/* * emc2103.c - Support for SMSC EMC2103 * Copyright (c) 2010 SMSC * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/mutex.h> /* Addresses scanned */ static const unsigned short normal_i2c[] = { 0x2E, I2C_CLIENT_END }; static const u8 REG_TEMP[4] = { 0x00, 0x02, 0x04, 0x06 }; static const u8 REG_TEMP_MIN[4] = { 0x3c, 0x38, 0x39, 0x3a }; static const u8 REG_TEMP_MAX[4] = { 0x34, 0x30, 0x31, 0x32 }; #define REG_CONF1 0x20 #define REG_TEMP_MAX_ALARM 0x24 #define REG_TEMP_MIN_ALARM 0x25 #define REG_FAN_CONF1 0x42 #define REG_FAN_TARGET_LO 0x4c #define REG_FAN_TARGET_HI 0x4d #define REG_FAN_TACH_HI 0x4e #define REG_FAN_TACH_LO 0x4f #define REG_PRODUCT_ID 0xfd #define REG_MFG_ID 0xfe /* equation 4 from datasheet: rpm = (3932160 * multipler) / count */ #define FAN_RPM_FACTOR 3932160 /* * 2103-2 and 2103-4's 3rd temperature sensor can be connected to two diodes * in anti-parallel mode, and in this configuration both can be read * independently (so we have 4 temperature inputs). The device can't * detect if it's connected in this mode, so we have to manually enable * it. Default is to leave the device in the state it's already in (-1). * This parameter allows APD mode to be optionally forced on or off */ static int apd = -1; module_param(apd, bint, 0); MODULE_PARM_DESC(init, "Set to zero to disable anti-parallel diode mode"); struct temperature { s8 degrees; u8 fraction; /* 0-7 multiples of 0.125 */ }; struct emc2103_data { struct device *hwmon_dev; struct mutex update_lock; bool valid; /* registers are valid */ bool fan_rpm_control; int temp_count; /* num of temp sensors */ unsigned long last_updated; /* in jiffies */ struct temperature temp[4]; /* internal + 3 external */ s8 temp_min[4]; /* no fractional part */ s8 temp_max[4]; /* no fractional part */ u8 temp_min_alarm; u8 temp_max_alarm; u8 fan_multiplier; u16 fan_tach; u16 fan_target; }; static int read_u8_from_i2c(struct i2c_client *client, u8 i2c_reg, u8 *output) { int status = i2c_smbus_read_byte_data(client, i2c_reg); if (status < 0) { dev_warn(&client->dev, "reg 0x%02x, err %d\n", i2c_reg, status); } else { *output = status; } return status; } static void read_temp_from_i2c(struct i2c_client *client, u8 i2c_reg, struct temperature *temp) { u8 degrees, fractional; if (read_u8_from_i2c(client, i2c_reg, °rees) < 0) return; if (read_u8_from_i2c(client, i2c_reg + 1, &fractional) < 0) return; temp->degrees = degrees; temp->fraction = (fractional & 0xe0) >> 5; } static void read_fan_from_i2c(struct i2c_client *client, u16 *output, u8 hi_addr, u8 lo_addr) { u8 high_byte, lo_byte; if (read_u8_from_i2c(client, hi_addr, &high_byte) < 0) return; if (read_u8_from_i2c(client, lo_addr, &lo_byte) < 0) return; *output = ((u16)high_byte << 5) | (lo_byte >> 3); } static void write_fan_target_to_i2c(struct i2c_client *client, u16 new_target) { u8 high_byte = (new_target & 0x1fe0) >> 5; u8 low_byte = (new_target & 0x001f) << 3; i2c_smbus_write_byte_data(client, REG_FAN_TARGET_LO, low_byte); i2c_smbus_write_byte_data(client, REG_FAN_TARGET_HI, high_byte); } static void read_fan_config_from_i2c(struct i2c_client *client) { struct emc2103_data *data = i2c_get_clientdata(client); u8 conf1; if (read_u8_from_i2c(client, REG_FAN_CONF1, &conf1) < 0) return; data->fan_multiplier = 1 << ((conf1 & 0x60) >> 5); data->fan_rpm_control = (conf1 & 0x80) != 0; } static struct emc2103_data *emc2103_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct emc2103_data *data = i2c_get_clientdata(client); mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ + HZ / 2) || !data->valid) { int i; for (i = 0; i < data->temp_count; i++) { read_temp_from_i2c(client, REG_TEMP[i], &data->temp[i]); read_u8_from_i2c(client, REG_TEMP_MIN[i], &data->temp_min[i]); read_u8_from_i2c(client, REG_TEMP_MAX[i], &data->temp_max[i]); } read_u8_from_i2c(client, REG_TEMP_MIN_ALARM, &data->temp_min_alarm); read_u8_from_i2c(client, REG_TEMP_MAX_ALARM, &data->temp_max_alarm); read_fan_from_i2c(client, &data->fan_tach, REG_FAN_TACH_HI, REG_FAN_TACH_LO); read_fan_from_i2c(client, &data->fan_target, REG_FAN_TARGET_HI, REG_FAN_TARGET_LO); read_fan_config_from_i2c(client); data->last_updated = jiffies; data->valid = true; } mutex_unlock(&data->update_lock); return data; } static ssize_t show_temp(struct device *dev, struct device_attribute *da, char *buf) { int nr = to_sensor_dev_attr(da)->index; struct emc2103_data *data = emc2103_update_device(dev); int millidegrees = data->temp[nr].degrees * 1000 + data->temp[nr].fraction * 125; return sprintf(buf, "%d\n", millidegrees); } static ssize_t show_temp_min(struct device *dev, struct device_attribute *da, char *buf) { int nr = to_sensor_dev_attr(da)->index; struct emc2103_data *data = emc2103_update_device(dev); int millidegrees = data->temp_min[nr] * 1000; return sprintf(buf, "%d\n", millidegrees); } static ssize_t show_temp_max(struct device *dev, struct device_attribute *da, char *buf) { int nr = to_sensor_dev_attr(da)->index; struct emc2103_data *data = emc2103_update_device(dev); int millidegrees = data->temp_max[nr] * 1000; return sprintf(buf, "%d\n", millidegrees); } static ssize_t show_temp_fault(struct device *dev, struct device_attribute *da, char *buf) { int nr = to_sensor_dev_attr(da)->index; struct emc2103_data *data = emc2103_update_device(dev); bool fault = (data->temp[nr].degrees == -128); return sprintf(buf, "%d\n", fault ? 1 : 0); } static ssize_t show_temp_min_alarm(struct device *dev, struct device_attribute *da, char *buf) { int nr = to_sensor_dev_attr(da)->index; struct emc2103_data *data = emc2103_update_device(dev); bool alarm = data->temp_min_alarm & (1 << nr); return sprintf(buf, "%d\n", alarm ? 1 : 0); } static ssize_t show_temp_max_alarm(struct device *dev, struct device_attribute *da, char *buf) { int nr = to_sensor_dev_attr(da)->index; struct emc2103_data *data = emc2103_update_device(dev); bool alarm = data->temp_max_alarm & (1 << nr); return sprintf(buf, "%d\n", alarm ? 1 : 0); } static ssize_t set_temp_min(struct device *dev, struct device_attribute *da, const char *buf, size_t count) { int nr = to_sensor_dev_attr(da)->index; struct i2c_client *client = to_i2c_client(dev); struct emc2103_data *data = i2c_get_clientdata(client); long val; int result = kstrtol(buf, 10, &val); if (result < 0) return -EINVAL; val = DIV_ROUND_CLOSEST(val, 1000); if ((val < -63) || (val > 127)) return -EINVAL; mutex_lock(&data->update_lock); data->temp_min[nr] = val; i2c_smbus_write_byte_data(client, REG_TEMP_MIN[nr], val); mutex_unlock(&data->update_lock); return count; } static ssize_t set_temp_max(struct device *dev, struct device_attribute *da, const char *buf, size_t count) { int nr = to_sensor_dev_attr(da)->index; struct i2c_client *client = to_i2c_client(dev); struct emc2103_data *data = i2c_get_clientdata(client); long val; int result = kstrtol(buf, 10, &val); if (result < 0) return -EINVAL; val = DIV_ROUND_CLOSEST(val, 1000); if ((val < -63) || (val > 127)) return -EINVAL; mutex_lock(&data->update_lock); data->temp_max[nr] = val; i2c_smbus_write_byte_data(client, REG_TEMP_MAX[nr], val); mutex_unlock(&data->update_lock); return count; } static ssize_t show_fan(struct device *dev, struct device_attribute *da, char *buf) { struct emc2103_data *data = emc2103_update_device(dev); int rpm = 0; if (data->fan_tach != 0) rpm = (FAN_RPM_FACTOR * data->fan_multiplier) / data->fan_tach; return sprintf(buf, "%d\n", rpm); } static ssize_t show_fan_div(struct device *dev, struct device_attribute *da, char *buf) { struct emc2103_data *data = emc2103_update_device(dev); int fan_div = 8 / data->fan_multiplier; return sprintf(buf, "%d\n", fan_div); } /* * Note: we also update the fan target here, because its value is * determined in part by the fan clock divider. This follows the principle * of least surprise; the user doesn't expect the fan target to change just * because the divider changed. */ static ssize_t set_fan_div(struct device *dev, struct device_attribute *da, const char *buf, size_t count) { struct emc2103_data *data = emc2103_update_device(dev); struct i2c_client *client = to_i2c_client(dev); int new_range_bits, old_div = 8 / data->fan_multiplier; long new_div; int status = kstrtol(buf, 10, &new_div); if (status < 0) return -EINVAL; if (new_div == old_div) /* No change */ return count; switch (new_div) { case 1: new_range_bits = 3; break; case 2: new_range_bits = 2; break; case 4: new_range_bits = 1; break; case 8: new_range_bits = 0; break; default: return -EINVAL; } mutex_lock(&data->update_lock); status = i2c_smbus_read_byte_data(client, REG_FAN_CONF1); if (status < 0) { dev_dbg(&client->dev, "reg 0x%02x, err %d\n", REG_FAN_CONF1, status); mutex_unlock(&data->update_lock); return -EIO; } status &= 0x9F; status |= (new_range_bits << 5); i2c_smbus_write_byte_data(client, REG_FAN_CONF1, status); data->fan_multiplier = 8 / new_div; /* update fan target if high byte is not disabled */ if ((data->fan_target & 0x1fe0) != 0x1fe0) { u16 new_target = (data->fan_target * old_div) / new_div; data->fan_target = min(new_target, (u16)0x1fff); write_fan_target_to_i2c(client, data->fan_target); } /* invalidate data to force re-read from hardware */ data->valid = false; mutex_unlock(&data->update_lock); return count; } static ssize_t show_fan_target(struct device *dev, struct device_attribute *da, char *buf) { struct emc2103_data *data = emc2103_update_device(dev); int rpm = 0; /* high byte of 0xff indicates disabled so return 0 */ if ((data->fan_target != 0) && ((data->fan_target & 0x1fe0) != 0x1fe0)) rpm = (FAN_RPM_FACTOR * data->fan_multiplier) / data->fan_target; return sprintf(buf, "%d\n", rpm); } static ssize_t set_fan_target(struct device *dev, struct device_attribute *da, const char *buf, size_t count) { struct emc2103_data *data = emc2103_update_device(dev); struct i2c_client *client = to_i2c_client(dev); long rpm_target; int result = kstrtol(buf, 10, &rpm_target); if (result < 0) return -EINVAL; /* Datasheet states 16384 as maximum RPM target (table 3.2) */ if ((rpm_target < 0) || (rpm_target > 16384)) return -EINVAL; mutex_lock(&data->update_lock); if (rpm_target == 0) data->fan_target = 0x1fff; else data->fan_target = SENSORS_LIMIT( (FAN_RPM_FACTOR * data->fan_multiplier) / rpm_target, 0, 0x1fff); write_fan_target_to_i2c(client, data->fan_target); mutex_unlock(&data->update_lock); return count; } static ssize_t show_fan_fault(struct device *dev, struct device_attribute *da, char *buf) { struct emc2103_data *data = emc2103_update_device(dev); bool fault = ((data->fan_tach & 0x1fe0) == 0x1fe0); return sprintf(buf, "%d\n", fault ? 1 : 0); } static ssize_t show_pwm_enable(struct device *dev, struct device_attribute *da, char *buf) { struct emc2103_data *data = emc2103_update_device(dev); return sprintf(buf, "%d\n", data->fan_rpm_control ? 3 : 0); } static ssize_t set_pwm_enable(struct device *dev, struct device_attribute *da, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct emc2103_data *data = i2c_get_clientdata(client); long new_value; u8 conf_reg; int result = kstrtol(buf, 10, &new_value); if (result < 0) return -EINVAL; mutex_lock(&data->update_lock); switch (new_value) { case 0: data->fan_rpm_control = false; break; case 3: data->fan_rpm_control = true; break; default: mutex_unlock(&data->update_lock); return -EINVAL; } read_u8_from_i2c(client, REG_FAN_CONF1, &conf_reg); if (data->fan_rpm_control) conf_reg |= 0x80; else conf_reg &= ~0x80; i2c_smbus_write_byte_data(client, REG_FAN_CONF1, conf_reg); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0); static SENSOR_DEVICE_ATTR(temp1_min, S_IRUGO | S_IWUSR, show_temp_min, set_temp_min, 0); static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp_max, set_temp_max, 0); static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_temp_fault, NULL, 0); static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_temp_min_alarm, NULL, 0); static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_temp_max_alarm, NULL, 0); static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 1); static SENSOR_DEVICE_ATTR(temp2_min, S_IRUGO | S_IWUSR, show_temp_min, set_temp_min, 1); static SENSOR_DEVICE_ATTR(temp2_max, S_IRUGO | S_IWUSR, show_temp_max, set_temp_max, 1); static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_temp_fault, NULL, 1); static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_temp_min_alarm, NULL, 1); static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_temp_max_alarm, NULL, 1); static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 2); static SENSOR_DEVICE_ATTR(temp3_min, S_IRUGO | S_IWUSR, show_temp_min, set_temp_min, 2); static SENSOR_DEVICE_ATTR(temp3_max, S_IRUGO | S_IWUSR, show_temp_max, set_temp_max, 2); static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_temp_fault, NULL, 2); static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_temp_min_alarm, NULL, 2); static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_temp_max_alarm, NULL, 2); static SENSOR_DEVICE_ATTR(temp4_input, S_IRUGO, show_temp, NULL, 3); static SENSOR_DEVICE_ATTR(temp4_min, S_IRUGO | S_IWUSR, show_temp_min, set_temp_min, 3); static SENSOR_DEVICE_ATTR(temp4_max, S_IRUGO | S_IWUSR, show_temp_max, set_temp_max, 3); static SENSOR_DEVICE_ATTR(temp4_fault, S_IRUGO, show_temp_fault, NULL, 3); static SENSOR_DEVICE_ATTR(temp4_min_alarm, S_IRUGO, show_temp_min_alarm, NULL, 3); static SENSOR_DEVICE_ATTR(temp4_max_alarm, S_IRUGO, show_temp_max_alarm, NULL, 3); static DEVICE_ATTR(fan1_input, S_IRUGO, show_fan, NULL); static DEVICE_ATTR(fan1_div, S_IRUGO | S_IWUSR, show_fan_div, set_fan_div); static DEVICE_ATTR(fan1_target, S_IRUGO | S_IWUSR, show_fan_target, set_fan_target); static DEVICE_ATTR(fan1_fault, S_IRUGO, show_fan_fault, NULL); static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, show_pwm_enable, set_pwm_enable); /* sensors present on all models */ static struct attribute *emc2103_attributes[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_min.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_fault.dev_attr.attr, &sensor_dev_attr_temp1_min_alarm.dev_attr.attr, &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp2_fault.dev_attr.attr, &sensor_dev_attr_temp2_min_alarm.dev_attr.attr, &sensor_dev_attr_temp2_max_alarm.dev_attr.attr, &dev_attr_fan1_input.attr, &dev_attr_fan1_div.attr, &dev_attr_fan1_target.attr, &dev_attr_fan1_fault.attr, &dev_attr_pwm1_enable.attr, NULL }; /* extra temperature sensors only present on 2103-2 and 2103-4 */ static struct attribute *emc2103_attributes_temp3[] = { &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp3_min.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp3_fault.dev_attr.attr, &sensor_dev_attr_temp3_min_alarm.dev_attr.attr, &sensor_dev_attr_temp3_max_alarm.dev_attr.attr, NULL }; /* extra temperature sensors only present on 2103-2 and 2103-4 in APD mode */ static struct attribute *emc2103_attributes_temp4[] = { &sensor_dev_attr_temp4_input.dev_attr.attr, &sensor_dev_attr_temp4_min.dev_attr.attr, &sensor_dev_attr_temp4_max.dev_attr.attr, &sensor_dev_attr_temp4_fault.dev_attr.attr, &sensor_dev_attr_temp4_min_alarm.dev_attr.attr, &sensor_dev_attr_temp4_max_alarm.dev_attr.attr, NULL }; static const struct attribute_group emc2103_group = { .attrs = emc2103_attributes, }; static