/* * drivers/i2c/chips/lm8323.c * * Copyright (C) 2007-2009 Nokia Corporation * * Written by Daniel Stone <daniel.stone@nokia.com> * Timo O. Karjalainen <timo.o.karjalainen@nokia.com> * * Updated by Felipe Balbi <felipe.balbi@nokia.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation (version 2 of the License only). * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/sched.h> #include <linux/mutex.h> #include <linux/delay.h> #include <linux/input.h> #include <linux/leds.h> #include <linux/pm.h> #include <linux/i2c/lm8323.h> #include <linux/slab.h> /* Commands to send to the chip. */ #define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */ #define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */ #define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */ #define LM8323_CMD_RESET 0x83 /* Reset, same as external one */ #define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */ #define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */ #define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */ #define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */ #define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */ #define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */ #define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */ #define LM8323_CMD_READ_ERR 0x8c /* Get error status. */ #define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */ #define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */ #define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */ #define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */ #define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */ #define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */ #define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */ #define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */ #define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */ #define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */ /* Interrupt status. */ #define INT_KEYPAD 0x01 /* Key event. */ #define INT_ROTATOR 0x02 /* Rotator event. */ #define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */ #define INT_NOINIT 0x10 /* Lost configuration. */ #define INT_PWM1 0x20 /* PWM1 stopped. */ #define INT_PWM2 0x40 /* PWM2 stopped. */ #define INT_PWM3 0x80 /* PWM3 stopped. */ /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */ #define ERR_BADPAR 0x01 /* Bad parameter. */ #define ERR_CMDUNK 0x02 /* Unknown command. */ #define ERR_KEYOVR 0x04 /* Too many keys pressed. */ #define ERR_FIFOOVER 0x40 /* FIFO overflow. */ /* Configuration keys (CMD_{WRITE,READ}_CFG). */ #define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */ #define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */ #define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */ #define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */ #define CFG_PSIZE 0x20 /* Package size (must be 0). */ #define CFG_ROTEN 0x40 /* Enable rotator. */ /* Clock settings (CMD_{WRITE,READ}_CLOCK). */ #define CLK_RCPWM_INTERNAL 0x00 #define CLK_RCPWM_EXTERNAL 0x03 #define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */ #define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */ /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */ #define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */ #define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */ #define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */ #define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */ /* Key event fifo length */ #define LM8323_FIFO_LEN 15 /* Commands for PWM engine; feed in with PWM_WRITE. */ /* Load ramp counter from duty cycle field (range 0 - 0xff). */ #define PWM_SET(v) (0x4000 | ((v) & 0xff)) /* Go to start of script. */ #define PWM_GOTOSTART 0x0000 /* * Stop engine (generates interrupt). If reset is 1, clear the program * counter, else leave it. */ #define PWM_END(reset) (0xc000 | (!!(reset) << 11)) /* * Ramp. If s is 1, divide clock by 512, else divide clock by 16. * Take t clock scales (up to 63) per step, for n steps (up to 126). * If u is set, ramp up, else ramp down. */ #define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \ ((n) & 0x7f) | ((u) ? 