/* * Driver for the IMX keypad port. * Copyright (C) 2009 Alberto Panizzo <maramaopercheseimorto@gmail.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * <<Power management needs to be implemented>>. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/err.h> #include <linux/init.h> #include <linux/input/matrix_keypad.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/timer.h> /* * Keypad Controller registers (halfword) */ #define KPCR 0x00 /* Keypad Control Register */ #define KPSR 0x02 /* Keypad Status Register */ #define KBD_STAT_KPKD (0x1 << 0) /* Key Press Interrupt Status bit (w1c) */ #define KBD_STAT_KPKR (0x1 << 1) /* Key Release Interrupt Status bit (w1c) */ #define KBD_STAT_KDSC (0x1 << 2) /* Key Depress Synch Chain Status bit (w1c)*/ #define KBD_STAT_KRSS (0x1 << 3) /* Key Release Synch Status bit (w1c)*/ #define KBD_STAT_KDIE (0x1 << 8) /* Key Depress Interrupt Enable Status bit */ #define KBD_STAT_KRIE (0x1 << 9) /* Key Release Interrupt Enable */ #define KBD_STAT_KPPEN (0x1 << 10) /* Keypad Clock Enable */ #define KDDR 0x04 /* Keypad Data Direction Register */ #define KPDR 0x06 /* Keypad Data Register */ #define MAX_MATRIX_KEY_ROWS 8 #define MAX_MATRIX_KEY_COLS 8 #define MATRIX_ROW_SHIFT 3 #define MAX_MATRIX_KEY_NUM (MAX_MATRIX_KEY_ROWS * MAX_MATRIX_KEY_COLS) struct imx_keypad { struct clk *clk; struct input_dev *input_dev; void __iomem *mmio_base; int irq; struct timer_list check_matrix_timer; /* * The matrix is stable only if no changes are detected after * IMX_KEYPAD_SCANS_FOR_STABILITY scans */ #define IMX_KEYPAD_SCANS_FOR_STABILITY 3 int stable_count; bool enabled; /* Masks for enabled rows/cols */ unsigned short rows_en_mask; unsigned short cols_en_mask; unsigned short keycodes[MAX_MATRIX_KEY_NUM]; /* * Matrix states: * -stable: achieved after a complete debounce process. * -unstable: used in the debouncing process. */ unsigned short matrix_stable_state[MAX_MATRIX_KEY_COLS]; unsigned short matrix_unstable_state[MAX_MATRIX_KEY_COLS]; }; /* Scan the matrix and return the new state in *matrix_volatile_state. */ static void imx_keypad_scan_matrix(struct imx_keypad *keypad, unsigned short *matrix_volatile_state) { int col; unsigned short reg_val; for (col = 0; col < MAX_MATRIX_KEY_COLS; col++) { if ((keypad->cols_en_mask & (1 << col)) == 0) continue; /* * Discharge keypad capacitance: * 2. write 1s on column data. * 3. configure columns as totem-pole to discharge capacitance. * 4. configure columns as open-drain. */ reg_val = readw(keypad->mmio_base + KPDR); reg_val |= 0xff00; writew(reg_val, keypad->mmio_base + KPDR); reg_val = readw(keypad->mmio_base + KPCR); reg_val &= ~((keypad->cols_en_mask & 0xff) << 8); writew(reg_val, keypad->mmio_base + KPCR); udelay(2); reg_val = readw(keypad->mmio_base + KPCR); reg_val |= (keypad->cols_en_mask & 0xff) << 8; writew(reg_val, keypad->mmio_base + KPCR); /* * 5. Write a single column to 0, others to 1. * 6. Sample row inputs and save data. * 7. Repeat steps 2 - 6 for remaining columns. */ reg_val = readw(keypad->mmio_base + KPDR); reg_val &= ~(1 << (8 + col)); writew(reg_val, keypad->mmio_base + KPDR); /* * Delay added to avoid propagating the 0 from column to row * when scanning. */ udelay(5); /* * 1s in matrix_volatile_state[col] means key pressures * throw data from non enabled rows. */ reg_val = readw(keypad->mmio_base + KPDR); matrix_volatile_state[col] = (~reg_val) & keypad->rows_en_mask; } /* * Return in standby mode: * 9. write 0s to columns */ reg_val = readw(keypad->mmio_base + KPDR); reg_val &= 0x00ff; writew(reg_val, keypad->mmio_base + KPDR); } /* * Compare the new matrix state (volatile) with the stable one stored in * keypad->matrix_stable_state and fire events if changes are detected. */ static void imx_keypad_fire_events(struct imx_keypad *keypad, unsigned short *matrix_volatile_state) { struct input_dev *input_dev = keypad->input_dev; int row, col; for (col = 0; col < MAX_MATRIX_KEY_COLS; col++) { unsigned short