current = false; u16 active; int idx = ioat->tail, i; dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x\n", __func__, ioat->head, ioat->tail, ioat->issued); active = ioat2_ring_active(ioat); for (i = 0; i < active && !seen_current; i++) { smp_read_barrier_depends(); prefetch(ioat2_get_ring_ent(ioat, idx + i + 1)); desc = ioat2_get_ring_ent(ioat, idx + i); tx = &desc->txd; dump_desc_dbg(ioat, desc); if (tx->cookie) { ioat_dma_unmap(chan, tx->flags, desc->len, desc->hw); dma_cookie_complete(tx); if (tx->callback) { tx->callback(tx->callback_param); tx->callback = NULL; } } if (tx->phys == phys_complete) seen_current = true; } smp_mb(); /* finish all descriptor reads before incrementing tail */ ioat->tail = idx + i; BUG_ON(active && !seen_current); /* no active descs have written a completion? */ chan->last_completion = phys_complete; if (active - i == 0) { dev_dbg(to_dev(chan), "%s: cancel completion timeout\n", __func__); clear_bit(IOAT_COMPLETION_PENDING, &chan->state); mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT); } } /** * ioat2_cleanup - clean finished descriptors (advance tail pointer) * @chan: ioat channel to be cleaned up */ static void ioat2_cleanup(struct ioat2_dma_chan *ioat) { struct ioat_chan_common *chan = &ioat->base; dma_addr_t phys_complete; spin_lock_bh(&chan->cleanup_lock); if (ioat_cleanup_preamble(chan, &phys_complete)) __cleanup(ioat, phys_complete); spin_unlock_bh(&chan->cleanup_lock); } void ioat2_cleanup_event(unsigned long data) { struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data); ioat2_cleanup(ioat); writew(IOAT_CHANCTRL_RUN, ioat->base.reg_base + IOAT_CHANCTRL_OFFSET); } void __ioat2_restart_chan(struct ioat2_dma_chan *ioat) { struct ioat_chan_common *chan = &ioat->base; /* set the tail to be re-issued */ ioat->issued = ioat->tail; ioat->dmacount = 0; set_bit(IOAT_COMPLETION_PENDING, &chan->state); mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT); dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x count: %#x\n", __func__, ioat->head, ioat->tail, ioat->issued, ioat->dmacount); if (ioat2_ring_pending(ioat)) { struct ioat_ring_ent *desc; desc = ioat2_get_ring_ent(ioat, ioat->tail); ioat2_set_chainaddr(ioat, desc->txd.phys); __ioat2_issue_pending(ioat); } else __ioat2_start_null_desc(ioat); } int ioat2_quiesce(struct ioat_chan_common *chan, unsigned long tmo) { unsigned long end = jiffies + tmo; int err = 0; u32 status; status = ioat_chansts(chan); if (is_ioat_active(status) || is_ioat_idle(status)) ioat_suspend(chan); while (is_ioat_active(status) || is_ioat_idle(status)) { if (tmo && time_after(jiffies, end)) { err = -ETIMEDOUT; break; } status = ioat_chansts(chan); cpu_relax(); } return err; } int ioat2_reset_sync(struct ioat_chan_common *chan, unsigned long tmo) { unsigned long end = jiffies + tmo; int err = 0; ioat_reset(chan); while (ioat_reset_pending(chan)) { if (end && time_after(jiffies, end)) { err = -ETIMEDOUT; break; } cpu_relax(); } return err; } static void ioat2_restart_channel(struct ioat2_dma_chan *ioat) { struct ioat_chan_common *chan = &ioat->base; dma_addr_t phys_complete; ioat2_quiesce(chan, 0); if (ioat_cleanup_preamble(chan, &phys_complete)) __cleanup(ioat, phys_complete); __ioat2_restart_chan(ioat); } void ioat2_timer_event(unsigned long data) { struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data); struct ioat_chan_common *chan = &ioat->base; if (test_bit(IOAT_COMPLETION_PENDING, &chan->state)) { dma_addr_t phys_complete; u64 status; status = ioat_chansts(chan); /* when halted due to errors check for channel * programming errors before advancing the completion state */ if (is_ioat_halted(status)) { u32 chanerr; chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET); dev_err(to_dev(chan), "%s: Channel halted (%x)\n", __func__, chanerr); if (test_bit(IOAT_RUN, &chan->state)) BUG_ON(is_ioat_bug(chanerr)); else /* we never got off the ground */ return; } /* if we haven't made progress and we have already * acknowledged a pending completion once, then be more * forceful with a restart */ spin_lock_bh(&chan->cleanup_lock); if (ioat_cleanup_preamble(chan, &phys_complete)) { __cleanup(ioat, phys_complete); } else if (test_bit(IOAT_COMPLETION_ACK, &chan->state)) { spin_lock_bh(&ioat->prep_lock); ioat2_restart_channel(ioat); spin_unlock_bh(&ioat->prep_lock); } else { set_bit(IOAT_COMPLETION_ACK, &chan->state); mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT); } spin_unlock_bh(&chan->cleanup_lock); } else { u16 active; /* if the ring is idle, empty, and oversized try to step * down the size */ spin_lock_bh(&chan->cleanup_lock); spin_lock_bh(&ioat->prep_lock); active = ioat2_ring_active(ioat); if (active == 0 && ioat->alloc_order > ioat_get_alloc_order()) reshape_ring(ioat, ioat->alloc_order-1); spin_unlock_bh(&ioat->prep_lock); spin_unlock_bh(&chan->cleanup_lock); /* keep shrinking until we get back to our minimum * default size */ if (ioat->alloc_order > ioat_get_alloc_order()) mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT); } } static int ioat2_reset_hw(struct ioat_chan_common *chan) { /* throw away whatever the channel was doing and get it initialized */ u32 chanerr; ioat2_quiesce(chan, msecs_to_jiffies(100)); chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET); writel(chanerr, chan->reg_base + IOAT_CHANERR_OFFSET); return ioat2_reset_sync(chan, msecs_to_jiffies(200)); } /** * ioat2_enumerate_channels - find and initialize the device's channels * @device: the device to be enumerated */ int ioat2_enumerate_channels(struct ioatdma_device *device) { struct ioat2_dma_chan *ioat; struct device *dev = &device->pdev->dev; struct dma_device *dma = &device->common; u8 xfercap_log; int i; INIT_LIST_HEAD(&dma->channels); dma->chancnt = readb(device->reg_base + IOAT_CHANCNT_OFFSET); dma->chancnt &= 0x1f; /* bits [4:0] valid */ if (dma->chancnt > ARRAY_SIZE(device->idx)) { dev_warn(dev, "(%d) exceeds max supported channels (%zu)\n", dma->chancnt, ARRAY_SIZE(device->idx)); dma->chancnt = ARRAY_SIZE(device->idx); } xfercap_log = readb(device->reg_base + IOAT_XFERCAP_OFFSET); xfercap_log &= 0x1f; /* bits [4:0] valid */ if (xfercap_log == 0) return 0; dev_dbg(dev, "%s: xfercap = %d\n", __func__, 1 << xfercap_log); /* FIXME which i/oat version is i7300? */ #ifdef CONFIG_I7300_IDLE_IOAT_CHANNEL if (i7300_idle_platform_probe(NULL, NULL, 1) == 0) dma->chancnt--; #endif for (i = 0; i < dma->chancnt; i++) { ioat = devm_kzalloc(dev, sizeof(*ioat), GFP_KERNEL); if (!ioat) break; ioat_init_channel(device, &ioat->base, i); ioat->xfercap_log = xfercap_log; spin_lock_init(&ioat->prep_lock); if (device->reset_hw(&ioat->base)) { i = 0; break; } } dma->chancnt = i; return i; } static dma_cookie_t ioat2_tx_submit_unlock(struct dma_async_tx_descriptor *tx) { struct dma_chan *c = tx->chan; struct ioat2_dma_chan *ioat = to_ioat2_chan(c); struct ioat_chan_common *chan = &ioat->base; dma_cookie_t cookie; cookie = dma_cookie_assign(tx); dev_dbg(to_dev(&ioat->base), "%s: cookie: %d\n", __func__, cookie); if (!test_and_set_bit(IOAT_COMPLETION_PENDING, &chan->state)) mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT); /* make descriptor updates visible before advancing ioat->head, * this is purposefully not smp_wmb() since we are also * publishing the descriptor updates to a dma device */ wmb(); ioat->head += ioat->produce; ioat2_update_pending(ioat); spin_unlock_bh(&ioat->prep_lock); return cookie; } static struct ioat_ring_ent *ioat2_alloc_ring_ent(struct dma_chan *chan, gfp_t flags) { struct ioat_dma_descriptor *hw; struct ioat_ring_ent *desc; struct ioatdma_device *dma; dma_addr_t phys; dma = to_ioatdma_device(chan->device); hw = pci_pool_alloc(dma->dma_pool, flags, &phys); if (!hw) return NULL; memset(hw, 0, sizeof(*hw)); desc = kmem_cache_alloc(ioat2_cache, flags); if (!desc) { pci_pool_free(dma->dma_pool, hw, phys); return NULL; } memset(desc, 0, sizeof(*desc)); dma_async_tx_descriptor_init(&desc->txd, chan); desc->txd.tx_submit = ioat2_tx_submit_unlock; desc->hw = hw; desc->txd.phys = phys; return desc; } static void ioat2_free_ring_ent(struct ioat_ring_ent *desc, struct dma_chan *chan) { struct ioatdma_device *dma; dma = to_ioatdma_device(chan->device); pci_pool_free(dma->dma_pool, desc->hw, desc->txd.phys); kmem_cache_free(ioat2_cache, desc); } static struct ioat_ring_ent **ioat2_alloc_ring(struct dma_chan *c, int order, gfp_t flags) { struct ioat_ring_ent **ring; int descs = 1 << order; int i; if (order > ioat_get_max_alloc_order()) return NULL; /* allocate the array to hold the software ring */ ring = kcalloc(descs, sizeof(*ring), flags); if (!ring) return NULL; for (i = 0; i < descs; i++) { ring[i] = ioat2_alloc_ring_ent(c, flags); if (!ring[i]) { while (i--) ioat2_free_ring_ent(ring[i], c); kfree(ring); return NULL; } set_desc_id(ring[i], i); } /* link descs */ for (i = 0; i < descs-1; i++) { struct ioat_ring_ent *next = ring[i+1]; struct ioat_dma_descriptor *hw = ring[i]->hw; hw->next = next->txd.phys; } ring[i]->hw->next = ring[0]->txd.phys; return ring; } void ioat2_free_chan_resources(struct dma_chan *c); /* ioat2_alloc_chan_resources - allocate/initialize ioat2 descriptor ring * @chan: channel to be initialized */ int ioat2_alloc_chan_resources(struct dma_chan *c) { struct ioat2_dma_chan *ioat = to_ioat2_chan(c); struct ioat_chan_common *chan = &ioat->base; struct ioat_ring_ent **ring; u64 status; int order; int i = 0; /* have we already been set up? */ if (ioat->ring) return 1 << ioat->alloc_order; /* Setup register to interrupt and write completion status on error */ writew(IOAT_CHANCTRL_RUN, chan->reg_base + IOAT_CHANCTRL_OFFSET); /* allocate a completion writeback area */ /* doing 2 32bit writes to mmio since 1 64b write doesn't work */ chan->completion = pci_pool_alloc(chan->device->completion_pool, GFP_KERNEL, &chan->completion_dma); if (!chan->completion) return -ENOMEM; memset(chan->completion, 0, sizeof(*chan->completion)); writel(((u64) chan->completion_dma) & 