/* * SA11x0 DMAengine support * * Copyright (C) 2012 Russell King * Derived in part from arch/arm/mach-sa1100/dma.c, * Copyright (C) 2000, 2001 by Nicolas Pitre * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/sched.h> #include <linux/device.h> #include <linux/dmaengine.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/sa11x0-dma.h> #include <linux/slab.h> #include <linux/spinlock.h> #define NR_PHY_CHAN 6 #define DMA_ALIGN 3 #define DMA_MAX_SIZE 0x1fff #define DMA_CHUNK_SIZE 0x1000 #define DMA_DDAR 0x00 #define DMA_DCSR_S 0x04 #define DMA_DCSR_C 0x08 #define DMA_DCSR_R 0x0c #define DMA_DBSA 0x10 #define DMA_DBTA 0x14 #define DMA_DBSB 0x18 #define DMA_DBTB 0x1c #define DMA_SIZE 0x20 #define DCSR_RUN (1 << 0) #define DCSR_IE (1 << 1) #define DCSR_ERROR (1 << 2) #define DCSR_DONEA (1 << 3) #define DCSR_STRTA (1 << 4) #define DCSR_DONEB (1 << 5) #define DCSR_STRTB (1 << 6) #define DCSR_BIU (1 << 7) #define DDAR_RW (1 << 0) /* 0 = W, 1 = R */ #define DDAR_E (1 << 1) /* 0 = LE, 1 = BE */ #define DDAR_BS (1 << 2) /* 0 = BS4, 1 = BS8 */ #define DDAR_DW (1 << 3) /* 0 = 8b, 1 = 16b */ #define DDAR_Ser0UDCTr (0x0 << 4) #define DDAR_Ser0UDCRc (0x1 << 4) #define DDAR_Ser1SDLCTr (0x2 << 4) #define DDAR_Ser1SDLCRc (0x3 << 4) #define DDAR_Ser1UARTTr (0x4 << 4) #define DDAR_Ser1UARTRc (0x5 << 4) #define DDAR_Ser2ICPTr (0x6 << 4) #define DDAR_Ser2ICPRc (0x7 << 4) #define DDAR_Ser3UARTTr (0x8 << 4) #define DDAR_Ser3UARTRc (0x9 << 4) #define DDAR_Ser4MCP0Tr (0xa << 4) #define DDAR_Ser4MCP0Rc (0xb << 4) #define DDAR_Ser4MCP1Tr (0xc << 4) #define DDAR_Ser4MCP1Rc (0xd << 4) #define DDAR_Ser4SSPTr (0xe << 4) #define DDAR_Ser4SSPRc (0xf << 4) struct sa11x0_dma_sg { u32 addr; u32 len; }; struct sa11x0_dma_desc { struct dma_async_tx_descriptor tx; u32 ddar; size_t size; /* maybe protected by c->lock */ struct list_head node; unsigned sglen; struct sa11x0_dma_sg sg[0]; }; struct sa11x0_dma_phy; struct sa11x0_dma_chan { struct dma_chan chan; spinlock_t lock; dma_cookie_t lc; /* protected by c->lock */ struct sa11x0_dma_phy *phy; enum dma_status status; struct list_head desc_submitted; struct list_head desc_issued; /* protected by d->lock */ struct list_head node; u32 ddar; const char *name; }; struct sa11x0_dma_phy { void __iomem *base; struct sa11x0_dma_dev *dev; unsigned num; struct sa11x0_dma_chan *vchan; /* Protected by c->lock */ unsigned sg_load; struct sa11x0_dma_desc *txd_load; unsigned sg_done; struct sa11x0_dma_desc *txd_done; #ifdef CONFIG_PM_SLEEP u32 dbs[2]; u32 dbt[2]; u32 dcsr; #endif }; struct sa11x0_dma_dev { struct dma_device slave; void __iomem *base; spinlock_t lock; struct tasklet_struct task; struct list_head chan_pending; struct list_head desc_complete; struct sa11x0_dma_phy phy[NR_PHY_CHAN]; }; static struct sa11x0_dma_chan *to_sa11x0_dma_chan(struct dma_chan *chan) { return container_of(chan, struct sa11x0_dma_chan, chan); } static struct sa11x0_dma_dev *to_sa11x0_dma(struct dma_device *dmadev) { return container_of(dmadev, struct sa11x0_dma_dev, slave); } static struct sa11x0_dma_desc *to_sa11x0_dma_tx(struct dma_async_tx_descriptor *tx) { return container_of(tx, struct sa11x0_dma_desc, tx); } static struct sa11x0_dma_desc *sa11x0_dma_next_desc(struct