0 : 0x80)) /* * Loop (i.e. jump back to pos) for a given number of iterations (up to 63). * If cnt is zero, execute until PWM_END is encountered. */ #define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \ ((pos) & 0x3f)) /* * Wait for trigger. Argument is a mask of channels, shifted by the channel * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered * from 1, not 0. */ #define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6)) /* Send trigger. Argument is same as PWM_WAIT_TRIG. */ #define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7)) struct lm8323_pwm { int id; int fade_time; int brightness; int desired_brightness; bool enabled; bool running; /* pwm lock */ struct mutex lock; struct work_struct work; struct led_classdev cdev; struct lm8323_chip *chip; }; struct lm8323_chip { /* device lock */ struct mutex lock; struct i2c_client *client; struct input_dev *idev; bool kp_enabled; bool pm_suspend; unsigned keys_down; char phys[32]; unsigned short keymap[LM8323_KEYMAP_SIZE]; int size_x; int size_y; int debounce_time; int active_time; struct lm8323_pwm pwm[LM8323_NUM_PWMS]; }; #define client_to_lm8323(c) container_of(c, struct lm8323_chip, client) #define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev) #define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev) #define work_to_pwm(w) container_of(w, struct lm8323_pwm, work) #define LM8323_MAX_DATA 8 /* * To write, we just access the chip's address in write mode, and dump the * command and data out on the bus. The command byte and data are taken as * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA. */ static int lm8323_write(struct lm8323_chip *lm, int len, ...) { int ret, i; va_list ap; u8 data[LM8323_MAX_DATA]; va_start(ap, len); if (unlikely(len > LM8323_MAX_DATA)) { dev_err(&lm->client->dev, "tried to send %d bytes\n", len); va_end(ap); return 0; } for (i = 0; i < len; i++) data[i] = va_arg(ap, int); va_end(ap); /* * If the host is asleep while we send the data, we can get a NACK * back while it wakes up, so try again, once. */ ret = i2c_master_send(lm->client, data, len); if (unlikely(ret == -EREMOTEIO)) ret = i2c_master_send(lm->client, data, len); if (unlikely(ret != len)) dev_err(&lm->client->dev, "sent %d bytes of %d total\n", len, ret); return ret; } /* * To read, we first send the command byte to the chip and end the transaction, * then access the chip in read mode, at which point it will send the data. */ static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len) { int ret; /* * If the host is asleep while we send the byte, we can get a NACK * back while it wakes up, so try again, once. */ ret = i2c_master_send(lm->client, &cmd, 1); if (unlikely(ret == -EREMOTEIO)) ret = i2c_master_send(lm->client, &cmd, 1); if (unlikely(ret != 1)) { dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n", cmd); return 0; } ret = i2c_master_recv(lm->client, buf, len); if (unlikely(ret != len)) dev_err(&lm->client->dev, "wanted %d bytes, got %d\n", len, ret); return ret; } /* * Set the chip active time (idle time before it enters halt). */ static void lm8323_set_active_time(struct lm8323_chip *lm, int time) { lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2); } /* * The signals are AT-style: the low 7 bits are the keycode, and the top * bit indicates the state (1 for down, 0 for up). */ static inline u8 lm8323_whichkey(u8 event) { return event & 0x7f; } static inline int lm8323_ispress(u8 event) { return (event & 0x80) ? 1 : 0; } static void process_keys(struct lm8323_chip *lm) { u8 event; u8 key_fifo[LM8323_FIFO_LEN + 1]; int old_keys_down = lm->keys_down; int ret; int i = 0; /* * Read all key events from the FIFO at once. Next READ_FIFO clears the * FIFO even if we didn't read all events previously. */ ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN); if (ret < 0) { dev_err(&lm->client->dev, "Failed reading fifo \n"); return; } key_fifo[ret] = 0; while ((event = key_fifo[i++])) { u8 key = lm8323_whichkey(event); int isdown = lm8323_ispress(event); unsigned short keycode = lm->keymap[key]; dev_vdbg(&lm->client->dev, "key 0x%02x %s\n", key, isdown ? "down" : "up"); if (lm->kp_enabled) { input_event(lm->idev, EV_MSC, MSC_SCAN, key); input_report_key(lm->idev, keycode, isdown); input_sync(lm->idev); } if (isdown) lm->keys_down++; else lm->keys_down--; } /* * Errata: We need to ensure that the chip never enters halt mode * during a keypress, so set active time to 0. When it's released, * we can enter halt again, so set the active time back to normal. */ if (!old_keys_down && lm->keys_down) lm8323_set_active_time(lm, 0); if (old_keys_down && !lm->keys_down) lm8323_set_active_time(lm, lm->active_time); } static void lm8323_process_error(struct lm8323_chip *lm) { u8 error; if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) { if (error & ERR_FIFOOVER) dev_vdbg(&lm->client->dev, "fifo overflow!\n"); if (error & ERR_KEYOVR) dev_vdbg(&lm->client->dev, "more than two keys pressed\n"); if (error & ERR_CMDUNK) dev_vdbg(&lm->client->dev, "unknown command submitted\n"); if (error & ERR_BADPAR) dev_vdbg(&lm->client->dev, "bad command parameter\n"); } } static void lm8323_reset(struct lm8323_chip *lm) { /* The docs say we must pass 0xAA as the data byte. */ lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA); } static int lm8323_configure(struct lm8323_chip *lm) { int keysize = (lm->size_x << 4) | lm->size_y; int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL); int debounce = lm->debounce_time >> 2; int active = lm->active_time >> 2; /* * Active time must be greater than the debounce time: if it's * a close-run thing, give ourselves a 12ms buffer. */ if (debounce >= active) active = debounce + 3; lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0); lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock); lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize); lm8323_set_active_time(lm, lm->active_time); lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce); lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff); lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0); /* * Not much we can do about errors at this point, so just hope * for the best. */ return 0; } static void pwm_done(struct lm8323_pwm *pwm) { mutex_lock(&pwm->lock); pwm->running = false; if (pwm->desired_brightness != pwm->brightness) schedule_work(&pwm->work); mutex_unlock(&pwm->lock); } /* * Bottom half: handle the interrupt by posting key events, or dealing with * errors appropriately. */ static irqreturn_t lm8323_irq(int irq, void *_lm) { struct lm8323_chip *lm = _lm; u8 ints; int i; mutex_lock(&lm->lock); while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) { if (likely(ints & INT_KEYPAD)) process_keys(lm); if (ints & INT_ROTATOR) { /* We don't currently support the rotator. */ dev_vdbg(&lm->client->dev, "rotator fired\n"); } if (ints & INT_ERROR) { dev_vdbg(&lm->client->dev, "error!\n"); lm8323_process_error(lm); } if (ints & INT_NOINIT) { dev_err(&lm->client->dev, "chip lost config; " "reinitialising\n"); lm8323_configure(lm); } for (i = 0; i < LM8323_NUM_PWMS; i++) { if (ints & (1 << (INT_PWM1 + i))) { dev_vdbg(&lm->client->dev, "pwm%d engine completed\n", i); pwm_done(&lm->pwm[i]); } } } mutex_unlock(&lm->lock); return IRQ_HANDLED; } /* * Read the chip ID. */ static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf) { int bytes; bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2); if (unlikely(bytes != 2)) return -EIO; return 0; } static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd) { lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id, (cmd & 0xff00) >> 8, cmd & 0x00ff); } /* * Write a script into a given PWM engine, concluding with PWM_END. * If 'kill' is nonzero, the engine will be shut down at the end * of the script, producing a zero output. Otherwise the engine * will be kept running at the final PWM level indefinitely. */ static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill, int len, const u16 *cmds) { int i; for (i = 0; i < len; i++) lm8323_write_pwm_one(pwm, i, cmds[i]); lm8323_write_pwm_one(pwm, i++, PWM_END(kill)); lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id); pwm->running = true; } static void lm8323_pwm_work(struct work_struct *work) { struct lm8323_pwm *pwm = work_to_pwm(work); int div512, perstep, steps, hz, up, kill; u16 pwm_cmds[3]; int num_cmds = 0; mutex_lock(&pwm->lock); /* * Do nothing if we're already at