0x00000000FFFFFFFF, chan->reg_base + IOAT_CHANCMP_OFFSET_LOW); writel(((u64) chan->completion_dma) >> 32, chan->reg_base + IOAT_CHANCMP_OFFSET_HIGH); order = ioat_get_alloc_order(); ring = ioat2_alloc_ring(c, order, GFP_KERNEL); if (!ring) return -ENOMEM; spin_lock_bh(&chan->cleanup_lock); spin_lock_bh(&ioat->prep_lock); ioat->ring = ring; ioat->head = 0; ioat->issued = 0; ioat->tail = 0; ioat->alloc_order = order; spin_unlock_bh(&ioat->prep_lock); spin_unlock_bh(&chan->cleanup_lock); tasklet_enable(&chan->cleanup_task); ioat2_start_null_desc(ioat); /* check that we got off the ground */ do { udelay(1); status = ioat_chansts(chan); } while (i++ < 20 && !is_ioat_active(status) && !is_ioat_idle(status)); if (is_ioat_active(status) || is_ioat_idle(status)) { set_bit(IOAT_RUN, &chan->state); return 1 << ioat->alloc_order; } else { u32 chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET); dev_WARN(to_dev(chan), "failed to start channel chanerr: %#x\n", chanerr); ioat2_free_chan_resources(c); return -EFAULT; } } bool reshape_ring(struct ioat2_dma_chan *ioat, int order) { /* reshape differs from normal ring allocation in that we want * to allocate a new software ring while only * extending/truncating the hardware ring */ struct ioat_chan_common *chan = &ioat->base; struct dma_chan *c = &chan->common; const u32 curr_size = ioat2_ring_size(ioat); const u16 active = ioat2_ring_active(ioat); const u32 new_size = 1 << order; struct ioat_ring_ent **ring; u16 i; if (order > ioat_get_max_alloc_order()) return false; /* double check that we have at least 1 free descriptor */ if (active == curr_size) return false; /* when shrinking, verify that we can hold the current active * set in the new ring */ if (active >= new_size) return false; /* allocate the array to hold the software ring */ ring = kcalloc(new_size, sizeof(*ring), GFP_NOWAIT); if (!ring) return false; /* allocate/trim descriptors as needed */ if (new_size > curr_size) { /* copy current descriptors to the new ring */ for (i = 0; i < curr_size; i++) { u16 curr_idx = (ioat->tail+i) & (curr_size-1); u16 new_idx = (ioat->tail+i) & (new_size-1); ring[new_idx] = ioat->ring[curr_idx]; set_desc_id(ring[new_idx], new_idx); } /* add new descriptors to the ring */ for (i = curr_size; i < new_size; i++) { u16 new_idx = (ioat->tail+i) & (new_size-1); ring[new_idx] = ioat2_alloc_ring_ent(c, GFP_NOWAIT); if (!ring[new_idx]) { while (i--) { u16 new_idx = (ioat->tail+i) & (new_size-1); ioat2_free_ring_ent(ring[new_idx], c); } kfree(ring); return false; } set_desc_id(ring[new_idx], new_idx); } /* hw link new descriptors */ for (i = curr_size-1; i < new_size; i++) { u16 new_idx = (ioat->tail+i) & (new_size-1); struct ioat_ring_ent *next = ring[(new_idx+1) & (new_size-1)]; struct ioat_dma_descriptor *hw = ring[new_idx]->hw; hw->next = next->txd.phys; } } else { struct ioat_dma_descriptor *hw; struct ioat_ring_ent *next; /* copy current descriptors to the new ring, dropping the * removed descriptors */ for (i = 0; i < new_size; i++) { u16 curr_idx = (ioat->tail+i) & (curr_size-1); u16 new_idx = (ioat->tail+i) & (new_size-1); ring[new_idx] = ioat->ring[curr_idx]; set_desc_id(ring[new_idx], new_idx); } /* free deleted descriptors */ for (i = new_size; i < curr_size; i++) { struct ioat_ring_ent *ent; ent = ioat2_get_ring_ent(ioat, ioat->tail+i); ioat2_free_ring_ent(ent, c); } /* fix up hardware ring */ hw = ring[(ioat->tail+new_size-1) & (new_size-1)]->hw; next = ring[(ioat->tail+new_size) & (new_size-1)]; hw->next = next->txd.phys; } dev_dbg(to_dev(chan), "%s: allocated %d descriptors\n", __func__, new_size); kfree(ioat->ring); ioat->ring = ring; ioat->alloc_order = order; return true; } /** * ioat2_check_space_lock - verify space and grab ring producer lock * @ioat: ioat2,3 channel (ring) to operate on * @num_descs: allocation length */ int ioat2_check_space_lock(struct ioat2_dma_chan *ioat, int num_descs) { struct ioat_chan_common *chan = &ioat->base; bool retry; retry: spin_lock_bh(&ioat->prep_lock); /* never allow the last descriptor to be consumed, we need at * least one free at all times to allow for on-the-fly ring * resizing. */ if (likely(ioat2_ring_space(ioat) > num_descs)) { dev_dbg(to_dev(chan), "%s: num_descs: %d (%x:%x:%x)\n", __func__, num_descs, ioat->head, ioat->tail, ioat->issued); ioat->produce = num_descs; return 0; /* with ioat->prep_lock held */ } retry = test_and_set_bit(IOAT_RESHAPE_PENDING, &chan->state); spin_unlock_bh(&ioat->prep_lock); /* is another cpu already trying to expand the ring? */ if (retry) goto retry; spin_lock_bh(&chan->cleanup_lock); spin_lock_bh(&ioat->prep_lock); retry = reshape_ring(ioat, ioat->alloc_order + 1); clear_bit(IOAT_RESHAPE_PENDING, &chan->state); spin_unlock_bh(&ioat->prep_lock); spin_unlock_bh(&chan->cleanup_lock); /* if we were able to expand the ring retry the allocation */ if (retry) goto retry; if (printk_ratelimit()) dev_dbg(to_dev(chan), "%s: ring full! num_descs: %d (%x:%x:%x)\n", __func__, num_descs, ioat->head, ioat->tail, ioat->issued); /* progress reclaim in the allocation failure case we may be * called under bh_disabled so we need to trigger the timer * event directly */ if (jiffies > chan->timer.expires && timer_pending(&chan->timer)) { struct ioatdma_device *device = chan->device; mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT); device->timer_fn((unsigned long) &chan->common); } return -ENOMEM; } struct dma_async_tx_descriptor * ioat2_dma_prep_memcpy_lock(struct dma_chan *c, dma_addr_t dma_dest, dma_addr_t dma_src, size_t len, unsigned long flags) { struct ioat2_dma_chan *ioat = to_ioat2_chan(c); struct ioat_dma_descriptor *hw; struct ioat_ring_ent *desc; dma_addr_t dst = dma_dest; dma_addr_t src = dma_src; size_t total_len = len; int num_descs, idx, i; num_descs = ioat2_xferlen_to_descs(ioat, len); if (likely(num_descs) && ioat2_check_space_lock(ioat, num_descs) == 0) idx = ioat->head; else return NULL; i = 0; do { size_t copy = min_t(size_t, len, 1 << ioat->xfercap_log); desc = ioat2_get_ring_ent(ioat, idx + i); hw = desc->hw; hw->size = copy; hw->ctl = 0; hw->src_addr = src; hw->dst_addr = dst; len -= copy; dst += copy; src += copy; dump_desc_dbg(ioat, desc); } while (++i < num_descs); desc->txd.flags = flags; desc->len = total_len; hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT); hw->ctl_f.fence = !!