sa11x0_dma_chan *c) { if (list_empty(&c->desc_issued)) return NULL; return list_first_entry(&c->desc_issued, struct sa11x0_dma_desc, node); } static void sa11x0_dma_start_desc(struct sa11x0_dma_phy *p, struct sa11x0_dma_desc *txd) { list_del(&txd->node); p->txd_load = txd; p->sg_load = 0; dev_vdbg(p->dev->slave.dev, "pchan %u: txd %p[%x]: starting: DDAR:%x\n", p->num, txd, txd->tx.cookie, txd->ddar); } static void noinline sa11x0_dma_start_sg(struct sa11x0_dma_phy *p, struct sa11x0_dma_chan *c) { struct sa11x0_dma_desc *txd = p->txd_load; struct sa11x0_dma_sg *sg; void __iomem *base = p->base; unsigned dbsx, dbtx; u32 dcsr; if (!txd) return; dcsr = readl_relaxed(base + DMA_DCSR_R); /* Don't try to load the next transfer if both buffers are started */ if ((dcsr & (DCSR_STRTA | DCSR_STRTB)) == (DCSR_STRTA | DCSR_STRTB)) return; if (p->sg_load == txd->sglen) { struct sa11x0_dma_desc *txn = sa11x0_dma_next_desc(c); /* * We have reached the end of the current descriptor. * Peek at the next descriptor, and if compatible with * the current, start processing it. */ if (txn && txn->ddar == txd->ddar) { txd = txn; sa11x0_dma_start_desc(p, txn); } else { p->txd_load = NULL; return; } } sg = &txd->sg[p->sg_load++]; /* Select buffer to load according to channel status */ if (((dcsr & (DCSR_BIU | DCSR_STRTB)) == (DCSR_BIU | DCSR_STRTB)) || ((dcsr & (DCSR_BIU | DCSR_STRTA)) == 0)) { dbsx = DMA_DBSA; dbtx = DMA_DBTA; dcsr = DCSR_STRTA | DCSR_IE | DCSR_RUN; } else { dbsx = DMA_DBSB; dbtx = DMA_DBTB; dcsr = DCSR_STRTB | DCSR_IE | DCSR_RUN; } writel_relaxed(sg->addr, base + dbsx); writel_relaxed(sg->len, base + dbtx); writel(dcsr, base + DMA_DCSR_S); dev_dbg(p->dev->slave.dev, "pchan %u: load: DCSR:%02x DBS%c:%08x DBT%c:%08x\n", p->num, dcsr, 'A' + (dbsx == DMA_DBSB), sg->addr, 'A' + (dbtx == DMA_DBTB), sg->len); } static void noinline sa11x0_dma_complete(struct sa11x0_dma_phy *p, struct sa11x0_dma_chan *c) { struct sa11x0_dma_desc *txd = p->txd_done; if (++p->sg_done == txd->sglen) { struct sa11x0_dma_dev *d = p->dev; dev_vdbg(d->slave.dev, "pchan %u: txd %p[%x]: completed\n", p->num, p->txd_done, p->txd_done->tx.cookie); c->lc = txd->tx.cookie; spin_lock(&d->lock); list_add_tail(&txd->node, &d->desc_complete); spin_unlock(&d->lock); p->sg_done = 0; p->txd_done = p->txd_load; tasklet_schedule(&d->task); } sa11x0_dma_start_sg(p, c); } static irqreturn_t sa11x0_dma_irq(int irq, void *dev_id) { struct sa11x0_dma_phy *p = dev_id; struct sa11x0_dma_dev *d = p->dev; struct sa11x0_dma_chan *c; u32 dcsr; dcsr = readl_relaxed(p->base + DMA_DCSR_R); if (!(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB))) return IRQ_NONE; /* Clear reported status bits */ writel_relaxed(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB), p->base + DMA_DCSR_C); dev_dbg(d->slave.dev, "pchan %u: irq: DCSR:%02x\n", p->num, dcsr); if (dcsr & DCSR_ERROR) { dev_err(d->slave.dev, "pchan %u: error. DCSR:%02x DDAR:%08x DBSA:%08x DBTA:%08x DBSB:%08x DBTB:%08x\n", p->num, dcsr, readl_relaxed(p->base + DMA_DDAR), readl_relaxed(p->base + DMA_DBSA), readl_relaxed(p->base + DMA_DBTA), readl_relaxed(p->base + DMA_DBSB), readl_relaxed(p->base + DMA_DBTB)); } c = p->vchan; if (c) { unsigned long