bits_changed; int code; if ((keypad->cols_en_mask & (1 << col)) == 0) continue; /* Column is not enabled */ bits_changed = keypad->matrix_stable_state[col] ^ matrix_volatile_state[col]; if (bits_changed == 0) continue; /* Column does not contain changes */ for (row = 0; row < MAX_MATRIX_KEY_ROWS; row++) { if ((keypad->rows_en_mask & (1 << row)) == 0) continue; /* Row is not enabled */ if ((bits_changed & (1 << row)) == 0) continue; /* Row does not contain changes */ code = MATRIX_SCAN_CODE(row, col, MATRIX_ROW_SHIFT); input_event(input_dev, EV_MSC, MSC_SCAN, code); input_report_key(input_dev, keypad->keycodes[code], matrix_volatile_state[col] & (1 << row)); dev_dbg(&input_dev->dev, "Event code: %d, val: %d", keypad->keycodes[code], matrix_volatile_state[col] & (1 << row)); } } input_sync(input_dev); } /* * imx_keypad_check_for_events is the timer handler. */ static void imx_keypad_check_for_events(unsigned long data) { struct imx_keypad *keypad = (struct imx_keypad *) data; unsigned short matrix_volatile_state[MAX_MATRIX_KEY_COLS]; unsigned short reg_val; bool state_changed, is_zero_matrix; int i; memset(matrix_volatile_state, 0, sizeof(matrix_volatile_state)); imx_keypad_scan_matrix(keypad, matrix_volatile_state); state_changed = false; for (i = 0; i < MAX_MATRIX_KEY_COLS; i++) { if ((keypad->cols_en_mask & (1 << i)) == 0) continue; if (keypad->matrix_unstable_state[i] ^ matrix_volatile_state[i]) { state_changed = true; break; } } /* * If the matrix state is changed from the previous scan * (Re)Begin the debouncing process, saving the new state in * keypad->matrix_unstable_state. * else * Increase the count of number of scans with a stable state. */ if (state_changed) { memcpy(keypad->matrix_unstable_state, matrix_volatile_state, sizeof(matrix_volatile_state)); keypad->stable_count = 0; } else keypad->stable_count++; /* * If the matrix is not as stable as we want reschedule scan * in the near future. */ if (keypad->stable_count < IMX_KEYPAD_SCANS_FOR_STABILITY) { mod_timer(&keypad->check_matrix_timer, jiffies + msecs_to_jiffies(10)); return; } /* * If the matrix state is stable, fire the events and save the new * stable state. Note, if the matrix is kept stable for longer * (keypad->stable_count > IMX_KEYPAD_SCANS_FOR_STABILITY) all * events have already been generated. */ if (keypad->stable_count == IMX_KEYPAD_SCANS_FOR_STABILITY) { imx_keypad_fire_events(keypad, matrix_volatile_state); memcpy(keypad->matrix_stable_state, matrix_volatile_state, sizeof(matrix_volatile_state)); } is_zero_matrix = true; for (i = 0; i < MAX_MATRIX_KEY_COLS; i++) { if (matrix_volatile_state[i] != 0) { is_zero_matrix = false; break; } } if (is_zero_matrix) { /* * All keys have been released. Enable only the KDI * interrupt for future key presses (clear the KDI * status bit and its sync chain before that). */ reg_val = readw(keypad->mmio_base + KPSR); reg_val |= KBD_STAT_KPKD | KBD_STAT_KDSC; writew(reg_val, keypad->mmio_base + KPSR); reg_val = readw(keypad->mmio_base + KPSR); reg_val |= KBD_STAT_KDIE; reg_val &= ~KBD_STAT_KRIE; writew(reg_val, keypad->mmio_base + KPSR); } else { /* * Some keys are still pressed. Schedule a rescan in * attempt to detect multiple key presses and enable * the KRI interrupt to react quickly to key release * event. */ mod_timer(&keypad->check_matrix_timer, jiffies + msecs_to_jiffies(60)); reg_val = readw(keypad->mmio_base + KPSR); reg_val |= KBD_STAT_KPKR | KBD_STAT_KRSS; writew(reg_val, keypad->mmio_base + KPSR); reg_val = readw(keypad->mmio_base + KPSR); reg_val |= KBD_STAT_KRIE; reg_val &= ~KBD_STAT_KDIE; writew(reg_val, keypad->mmio_base + KPSR); } } static irqreturn_t imx_keypad_irq_handler(int irq, void *dev_id) { struct imx_keypad *keypad = dev_id; unsigned short reg_val; reg_val = readw(keypad->mmio_base + KPSR); /* Disable both interrupt types */ reg_val &= ~(KBD_STAT_KRIE | KBD_STAT_KDIE); /* Clear interrupts status bits */ reg_val |= KBD_STAT_KPKR | KBD_STAT_KPKD; writew(reg_val, keypad->mmio_base + KPSR); if (keypad->enabled) { /* The matrix is supposed to be changed */ keypad->stable_count = 0; /* Schedule the scanning procedure near in the future */ mod_timer(&keypad->check_matrix_timer, jiffies + msecs_to_jiffies(2)); } return IRQ_HANDLED; } static void imx_keypad_config(struct imx_keypad *keypad) { unsigned short reg_val; /* * Include enabled rows in interrupt generation (KPCR[7:0]) * Configure keypad columns as open-drain (KPCR[15:8]) */ reg_val = readw(keypad->mmio_base + KPCR); reg_val |= keypad->rows_en_mask & 0xff; /* rows */ reg_val |= (keypad->cols_en_mask & 0xff) << 8; /* cols */ writew(reg_val, keypad->mmio_base + KPCR); /* Write 0's to KPDR[15:8] (Colums) */ reg_val = readw(keypad->mmio_base + KPDR); reg_val &= 0x00ff; writew(reg_val, keypad->mmio_base + KPDR); /* Configure columns as output, rows as input (KDDR[15:0]) */ writew(0xff00, keypad->mmio_base + KDDR); /* * Clear Key Depress and Key Release status bit. * Clear both synchronizer chain. */ reg_val = readw(keypad->mmio_base + KPSR); reg_val |= KBD_STAT_KPKR | KBD_STAT_KPKD | KBD_STAT_KDSC | KBD_STAT_KRSS; writew(reg_val, keypad->mmio_base + KPSR); /* Enable KDI and disable KRI (avoid false release events). */ reg_val |= KBD_STAT_KDIE; reg_val &= ~KBD_STAT_KRIE; writew(reg_val, keypad->mmio_base + KPSR); } static void imx_keypad_inhibit(struct imx_keypad *keypad) { unsigned short reg_val; /* Inhibit KDI and KRI interrupts. */ reg_val = readw(keypad->mmio_base + KPSR); reg_val &= ~(KBD_STAT_KRIE | KBD_STAT_KDIE); writew(reg_val, keypad->mmio_base + KPSR); /* Colums as open drain and disable all rows */ writew(0xff00, keypad->mmio_base + KPCR); } static void imx_keypad_close(struct input_dev *dev) { struct imx_keypad *keypad = input_get_drvdata(dev); dev_dbg(&dev->dev, ">%s\n", __func__); /* Mark keypad as being inactive */ keypad->enabled = false; synchronize_irq(keypad->irq); del_timer_sync(&keypad->check_matrix_timer); imx_keypad_inhibit(keypad); /* Disable clock unit */ clk_disable(keypad->clk); } static int imx_keypad_open(struct input_dev *dev) { struct imx_keypad *keypad = input_get_drvdata(dev); dev_dbg(&dev->dev, ">%s\n", __func__); /* We became active from now */ keypad->enabled = true; /* Enable the kpp clock */ clk_enable(keypad->clk); imx_keypad_config(keypad); /* Sanity control, not all the rows must be actived now. */ if ((readw(keypad->mmio_base + KPDR) & keypad->rows_en_mask) == 0) { dev_err(&dev->dev, "too many keys pressed, control pins initialisation\n"); goto open_err; } return 0; open_err: imx_keypad_close(dev); return -EIO; } static int __devinit imx_keypad_probe(struct platform_device *pdev) { const struct matrix_keymap_data *keymap_data = pdev->dev.platform_data; struct imx_keypad *keypad; struct input_dev *input_dev; struct resource *res; int irq, error, i; if (keymap_data == NULL) { dev_err(&pdev->dev, "no keymap defined\n"); return -EINVAL; } irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "no irq defined in platform data\n"); return -EINVAL; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res == NULL) { dev_err(&pdev->dev, "no I/O memory defined in platform data\n"); return -EINVAL; } res = request_mem_region(res->start, resource_size(res), pdev->name); if (res == NULL) { dev_err(&pdev->dev, "failed to request I/O memory\n"); return -EBUSY; } input_dev = input_allocate_device(); if (!input_dev) { dev_err(&pdev->dev, "failed to allocate the input device\n"); error = -ENOMEM; goto failed_rel_mem; } keypad = kzalloc(sizeof(struct imx_keypad), GFP_KERNEL); if (!keypad) { dev_err(&pdev->dev, "not enough memory for driver data\n"); error = -ENOMEM; goto failed_free_input; } keypad->input_dev = input_dev; keypad->irq = irq; keypad->stable_count = 0; setup_timer(&keypad->check_matrix_timer, imx_keypad_check_for_events, (unsigned long) keypad); keypad->mmio_base = ioremap(res->start, resource_size(res)); if (keypad->mmio_base == NULL) { dev_err(&pdev->dev, "failed to