the requested level, * or previous setting is not yet complete. In the latter * case we will be called again when the previous PWM script * finishes. */ if (pwm->running || pwm->desired_brightness == pwm->brightness) goto out; kill = (pwm->desired_brightness == 0); up = (pwm->desired_brightness > pwm->brightness); steps = abs(pwm->desired_brightness - pwm->brightness); /* * Convert time (in ms) into a divisor (512 or 16 on a refclk of * 32768Hz), and number of ticks per step. */ if ((pwm->fade_time / steps) > (32768 / 512)) { div512 = 1; hz = 32768 / 512; } else { div512 = 0; hz = 32768 / 16; } perstep = (hz * pwm->fade_time) / (steps * 1000); if (perstep == 0) perstep = 1; else if (perstep > 63) perstep = 63; while (steps) { int s; s = min(126, steps); pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up); steps -= s; } lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds); pwm->brightness = pwm->desired_brightness; out: mutex_unlock(&pwm->lock); } static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev, enum led_brightness brightness) { struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); struct lm8323_chip *lm = pwm->chip; mutex_lock(&pwm->lock); pwm->desired_brightness = brightness; mutex_unlock(&pwm->lock); if (in_interrupt()) { schedule_work(&pwm->work); } else { /* * Schedule PWM work as usual unless we are going into suspend */ mutex_lock(&lm->lock); if (likely(!lm->pm_suspend)) schedule_work(&pwm->work); else lm8323_pwm_work(&pwm->work); mutex_unlock(&lm->lock); } } static ssize_t lm8323_pwm_show_time(struct device *dev, struct device_attribute *attr, char *buf) { struct led_classdev *led_cdev = dev_get_drvdata(dev); struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); return sprintf(buf, "%d\n", pwm->fade_time); } static ssize_t lm8323_pwm_store_time(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct led_classdev *led_cdev = dev_get_drvdata(dev); struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); int ret, time; ret = kstrtoint(buf, 10, &time); /* Numbers only, please. */ if (ret) return ret; pwm->fade_time = time; return strlen(buf); } static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time); static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev, const char *name) { struct lm8323_pwm *pwm; BUG_ON(id > 3); pwm = &lm->pwm[id - 1]; pwm->id = id; pwm->fade_time = 0; pwm->brightness = 0; pwm->desired_brightness = 0; pwm->running = false; pwm->enabled = false; INIT_WORK(&pwm->work, lm8323_pwm_work); mutex_init(&pwm->lock); pwm->chip = lm; if (name) { pwm->cdev.name = name; pwm->cdev.brightness_set = lm8323_pwm_set_brightness; if (led_classdev_register(dev, &pwm->cdev) < 0) { dev_err(dev, "couldn't register PWM %d\n", id); return -1; } if (device_create_file(pwm->cdev.dev, &dev_attr_time) < 0) { dev_err(dev, "couldn't register time attribute\n"); led_classdev_unregister(&pwm->cdev); return -1; } pwm->enabled = true; } return 0; } static struct i2c_driver lm8323_i2c_driver; static ssize_t lm8323_show_disable(struct device *dev, struct device_attribute *attr, char *buf) { struct lm8323_chip *lm = dev_get_drvdata(dev); return sprintf(buf, "%u\n", !lm->kp_enabled); } static ssize_t lm8323_set_disable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct lm8323_chip *lm = dev_get_drvdata(dev); int ret; unsigned int i; ret = kstrtouint(buf, 10, &i); mutex_lock(&lm->lock); lm->kp_enabled = !i; mutex_unlock(&lm->lock); return count; } static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable); static int __devinit lm8323_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct lm8323_platform_data *pdata = client->dev.platform_data; struct input_dev *idev; struct lm8323_chip *lm; int pwm; int i, err; unsigned long tmo; u8 data[2]; if (!pdata || !pdata->size_x || !pdata->size_y) { dev_err(&client->dev, "missing platform_data\n"); return -EINVAL; } if (pdata->size_x > 8) { dev_err(&client->dev, "invalid x size %d specified\n", pdata->size_x); return -EINVAL; } if (pdata->size_y > 12) { dev_err(&client->dev, "invalid y size %d specified\n", pdata->size_y); return -EINVAL; } lm = kzalloc(sizeof *lm, GFP_KERNEL); idev = input_allocate_device(); if (!lm || !idev) { err = -ENOMEM; goto