flags; spin_lock_irqsave(&c->lock, flags); /* * Now that we're holding the lock, check that the vchan * really is associated with this pchan before touching the * hardware. This should always succeed, because we won't * change p->vchan or c->phy while the channel is actively * transferring. */ if (c->phy == p) { if (dcsr & DCSR_DONEA) sa11x0_dma_complete(p, c); if (dcsr & DCSR_DONEB) sa11x0_dma_complete(p, c); } spin_unlock_irqrestore(&c->lock, flags); } return IRQ_HANDLED; } static void sa11x0_dma_start_txd(struct sa11x0_dma_chan *c) { struct sa11x0_dma_desc *txd = sa11x0_dma_next_desc(c); /* If the issued list is empty, we have no further txds to process */ if (txd) { struct sa11x0_dma_phy *p = c->phy; sa11x0_dma_start_desc(p, txd); p->txd_done = txd; p->sg_done = 0; /* The channel should not have any transfers started */ WARN_ON(readl_relaxed(p->base + DMA_DCSR_R) & (DCSR_STRTA | DCSR_STRTB)); /* Clear the run and start bits before changing DDAR */ writel_relaxed(DCSR_RUN | DCSR_STRTA | DCSR_STRTB, p->base + DMA_DCSR_C); writel_relaxed(txd->ddar, p->base + DMA_DDAR); /* Try to start both buffers */ sa11x0_dma_start_sg(p, c); sa11x0_dma_start_sg(p, c); } } static void sa11x0_dma_tasklet(unsigned long arg) { struct sa11x0_dma_dev *d = (struct sa11x0_dma_dev *)arg; struct sa11x0_dma_phy *p; struct sa11x0_dma_chan *c; struct sa11x0_dma_desc *txd, *txn; LIST_HEAD(head); unsigned pch, pch_alloc = 0; dev_dbg(d->slave.dev, "tasklet enter\n"); /* Get the completed tx descriptors */ spin_lock_irq(&d->lock); list_splice_init(&d->desc_complete, &head); spin_unlock_irq(&d->lock); list_for_each_entry(txd, &head, node) { c = to_sa11x0_dma_chan(txd->tx.chan); dev_dbg(d->slave.dev, "vchan %p: txd %p[%x] completed\n", c, txd, txd->tx.cookie); spin_lock_irq(&c->lock); p = c->phy; if (p) { if (!p->txd_done) sa11x0_dma_start_txd(c); if (!p->txd_done) { /* No current txd associated with this channel */ dev_dbg(d->slave.dev, "pchan %u: free\n", p->num); /* Mark this channel free */ c->phy = NULL; p->vchan = NULL; } } spin_unlock_irq(&c->lock); } spin_lock_irq(&d->lock); for (pch = 0; pch < NR_PHY_CHAN; pch++) { p = &d->phy[pch]; if (p->vchan == NULL && !list_empty(&d->chan_pending)) { c = list_first_entry(&d->chan_pending, struct sa11x0_dma_chan, node); list_del_init(&c->node); pch_alloc |= 1 << pch; /* Mark this channel allocated */ p->vchan = c; dev_dbg(d->slave.dev, "pchan %u: alloc vchan %p\n", pch, c); } } spin_unlock_irq(&d->lock); for (pch = 0; pch < NR_PHY_CHAN; pch++) { if (pch_alloc & (1 << pch)) { p = &d->phy[pch]; c = p->vchan; spin_lock_irq(&c->lock); c->phy = p; sa11x0_dma_start_txd(c); spin_unlock_irq(&c->lock); } } /* Now free the completed tx descriptor, and call their callbacks */ list_for_each_entry_safe(txd, txn, &head, node) { dma_async_tx_callback callback = txd->tx.callback; void *callback_param = txd->tx.callback_param; dev_dbg(d->slave.dev, "txd %p[%x]: callback and free\n", txd, txd->tx.cookie); kfree(txd); if (callback) callback(callback_param); } dev_dbg(d->slave.dev, "tasklet exit\n"); } static void sa11x0_dma_desc_free(struct sa11x0_dma_dev *d, struct list_head *head) { struct sa11x0_dma_desc *txd, *txn; list_for_each_entry_safe(txd, txn, head, node) { dev_dbg(d->slave.dev, "txd %p: freeing\n", txd); kfree(txd); } } static int sa11x0_dma_alloc_chan_resources(struct dma_chan *chan) { return 0; } static void sa11x0_dma_free_chan_resources(struct dma_chan *chan) { struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan); struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device); unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&c->lock, flags); spin_lock(&d->lock); list_del_init(&c->node); spin_unlock(&d->lock); list_splice_tail_init(&c->desc_submitted, &head); list_splice_tail_init(&c->desc_issued, &head); spin_unlock_irqrestore(&c->lock, flags); sa11x0_dma_desc_free(d, &head); } static dma_addr_t sa11x0_dma_pos(struct sa11x0_dma_phy *p) { unsigned reg; u32 dcsr; dcsr = readl_relaxed(p->base + DMA_DCSR_R); if ((dcsr & (DCSR_BIU | DCSR_STRTA)) == DCSR_STRTA || (dcsr & (DCSR_BIU | DCSR_STRTB)) == DCSR_BIU) reg = DMA_DBSA; else reg = DMA_DBSB; return readl_relaxed(p->base + reg); } static enum dma_status sa11x0_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *state) { struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan); struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device); struct sa11x0_dma_phy *p; struct sa11x0_dma_desc *txd; dma_cookie_t last_used, last_complete; unsigned long flags; enum dma_status ret; size_t bytes = 0; last_used = c->chan.cookie; last_complete = c->lc; ret = dma_async_is_complete(cookie, last_complete, last_used); if (ret == DMA_SUCCESS) { dma_set_tx_state(state, last_complete, last_used, 0); return ret; } spin_lock_irqsave(&c->lock, flags); p = c->phy; ret = c->status; if (p) { dma_addr_t addr = sa11x0_dma_pos(p); dev_vdbg(d->slave.dev, "tx_status: addr:%x\n", addr); txd = p->txd_done; if (txd) { unsigned i; for (i = 0; i < txd->sglen; i++) { dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x\n", i, txd->sg[i].addr, txd->sg[i].len); if (addr >= txd->sg[i].addr && addr < txd->sg[i].addr + txd->sg[i].len) { unsigned len; len = txd->sg[i].len - (addr - txd->sg[i].addr); dev_vdbg(d->slave.dev, "tx_status: [%u] +%x\n", i, len); bytes += len; i++; break; } } for (; i < txd->sglen; i++) { dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x ++\n", i, txd->sg[i].addr, txd->sg[i].len); bytes += txd->sg[i].len; } } if (txd != p->txd_load && p->txd_load) bytes += p->txd_load->size; } list_for_each_entry(txd, &c->desc_issued, node) { bytes += txd->size; } spin_unlock_irqrestore(&c->lock, flags); dma_set_tx_state(state, last_complete, last_used, bytes); dev_vdbg(d->slave.dev, "tx_status: bytes 0x%zx\n", bytes); return ret; } /* * Move pending txds to the issued list, and re-init pending list. * If not already pending, add this channel to the list of pending * channels and trigger the tasklet to run. */ static void sa11x0_dma_issue_pending(struct dma_chan *chan) { struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan); struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device); unsigned long flags; spin_lock_irqsave(&c->lock, flags); list_splice_tail_init(&c->desc_submitted, &c->desc_issued); if (!list_empty(&c->desc_issued)) { spin_lock(&d->lock); if (!c->phy && list_empty(&c->node)) { list_add_tail(&c->node, &d->chan_pending); tasklet_schedule(&d->task); dev_dbg(d->slave.dev, "vchan %p: issued\n", c); } spin_unlock(&d->lock); } else dev_dbg(d->slave.dev, "vchan %p: nothing to issue\n", c); spin_unlock_irqrestore(&c->lock, flags); } static dma_cookie_t sa11x0_dma_tx_submit(struct dma_async_tx_descriptor *tx) { struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(tx->chan); struct sa11x0_dma_desc *txd = to_sa11x0_dma_tx(tx); unsigned long flags; spin_lock_irqsave(&c->lock, flags); c->chan.cookie += 1; if (c->chan.cookie < 0) c->chan.cookie = 1; txd->tx.cookie = c->chan.cookie; list_add_tail(&txd->node, &c->desc_submitted); spin_unlock_irqrestore(&c->lock, flags); dev_dbg(tx->chan->device->dev, "vchan %p: txd %p[%x]: submitted\n", c, txd, txd->tx.cookie); return txd->tx.cookie; } static struct dma_async_tx_descriptor *sa11x0_dma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sg, unsigned int sglen, enum dma_transfer_direction dir, unsigned long flags, void *context) { struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan); struct sa11x0_dma_desc *txd; struct scatterlist *sgent; unsigned i, j = sglen; size_t size = 0; /* SA11x0 channels can only operate in their native direction */ if (dir != (c->ddar & DDAR_RW ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV)) { dev_err(chan->device->dev, "vchan %p: bad DMA direction: DDAR:%08x dir:%u\n", c, c->ddar, dir); return NULL; } /* Do not allow zero-sized txds */ if (sglen == 0) return NULL; for_each_sg(sg, sgent, sglen, i) { dma_addr_t addr = sg_dma_address(sgent); unsigned int len = sg_dma_len(sgent); if (len > DMA_MAX_SIZE) j += DIV_ROUND_UP(len, DMA_MAX_SIZE & ~DMA_ALIGN) - 1; if (addr & DMA_ALIGN) { dev_dbg(chan->device->dev, "vchan %p: bad buffer alignment: %08x\n", c, addr); return NULL; } } txd = kzalloc(sizeof(*txd) + j * sizeof(txd->sg[0]), GFP_ATOMIC); if (!txd) { dev_dbg(chan->device->dev, "vchan %p: kzalloc failed\n", c); return NULL; } j = 0; for_each_sg(sg, sgent, sglen, i) { dma_addr_t addr = sg_dma_address(sgent); unsigned len = sg_dma_len(sgent); size += len; do { unsigned tlen = len; /* * Check whether the transfer will fit. If not, try * to split the transfer up such that we end up with * equal chunks - but make sure that we preserve the * alignment. This avoids small segments. */ if (tlen > DMA_MAX_SIZE) { unsigned mult = DIV_ROUND_UP(tlen, DMA_MAX_SIZE & ~DMA_ALIGN); tlen = (tlen / mult) & ~DMA_ALIGN; } txd->sg[j].addr = addr; txd->sg[j].len = tlen; addr += tlen; len -= tlen; j++; } while (len); } dma_async_tx_descriptor_init(&txd->tx, &c->chan); txd->tx.flags = flags; txd->tx.tx_submit = sa11x0_dma_tx_submit; txd->ddar = c->ddar; txd->size = size; txd->sglen = j; dev_dbg(chan->device->dev, "vchan %p: txd %p: size %u nr %u\n", c, txd, txd->size, txd->sglen); return &txd->tx; } static int sa11x0_dma_slave_config(struct sa11x0_dma_chan *c, struct dma_slave_config *cfg) { u32 ddar = c->ddar & ((0xf << 4) | DDAR_RW); dma_addr_t addr; enum dma_slave_buswidth width; u32 maxburst; if (ddar & DDAR_RW) { addr = cfg->src_addr; width = cfg->src_addr_width; maxburst = cfg->src_maxburst; } else { addr = cfg->dst_addr; width = cfg->dst_addr_width; maxburst = cfg->dst_maxburst; } if ((width != DMA_SLAVE_BUSWIDTH_1_BYTE && width != DMA_SLAVE_BUSWIDTH_2_BYTES) || (maxburst != 4 && maxburst != 8)) return -EINVAL; if (width == DMA_SLAVE_BUSWIDTH_2_BYTES) ddar |= DDAR_DW; if (maxburst == 8) ddar |= DDAR_BS; dev_dbg(c->chan.device->dev, "vchan %p: dma_slave_config addr %x width %u burst %u\n", c, addr, width, maxburst); c->ddar = ddar | (addr & 0xf0000000) | (addr & 0x003ffffc) << 6; return 0; } static int sa11x0_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) { struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan); struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device); struct sa11x0_dma_phy *p; LIST_HEAD(head); unsigned long flags; int ret; switch (cmd) { case DMA_SLAVE_CONFIG: return sa11x0_dma_slave_config(c, (struct dma_slave_config *)arg); case DMA_TERMINATE_ALL: dev_dbg(d->slave.dev, "vchan %p: terminate all\n", c); /* Clear the tx descriptor lists */ spin_lock_irqsave(&c->lock, flags); list_splice_tail_init(&c->desc_submitted, &head); list_splice_tail_init(&c->desc_issued, &head); p = c->phy; if (p) { struct sa11x0_dma_desc *txd, *txn; dev_dbg(d->slave.dev, "pchan %u: terminating\n", p->num); /* vchan is assigned to a pchan - stop the channel */ writel(DCSR_RUN | DCSR_IE | DCSR_STRTA | DCSR_DONEA | DCSR_STRTB | DCSR_DONEB, p->base + DMA_DCSR_C); list_for_each_entry_safe(txd, txn, &d->desc_complete, node) if (txd->tx.chan == &c->chan) list_move(&txd->node, &head); if (p->txd_load) { if (p->txd_load != p->txd_done) list_add_tail(&p->txd_load->node, &head); p->txd_load = NULL; } if (p->txd_done) { list_add_tail(&p->txd_done->node, &head); p->txd_done = NULL; } c->phy = NULL; spin_lock(&d->lock); p->vchan = NULL; spin_unlock(&d->lock); tasklet_schedule(&d->task); } spin_unlock_irqrestore(&c->lock, flags); sa11x0_dma_desc_free(d, &head); ret = 0; break; case DMA_PAUSE: dev_dbg(d->slave.dev, "vchan %p: pause\n", c); spin_lock_irqsave(&c->lock, flags); if (c->status == DMA_IN_PROGRESS) { c->status = DMA_PAUSED; p = c->phy; if (p) { writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C); } else { spin_lock(&d->lock); list_del_init(&c->node); spin_unlock(&d->lock); } } spin_unlock_irqrestore(&c->lock, flags); ret = 0; break; case DMA_RESUME: dev_dbg(d->slave.dev, "vchan %p: resume\n", c); spin_lock_irqsave(&c->lock, flags); if (c->status == DMA_PAUSED) { c->status = DMA_IN_PROGRESS; p = c->phy; if (p) { writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_S); } else if (!list_empty(&c->desc_issued)) { spin_lock(&d->lock); list_add_tail(&c->node, &d->chan_pending); spin_unlock(&d->lock); } } spin_unlock_irqrestore(&c->lock, flags); ret = 0; break; default: ret = -ENXIO; break; } return ret; } struct sa11x0_dma_channel_desc { u32 ddar; const char *name; }; #define CD(d1, d2) { .ddar = DDAR_##d1 | d2, .name = #d1 } static const struct sa11x0_dma_channel_desc chan_desc[] = { CD(Ser0UDCTr, 0), CD(Ser0UDCRc, DDAR_RW), CD(Ser1SDLCTr, 0), CD(Ser1SDLCRc, DDAR_RW), CD(Ser1UARTTr, 0), CD(Ser1UARTRc, DDAR_RW), CD(Ser2ICPTr, 0), CD(Ser2ICPRc, DDAR_RW), CD(Ser3UARTTr, 0), CD(Ser3UARTRc, DDAR_RW), CD(Ser4MCP0Tr, 0), CD(Ser4MCP0Rc, DDAR_RW), CD(Ser4MCP1Tr, 0), CD(Ser4MCP1Rc, DDAR_RW), CD(Ser4SSPTr, 0), CD(Ser4SSPRc, DDAR_RW), }; static int __devinit sa11x0_dma_init_dmadev(struct