remap I/O memory\n"); error = -ENOMEM; goto failed_free_priv; } keypad->clk = clk_get(&pdev->dev, "kpp"); if (IS_ERR(keypad->clk)) { dev_err(&pdev->dev, "failed to get keypad clock\n"); error = PTR_ERR(keypad->clk); goto failed_unmap; } /* Search for rows and cols enabled */ for (i = 0; i < keymap_data->keymap_size; i++) { keypad->rows_en_mask |= 1 << KEY_ROW(keymap_data->keymap[i]); keypad->cols_en_mask |= 1 << KEY_COL(keymap_data->keymap[i]); } if (keypad->rows_en_mask > ((1 << MAX_MATRIX_KEY_ROWS) - 1) || keypad->cols_en_mask > ((1 << MAX_MATRIX_KEY_COLS) - 1)) { dev_err(&pdev->dev, "invalid key data (too many rows or colums)\n"); error = -EINVAL; goto failed_clock_put; } dev_dbg(&pdev->dev, "enabled rows mask: %x\n", keypad->rows_en_mask); dev_dbg(&pdev->dev, "enabled cols mask: %x\n", keypad->cols_en_mask); /* Init the Input device */ input_dev->name = pdev->name; input_dev->id.bustype = BUS_HOST; input_dev->dev.parent = &pdev->dev; input_dev->open = imx_keypad_open; input_dev->close = imx_keypad_close; input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REP); input_dev->keycode = keypad->keycodes; input_dev->keycodesize = sizeof(keypad->keycodes[0]); input_dev->keycodemax = ARRAY_SIZE(keypad->keycodes); matrix_keypad_build_keymap(keymap_data, MATRIX_ROW_SHIFT, keypad->keycodes, input_dev->keybit); input_set_capability(input_dev, EV_MSC, MSC_SCAN); input_set_drvdata(input_dev, keypad); /* Ensure that the keypad will stay dormant until opened */ imx_keypad_inhibit(keypad); error = request_irq(irq, imx_keypad_irq_handler, 0, pdev->name, keypad); if (error) { dev_err(&pdev->dev, "failed to request IRQ\n"); goto failed_clock_put; } /* Register the input device */ error = input_register_device(input_dev); if (error) { dev_err(&pdev->dev, "failed to register input device\n"); goto failed_free_irq; } platform_set_drvdata(pdev, keypad); device_init_wakeup(&pdev->dev, 1); return 0; failed_free_irq: free_irq(irq, pdev); failed_clock_put: clk_put(keypad->clk); failed_unmap: iounmap(keypad->mmio_base); failed_free_priv: kfree(keypad); failed_free_input: input_free_device(input_dev); failed_rel_mem: release_mem_region(res->start, resource_size(res)); return error; } static int __devexit imx_keypad_remove(struct platform_device *pdev) { struct imx_keypad *keypad = platform_get_drvdata(pdev); struct resource *res; dev_dbg(&pdev->dev, ">%s\n", __func__); platform_set_drvdata(pdev, NULL); input_unregister_device(keypad->input_dev); free_irq(keypad->irq, keypad); clk_put(keypad->clk); iounmap(keypad->mmio_base); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); release_mem_region(res->start, resource_size(res)); kfree(keypad); return 0; } #ifdef CONFIG_PM_SLEEP static int imx_kbd_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct imx_keypad *kbd = platform_get_drvdata(pdev); struct input_dev *input_dev = kbd->input_dev; /* imx kbd can wake up system even clock is disabled */ mutex_lock(&input_dev->mutex); if (input_dev->users) clk_disable(kbd->clk); mutex_unlock(&input_dev->mutex); if (device_may_wakeup(&pdev->dev)) enable_irq_wake(kbd->irq); return 0; } static int imx_kbd_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct imx_keypad *kbd = platform_get_drvdata(pdev); struct input_dev *input_dev = kbd->input_dev; if (device_may_wakeup(&pdev->dev)) disable_irq_wake(kbd->irq); mutex_lock(&input_dev->mutex); if (input_dev->users) clk_enable(kbd->clk); mutex_unlock(&input_dev->mutex); return 0; } #endif static SIMPLE_DEV_PM_OPS(imx_kbd_pm_ops, imx_kbd_suspend, imx_kbd_resume); static struct platform_driver imx_keypad_driver = { .driver = { .name = "imx-keypad", .owner = THIS_MODULE, .pm = &imx_kbd_pm_ops, }, .probe = imx_keypad_probe, .remove = __devexit_p(imx_keypad_remove), }; module_platform_driver(imx_keypad_driver); MODULE_AUTHOR("Alberto Panizzo <maramaopercheseimorto@gmail.com>"); MODULE_DESCRIPTION("IMX Keypad Port Driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:imx-keypad");