fail1; } lm->client = client; lm->idev = idev; mutex_init(&lm->lock); lm->size_x = pdata->size_x; lm->size_y = pdata->size_y; dev_vdbg(&client->dev, "Keypad size: %d x %d\n", lm->size_x, lm->size_y); lm->debounce_time = pdata->debounce_time; lm->active_time = pdata->active_time; lm8323_reset(lm); /* Nothing's set up to service the IRQ yet, so just spin for max. * 100ms until we can configure. */ tmo = jiffies + msecs_to_jiffies(100); while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) { if (data[0] & INT_NOINIT) break; if (time_after(jiffies, tmo)) { dev_err(&client->dev, "timeout waiting for initialisation\n"); break; } msleep(1); } lm8323_configure(lm); /* If a true probe check the device */ if (lm8323_read_id(lm, data) != 0) { dev_err(&client->dev, "device not found\n"); err = -ENODEV; goto fail1; } for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) { err = init_pwm(lm, pwm + 1, &client->dev, pdata->pwm_names[pwm]); if (err < 0) goto fail2; } lm->kp_enabled = true; err = device_create_file(&client->dev, &dev_attr_disable_kp); if (err < 0) goto fail2; idev->name = pdata->name ? : "LM8323 keypad"; snprintf(lm->phys, sizeof(lm->phys), "%s/input-kp", dev_name(&client->dev)); idev->phys = lm->phys; idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC); __set_bit(MSC_SCAN, idev->mscbit); for (i = 0; i < LM8323_KEYMAP_SIZE; i++) { __set_bit(pdata->keymap[i], idev->keybit); lm->keymap[i] = pdata->keymap[i]; } __clear_bit(KEY_RESERVED, idev->keybit); if (pdata->repeat) __set_bit(EV_REP, idev->evbit); err = input_register_device(idev); if (err) { dev_dbg(&client->dev, "error registering input device\n"); goto fail3; } err = request_threaded_irq(client->irq, NULL, lm8323_irq, IRQF_TRIGGER_LOW|IRQF_ONESHOT, "lm8323", lm); if (err) { dev_err(&client->dev, "could not get IRQ %d\n", client->irq); goto fail4; } i2c_set_clientdata(client, lm); device_init_wakeup(&client->dev, 1); enable_irq_wake(client->irq); return 0; fail4: input_unregister_device(idev); idev = NULL; fail3: device_remove_file(&client->dev, &dev_attr_disable_kp); fail2: while (--pwm >= 0) if (lm->pwm[pwm].enabled) { device_remove_file(lm->pwm[pwm].cdev.dev, &dev_attr_time); led_classdev_unregister(&lm->pwm[pwm].cdev); } fail1: input_free_device(idev); kfree(lm); return err; } static int __devexit lm8323_remove(struct i2c_client *client) { struct lm8323_chip *lm = i2c_get_clientdata(client); int i; disable_irq_wake(client->irq); free_irq(client->irq, lm); input_unregister_device(lm->idev); device_remove_file(&lm->client->dev, &dev_attr_disable_kp); for (i = 0; i < 3; i++) if (lm->pwm[i].enabled) { device_remove_file(lm->pwm[i].cdev.dev, &dev_attr_time); led_classdev_unregister(&lm->pwm[i].cdev); } kfree(lm); return 0; } #ifdef CONFIG_PM_SLEEP /* * We don't need to explicitly suspend the chip, as it already switches off * when there's no activity. */ static int lm8323_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct lm8323_chip *lm = i2c_get_clientdata(client); int i; irq_set_irq_wake(client->irq, 0); disable_irq(client->irq); mutex_lock(&lm->lock); lm->pm_suspend = true; mutex_unlock(&lm->lock); for (i = 0; i < 3; i++) if (lm->pwm[i].enabled) led_classdev_suspend(&lm->pwm[i].cdev); return 0; } static int lm8323_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct lm8323_chip *lm = i2c_get_clientdata(client); int i; mutex_lock(&lm->lock); lm->pm_suspend = false; mutex_unlock(&lm->lock); for (i = 0; i < 3; i++) if (lm->pwm[i].enabled) led_classdev_resume(&lm->pwm[i].cdev); enable_irq(client->irq); irq_set_irq_wake(client->irq, 1); return 0; } #endif static SIMPLE_DEV_PM_OPS(lm8323_pm_ops, lm8323_suspend, lm8323_resume); static const struct i2c_device_id lm8323_id[] = { { "lm8323", 0 }, { } }; static struct i2c_driver lm8323_i2c_driver = { .driver = { .name = "lm8323", .pm = &lm8323_pm_ops, }, .probe = lm8323_probe, .remove = __devexit_p(lm8323_remove), .id_table = lm8323_id, }; MODULE_DEVICE_TABLE(i2c, lm8323_id); module_i2c_driver(lm8323_i2c_driver); MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>"); MODULE_AUTHOR("Daniel Stone"); MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>"); MODULE_DESCRIPTION("LM8323 keypad driver"); MODULE_LICENSE("GPL");