dma_device *dmadev, struct device *dev) { unsigned i; dmadev->chancnt = ARRAY_SIZE(chan_desc); INIT_LIST_HEAD(&dmadev->channels); dmadev->dev = dev; dmadev->device_alloc_chan_resources = sa11x0_dma_alloc_chan_resources; dmadev->device_free_chan_resources = sa11x0_dma_free_chan_resources; dmadev->device_control = sa11x0_dma_control; dmadev->device_tx_status = sa11x0_dma_tx_status; dmadev->device_issue_pending = sa11x0_dma_issue_pending; for (i = 0; i < dmadev->chancnt; i++) { struct sa11x0_dma_chan *c; c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) { dev_err(dev, "no memory for channel %u\n", i); return -ENOMEM; } c->chan.device = dmadev; c->status = DMA_IN_PROGRESS; c->ddar = chan_desc[i].ddar; c->name = chan_desc[i].name; spin_lock_init(&c->lock); INIT_LIST_HEAD(&c->desc_submitted); INIT_LIST_HEAD(&c->desc_issued); INIT_LIST_HEAD(&c->node); list_add_tail(&c->chan.device_node, &dmadev->channels); } return dma_async_device_register(dmadev); } static int sa11x0_dma_request_irq(struct platform_device *pdev, int nr, void *data) { int irq = platform_get_irq(pdev, nr); if (irq <= 0) return -ENXIO; return request_irq(irq, sa11x0_dma_irq, 0, dev_name(&pdev->dev), data); } static void sa11x0_dma_free_irq(struct platform_device *pdev, int nr, void *data) { int irq = platform_get_irq(pdev, nr); if (irq > 0) free_irq(irq, data); } static void sa11x0_dma_free_channels(struct dma_device *dmadev) { struct sa11x0_dma_chan *c, *cn; list_for_each_entry_safe(c, cn, &dmadev->channels, chan.device_node) { list_del(&c->chan.device_node); kfree(c); } } static int __devinit sa11x0_dma_probe(struct platform_device *pdev) { struct sa11x0_dma_dev *d; struct resource *res; unsigned i; int ret; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -ENXIO; d = kzalloc(sizeof(*d), GFP_KERNEL); if (!d) { ret = -ENOMEM; goto err_alloc; } spin_lock_init(&d->lock); INIT_LIST_HEAD(&d->chan_pending); INIT_LIST_HEAD(&d->desc_complete); d->base = ioremap(res->start, resource_size(res)); if (!d->base) { ret = -ENOMEM; goto err_ioremap; } tasklet_init(&d->task, sa11x0_dma_tasklet, (unsigned long)d); for (i = 0; i < NR_PHY_CHAN; i++) { struct sa11x0_dma_phy *p = &d->phy[i]; p->dev = d; p->num = i; p->base = d->base + i * DMA_SIZE; writel_relaxed(DCSR_RUN | DCSR_IE | DCSR_ERROR | DCSR_DONEA | DCSR_STRTA | DCSR_DONEB | DCSR_STRTB, p->base + DMA_DCSR_C); writel_relaxed(0, p->base + DMA_DDAR); ret = sa11x0_dma_request_irq(pdev, i, p); if (ret) { while (i) { i--; sa11x0_dma_free_irq(pdev, i, &d->phy[i]); } goto err_irq; } } dma_cap_set(DMA_SLAVE, d->slave.cap_mask); d->slave.device_prep_slave_sg = sa11x0_dma_prep_slave_sg; ret = sa11x0_dma_init_dmadev(&d->slave, &pdev->dev); if (ret) { dev_warn(d->slave.dev, "failed to register slave async device: %d\n", ret); goto err_slave_reg; } platform_set_drvdata(pdev, d); return 0; err_slave_reg: sa11x0_dma_free_channels(&d->slave); for (i = 0; i < NR_PHY_CHAN; i++) sa11x0_dma_free_irq(pdev, i, &d->phy[i]); err_irq: tasklet_kill(&d->task); iounmap(d->base); err_ioremap: kfree(d); err_alloc: return ret; } static int __devexit sa11x0_dma_remove(struct platform_device *pdev) { struct sa11x0_dma_dev *d = platform_get_drvdata(pdev); unsigned