const struct attribute_group emc2103_temp3_group = { .attrs = emc2103_attributes_temp3, }; static const struct attribute_group emc2103_temp4_group = { .attrs = emc2103_attributes_temp4, }; static int emc2103_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct emc2103_data *data; int status; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -EIO; data = kzalloc(sizeof(struct emc2103_data), GFP_KERNEL); if (!data) return -ENOMEM; i2c_set_clientdata(client, data); mutex_init(&data->update_lock); /* 2103-2 and 2103-4 have 3 external diodes, 2103-1 has 1 */ status = i2c_smbus_read_byte_data(client, REG_PRODUCT_ID); if (status == 0x24) { /* 2103-1 only has 1 external diode */ data->temp_count = 2; } else { /* 2103-2 and 2103-4 have 3 or 4 external diodes */ status = i2c_smbus_read_byte_data(client, REG_CONF1); if (status < 0) { dev_dbg(&client->dev, "reg 0x%02x, err %d\n", REG_CONF1, status); goto exit_free; } /* detect current state of hardware */ data->temp_count = (status & 0x01) ? 4 : 3; /* force APD state if module parameter is set */ if (apd == 0) { /* force APD mode off */ data->temp_count = 3; status &= ~(0x01); i2c_smbus_write_byte_data(client, REG_CONF1, status); } else if (apd == 1) { /* force APD mode on */ data->temp_count = 4; status |= 0x01; i2c_smbus_write_byte_data(client, REG_CONF1, status); } } /* Register sysfs hooks */ status = sysfs_create_group(&client->dev.kobj, &emc2103_group); if (status) goto exit_free; if (data->temp_count >= 3) { status = sysfs_create_group(&client->dev.kobj, &emc2103_temp3_group); if (status) goto exit_remove; } if (data->temp_count == 4) { status = sysfs_create_group(&client->dev.kobj, &emc2103_temp4_group); if (status) goto exit_remove_temp3; } data->hwmon_dev = hwmon_device_register(&client->dev); if (IS_ERR(data->hwmon_dev)) { status = PTR_ERR(data->hwmon_dev); goto exit_remove_temp4; } dev_info(&client->dev, "%s: sensor '%s'\n", dev_name(data->hwmon_dev), client->name); return 0; exit_remove_temp4: if (data->temp_count == 4) sysfs_remove_group(&client->dev.kobj, &emc2103_temp4_group); exit_remove_temp3: if (data->temp_count >= 3) sysfs_remove_group(&client->dev.kobj, &emc2103_temp3_group); exit_remove: sysfs_remove_group(&client->dev.kobj, &emc2103_group); exit_free: kfree(data); return status; } static int emc2103_remove(struct i2c_client *client) { struct emc2103_data *data = i2c_get_clientdata(client); hwmon_device_unregister(data->hwmon_dev); if (data->temp_count == 4) sysfs_remove_group(&client->dev.kobj, &emc2103_temp4_group); if (data->temp_count >= 3) sysfs_remove_group(&client->dev.kobj, &emc2103_temp3_group); sysfs_remove_group(&client->dev.kobj, &emc2103_group); kfree(data); return 0; } static const struct i2c_device_id emc2103_ids[] = { { "emc2103", 0, }, { /* LIST END */ } }; MODULE_DEVICE_TABLE(i2c, emc2103_ids); /* Return 0 if detection is successful, -ENODEV otherwise */ static int emc2103_detect(struct i2c_client *new_client, struct i2c_board_info *info) { struct i2c_adapter *adapter = new_client->adapter; int manufacturer, product; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; manufacturer = i2c_smbus_read_byte_data(new_client, REG_MFG_ID); if (manufacturer != 0x5D) return -ENODEV; product = i2c_smbus_read_byte_data(new_client, REG_PRODUCT_ID); if ((product != 0x24) && (product != 0x26)) return -ENODEV; strlcpy(info->type, "emc2103", I2C_NAME_SIZE); return 0; } static struct i2c_driver emc2103_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "emc2103", }, .probe = emc2103_probe, .remove = emc2103_remove, .id_table = emc2103_ids, .detect = emc2103_detect, .address_list = normal_i2c, }; module_i2c_driver(emc2103_driver); MODULE_AUTHOR("Steve Glendinning <steve.glendinning@smsc.com>"); MODULE_DESCRIPTION("SMSC EMC2103 hwmon driver"); MODULE_LICENSE("GPL");