(flags & DMA_PREP_FENCE); hw->ctl_f.compl_write = 1; dump_desc_dbg(ioat, desc); /* we leave the channel locked to ensure in order submission */ return &desc->txd; } /** * ioat2_free_chan_resources - release all the descriptors * @chan: the channel to be cleaned */ void ioat2_free_chan_resources(struct dma_chan *c) { struct ioat2_dma_chan *ioat = to_ioat2_chan(c); struct ioat_chan_common *chan = &ioat->base; struct ioatdma_device *device = chan->device; struct ioat_ring_ent *desc; const u16 total_descs = 1 << ioat->alloc_order; int descs; int i; /* Before freeing channel resources first check * if they have been previously allocated for this channel. */ if (!ioat->ring) return; tasklet_disable(&chan->cleanup_task); del_timer_sync(&chan->timer); device->cleanup_fn((unsigned long) c); device->reset_hw(chan); clear_bit(IOAT_RUN, &chan->state); spin_lock_bh(&chan->cleanup_lock); spin_lock_bh(&ioat->prep_lock); descs = ioat2_ring_space(ioat); dev_dbg(to_dev(chan), "freeing %d idle descriptors\n", descs); for (i = 0; i < descs; i++) { desc = ioat2_get_ring_ent(ioat, ioat->head + i); ioat2_free_ring_ent(desc, c); } if (descs < total_descs) dev_err(to_dev(chan), "Freeing %d in use descriptors!\n", total_descs - descs); for (i = 0; i < total_descs - descs; i++) { desc = ioat2_get_ring_ent(ioat, ioat->tail + i); dump_desc_dbg(ioat, desc); ioat2_free_ring_ent(desc, c); } kfree(ioat->ring); ioat->ring = NULL; ioat->alloc_order = 0; pci_pool_free(device->completion_pool, chan->completion, chan->completion_dma); spin_unlock_bh(&ioat->prep_lock); spin_unlock_bh(&chan->cleanup_lock); chan->last_completion = 0; chan->completion_dma = 0; ioat->dmacount = 0; } static ssize_t ring_size_show(struct dma_chan *c, char *page) { struct ioat2_dma_chan *ioat = to_ioat2_chan(c); return sprintf(page, "%d\n", (1 << ioat->alloc_order) & ~1); } static struct ioat_sysfs_entry ring_size_attr = __ATTR_RO(ring_size); static ssize_t ring_active_show(struct dma_chan *c, char *page) { struct ioat2_dma_chan *ioat = to_ioat2_chan(c); /* ...taken outside the lock, no need to be precise */ return sprintf(page, "%d\n", ioat2_ring_active(ioat)); } static struct ioat_sysfs_entry ring_active_attr = __ATTR_RO(ring_active); static struct attribute *ioat2_attrs[] = { &ring_size_attr.attr, &ring_active_attr.attr, &ioat_cap_attr.attr, &ioat_version_attr.attr, NULL, }; struct kobj_type ioat2_ktype = { .sysfs_ops = &ioat_sysfs_ops, .default_attrs = ioat2_attrs, }; int __devinit ioat2_dma_probe(struct ioatdma_device *device, int dca) { struct pci_dev *pdev = device->pdev; struct dma_device *dma; struct dma_chan *c; struct ioat_chan_common *chan; int err; device->enumerate_channels = ioat2_enumerate_channels; device->reset_hw = ioat2_reset_hw; device->cleanup_fn = ioat2_cleanup_event; device->timer_fn = ioat2_timer_event; device->self_test = ioat_dma_self_test; dma = &device->common; dma->device_prep_dma_memcpy = ioat2_dma_prep_memcpy_lock; dma->device_issue_pending = ioat2_issue_pending; dma->device_alloc_chan_resources = ioat2_alloc_chan_resources; dma->device_free_chan_resources = ioat2_free_chan_resources; dma->device_tx_status = ioat_dma_tx_status; err = ioat_probe(device); if (err) return err; ioat_set_tcp_copy_break(2048); list_for_each_entry(c, &dma->channels, device_node) { chan = to_chan_common(c); writel(IOAT_DCACTRL_CMPL_WRITE_ENABLE | IOAT_DMA_DCA_ANY_CPU, chan->reg_base + IOAT_DCACTRL_OFFSET); } err = ioat_register(device); if (err) return err; ioat_kobject_add(device, &ioat2_ktype); if (dca) device->dca = ioat2_dca_init(pdev, device->reg_base); return err; }