pch; dma_async_device_unregister(&d->slave); sa11x0_dma_free_channels(&d->slave); for (pch = 0; pch < NR_PHY_CHAN; pch++) sa11x0_dma_free_irq(pdev, pch, &d->phy[pch]); tasklet_kill(&d->task); iounmap(d->base); kfree(d); return 0; } #ifdef CONFIG_PM_SLEEP static int sa11x0_dma_suspend(struct device *dev) { struct sa11x0_dma_dev *d = dev_get_drvdata(dev); unsigned pch; for (pch = 0; pch < NR_PHY_CHAN; pch++) { struct sa11x0_dma_phy *p = &d->phy[pch]; u32 dcsr, saved_dcsr; dcsr = saved_dcsr = readl_relaxed(p->base + DMA_DCSR_R); if (dcsr & DCSR_RUN) { writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C); dcsr = readl_relaxed(p->base + DMA_DCSR_R); } saved_dcsr &= DCSR_RUN | DCSR_IE; if (dcsr & DCSR_BIU) { p->dbs[0] = readl_relaxed(p->base + DMA_DBSB); p->dbt[0] = readl_relaxed(p->base + DMA_DBTB); p->dbs[1] = readl_relaxed(p->base + DMA_DBSA); p->dbt[1] = readl_relaxed(p->base + DMA_DBTA); saved_dcsr |= (dcsr & DCSR_STRTA ? DCSR_STRTB : 0) | (dcsr & DCSR_STRTB ? DCSR_STRTA : 0); } else { p->dbs[0] = readl_relaxed(p->base + DMA_DBSA); p->dbt[0] = readl_relaxed(p->base + DMA_DBTA); p->dbs[1] = readl_relaxed(p->base + DMA_DBSB); p->dbt[1] = readl_relaxed(p->base + DMA_DBTB); saved_dcsr |= dcsr & (DCSR_STRTA | DCSR_STRTB); } p->dcsr = saved_dcsr; writel(DCSR_STRTA | DCSR_STRTB, p->base + DMA_DCSR_C); } return 0; } static int sa11x0_dma_resume(struct device *dev) { struct sa11x0_dma_dev *d = dev_get_drvdata(dev); unsigned pch; for (pch = 0; pch < NR_PHY_CHAN; pch++) { struct sa11x0_dma_phy *p = &d->phy[pch]; struct sa11x0_dma_desc *txd = NULL; u32 dcsr = readl_relaxed(p->base + DMA_DCSR_R); WARN_ON(dcsr & (DCSR_BIU | DCSR_STRTA | DCSR_STRTB | DCSR_RUN)); if (p->txd_done) txd = p->txd_done; else if (p->txd_load) txd = p->txd_load; if (!txd) continue; writel_relaxed(txd->ddar, p->base + DMA_DDAR); writel_relaxed(p->dbs[0], p->base + DMA_DBSA); writel_relaxed(p->dbt[0], p->base + DMA_DBTA); writel_relaxed(p->dbs[1], p->base + DMA_DBSB); writel_relaxed(p->dbt[1], p->base + DMA_DBTB); writel_relaxed(p->dcsr, p->base + DMA_DCSR_S); } return 0; } #endif static const struct dev_pm_ops sa11x0_dma_pm_ops = { .suspend_noirq = sa11x0_dma_suspend, .resume_noirq = sa11x0_dma_resume, .freeze_noirq = sa11x0_dma_suspend, .thaw_noirq = sa11x0_dma_resume, .poweroff_noirq = sa11x0_dma_suspend, .restore_noirq = sa11x0_dma_resume, }; static struct platform_driver sa11x0_dma_driver = { .driver = { .name = "sa11x0-dma", .owner = THIS_MODULE, .pm = &sa11x0_dma_pm_ops, }, .probe = sa11x0_dma_probe, .remove = __devexit_p(sa11x0_dma_remove), }; bool sa11x0_dma_filter_fn(struct dma_chan *chan, void *param) { if (chan->device->dev->driver == &sa11x0_dma_driver.driver) { struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan); const char *p = param; return !strcmp(c->name, p); } return false; } EXPORT_SYMBOL(sa11x0_dma_filter_fn); static int __init sa11x0_dma_init(void) { return platform_driver_register(&sa11x0_dma_driver); } subsys_initcall(sa11x0_dma_init); static void __exit sa11x0_dma_exit(void) { platform_driver_unregister(&sa11x0_dma_driver); } module_exit(sa11x0_dma_exit); MODULE_AUTHOR("Russell King"); MODULE_DESCRIPTION("SA-11x0 DMA driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:sa11x0-dma");